Previous studies in intact lung suggest that CFTR may play a role in cAMP-regulated fluid transport from the distal air spaces of the lung. However, the potential contribution of different epithelial cells (alveolar epithelial type I, type II, or bronchial epithelial cells) to CFTR-regulated fluid transport is unknown. In this study we determined whether the CFTR gene is expressed in human lung alveolar epithelial type II (AT II) cells and whether the CFTR chloride channel contributes to cAMP-regulated fluid transport in cultured human AT II cells. Human AT II cells were isolated and cultured on collagen I-coated Transwell membranes for 120-144 h with an air-liquid interface. The cultured cells retained typical AT II-like features based on morphologic studies. Net basal fluid transport was 0.9+/-0.1 mul.cm-2.h-1 and increased to 1.35+/-0.11 mul.cm-2.h-1 (mean+/-SE, n=18, P<0.05) by stimulation with cAMP agonists. The CFTR inhibitor, CFTRinh-172, inhibited cAMP stimulated but not basal fluid transport. In short-circuit current (Isc) studies with an apical-to-basolateral transepithelial Cl- gradient, apical application of CFTRinh-172 reversed the forskolin-induced decrease in Isc. Real time RT-PCR demonstrated CFTR transcript expression in human AT II cells at a level similar to that in airway epithelial cells. We conclude that CFTR is expressed in cultured human AT II cells and may contribute to cAMP-regulated apical-basolateral fluid transport.

Contribution of CFTR to apical-basolateral fluid transport in cultured human alveolar epithelial type II cells / Fang, Xiaohui; Song, Yuanlin; Hirsch, Jan; Galietta, Luis J. V.; Pedemonte, Nicoletta; Zemans, Rachel L.; Dolganov, Gregory; Verkman, A. S.; Matthay, Michael A.. - In: AMERICAN JOURNAL OF PHYSIOLOGY. LUNG CELLULAR AND MOLECULAR PHYSIOLOGY. - ISSN 1040-0605. - 290:2(2006), pp. L242-L249. [10.1152/ajplung.00178.2005]

Contribution of CFTR to apical-basolateral fluid transport in cultured human alveolar epithelial type II cells

Galietta, Luis J. V.;
2006

Abstract

Previous studies in intact lung suggest that CFTR may play a role in cAMP-regulated fluid transport from the distal air spaces of the lung. However, the potential contribution of different epithelial cells (alveolar epithelial type I, type II, or bronchial epithelial cells) to CFTR-regulated fluid transport is unknown. In this study we determined whether the CFTR gene is expressed in human lung alveolar epithelial type II (AT II) cells and whether the CFTR chloride channel contributes to cAMP-regulated fluid transport in cultured human AT II cells. Human AT II cells were isolated and cultured on collagen I-coated Transwell membranes for 120-144 h with an air-liquid interface. The cultured cells retained typical AT II-like features based on morphologic studies. Net basal fluid transport was 0.9+/-0.1 mul.cm-2.h-1 and increased to 1.35+/-0.11 mul.cm-2.h-1 (mean+/-SE, n=18, P<0.05) by stimulation with cAMP agonists. The CFTR inhibitor, CFTRinh-172, inhibited cAMP stimulated but not basal fluid transport. In short-circuit current (Isc) studies with an apical-to-basolateral transepithelial Cl- gradient, apical application of CFTRinh-172 reversed the forskolin-induced decrease in Isc. Real time RT-PCR demonstrated CFTR transcript expression in human AT II cells at a level similar to that in airway epithelial cells. We conclude that CFTR is expressed in cultured human AT II cells and may contribute to cAMP-regulated apical-basolateral fluid transport.
2006
Contribution of CFTR to apical-basolateral fluid transport in cultured human alveolar epithelial type II cells / Fang, Xiaohui; Song, Yuanlin; Hirsch, Jan; Galietta, Luis J. V.; Pedemonte, Nicoletta; Zemans, Rachel L.; Dolganov, Gregory; Verkman, A. S.; Matthay, Michael A.. - In: AMERICAN JOURNAL OF PHYSIOLOGY. LUNG CELLULAR AND MOLECULAR PHYSIOLOGY. - ISSN 1040-0605. - 290:2(2006), pp. L242-L249. [10.1152/ajplung.00178.2005]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/739048
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 140
  • ???jsp.display-item.citation.isi??? ND
social impact