The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a cAMP-activated chloride channel expressed in epithelia in the lung, intestine, pancreas, testis and other tissues, where it facilitates transepithelial fluid transport. In the intestine CFTR provides the major route for chloride secretion in certain diarrheas. Mutations in CFTR cause the hereditary disease cystic fibrosis, where chronic lung infection and deterioration in lung function cause early death. CFTR is a well-validated targeted for development of inhibitors for therapy of secretory diarrheas and activators for therapy in cystic fibrosis. Our lab has identified and optimized small molecule inhibitors of CFTR, as well as activators of DeltaF508-CFTR, the most common mutant CFTR causing cystic fibrosis. High-throughput screening of small molecule collections utilizing a cell-based fluorescence assay of halide transport yielded thiazolidinone and glycine hydrazide CFTR inhibitors that block enterotoxin-mediated secretory diarrhea in rodent models, including a class of non-absorbable inhibitors that target the CFTR pore at its external entrance. Benzothiophene, phenylglycine and sulfonamide potentiators were identified that correct the defective gating of DeltaF508-CFTR chloride channels, and other small molecules that correct its defective cellular processing. Small molecule modulators of CFTR function may be useful in the treatment of cystic fibrosis, secretory diarrhea and polycystic kidney disease.

CFTR chloride channel drug discovery--inhibitors as antidiarrheals and activators for therapy of cystic fibrosis / Verkman, A S; Lukacs, Gergely L; Galietta, Luis J V. - In: CURRENT PHARMACEUTICAL DESIGN. - ISSN 1381-6128. - 12:18(2006), p. 2235-47.

CFTR chloride channel drug discovery--inhibitors as antidiarrheals and activators for therapy of cystic fibrosis

Galietta, Luis J V
2006

Abstract

The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a cAMP-activated chloride channel expressed in epithelia in the lung, intestine, pancreas, testis and other tissues, where it facilitates transepithelial fluid transport. In the intestine CFTR provides the major route for chloride secretion in certain diarrheas. Mutations in CFTR cause the hereditary disease cystic fibrosis, where chronic lung infection and deterioration in lung function cause early death. CFTR is a well-validated targeted for development of inhibitors for therapy of secretory diarrheas and activators for therapy in cystic fibrosis. Our lab has identified and optimized small molecule inhibitors of CFTR, as well as activators of DeltaF508-CFTR, the most common mutant CFTR causing cystic fibrosis. High-throughput screening of small molecule collections utilizing a cell-based fluorescence assay of halide transport yielded thiazolidinone and glycine hydrazide CFTR inhibitors that block enterotoxin-mediated secretory diarrhea in rodent models, including a class of non-absorbable inhibitors that target the CFTR pore at its external entrance. Benzothiophene, phenylglycine and sulfonamide potentiators were identified that correct the defective gating of DeltaF508-CFTR chloride channels, and other small molecules that correct its defective cellular processing. Small molecule modulators of CFTR function may be useful in the treatment of cystic fibrosis, secretory diarrhea and polycystic kidney disease.
2006
CFTR chloride channel drug discovery--inhibitors as antidiarrheals and activators for therapy of cystic fibrosis / Verkman, A S; Lukacs, Gergely L; Galietta, Luis J V. - In: CURRENT PHARMACEUTICAL DESIGN. - ISSN 1381-6128. - 12:18(2006), p. 2235-47.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/739039
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 70
social impact