In the framework of the discovery of new thermophilic enzymes of potential biotechnological interest, we embarked in the characterization of a new thermophilic esterase from the thermophilic bacterium Geobacillus thermodenitrificans. The phylogenetic analysis of the GTNG_0744 esterase indicated that the sequence belongs to the enterochelin/enterobactin esterase group, which have never been recognized as a family in the lipases/esterase classification. These enzymes catalyze the last step in the acquisition of environmental Fe3+ through siderophore hydrolysis. In silico analysis revealed, for the first time, that the machinery for the uptake of siderophores is present in G. thermodenitrificans. The purified recombinant enzyme, EstGtA3, showed different substrate specificity from known enterochelin/enterobactin esterases, recognizing short chain esters with a higher specificity constant for 4-NP caprylate. The enzyme does not require cofactors for its activity, is active in the pH range 7.0-8.5, has highest activity at 60 °C and is 100% stable when incubated for 16 h at 55 °C. DTT, β-mercaptoethanol and Triton X-100 have an activating effect on the enzymatic activity. Organic solvents have in general a negative effect on the enzyme, but n-hexane is a strong activator up to 150, making EstGtA3 a good candidate for applications in biotechnology.

Identification of a novel esterase from the thermophilic bacterium Geobacillus thermodenitrificans NG80-2 / Curci, Nicola; Strazzulli, A.; De Lise, F.; Iacono, R.; Maurelli, L.; Dal Piaz, F.; Cobucci-Ponzano, B.; Moracci, M.. - In: EXTREMOPHILES. - ISSN 1431-0651. - 23:4(2019), pp. 407-419. [10.1007/s00792-019-01093-9]

Identification of a novel esterase from the thermophilic bacterium Geobacillus thermodenitrificans NG80-2

CURCI, NICOLA
Primo
;
Strazzulli A.;De Lise F.;Iacono R.;Moracci M.
Ultimo
2019

Abstract

In the framework of the discovery of new thermophilic enzymes of potential biotechnological interest, we embarked in the characterization of a new thermophilic esterase from the thermophilic bacterium Geobacillus thermodenitrificans. The phylogenetic analysis of the GTNG_0744 esterase indicated that the sequence belongs to the enterochelin/enterobactin esterase group, which have never been recognized as a family in the lipases/esterase classification. These enzymes catalyze the last step in the acquisition of environmental Fe3+ through siderophore hydrolysis. In silico analysis revealed, for the first time, that the machinery for the uptake of siderophores is present in G. thermodenitrificans. The purified recombinant enzyme, EstGtA3, showed different substrate specificity from known enterochelin/enterobactin esterases, recognizing short chain esters with a higher specificity constant for 4-NP caprylate. The enzyme does not require cofactors for its activity, is active in the pH range 7.0-8.5, has highest activity at 60 °C and is 100% stable when incubated for 16 h at 55 °C. DTT, β-mercaptoethanol and Triton X-100 have an activating effect on the enzymatic activity. Organic solvents have in general a negative effect on the enzyme, but n-hexane is a strong activator up to 150, making EstGtA3 a good candidate for applications in biotechnology.
2019
Identification of a novel esterase from the thermophilic bacterium Geobacillus thermodenitrificans NG80-2 / Curci, Nicola; Strazzulli, A.; De Lise, F.; Iacono, R.; Maurelli, L.; Dal Piaz, F.; Cobucci-Ponzano, B.; Moracci, M.. - In: EXTREMOPHILES. - ISSN 1431-0651. - 23:4(2019), pp. 407-419. [10.1007/s00792-019-01093-9]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/754242
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 12
social impact