Peptostreptococcus magnus protein L is a multidomain bacterial surface protein that correlates with virulence. It consists of up to five homologous Ig-binding domains (B1-B5) that interact with the variable domain of Ig kappa L chains. Intact protein L stimulates the synthesis and the release of IL-4 and IL-13 from human basophils in vitro. A protein L fragment covering the Ig-binding domains B1-B4 also induced IL-4 and IL-13 release from basophils. There was an excellent correlation (r(s) = 0.82; p < 0.001) between the maximal percent IL-4 release induced by protein L and that induced by anti-IgE and between intact protein L and the B1-B4 fragment (r(s) = 0.90; p < 0.01). Removal of IgE bound to basophils markedly reduced the IL-4 release induced by anti-IgE, protein L, and B1-B4. Preincubation of basophils with protein L or anti-IgE caused complete cross-desensitization to subsequent challenge with the heterologous stimulus. IgE purified from myeloma patients PS and PP (lambda chains) blocked anti-IgE-induced IL-4 release, but not the releasing activity of protein L. In contrast, IgE purified from myeloma patient ADZ (kappa chains) blocked both anti-IgE- and protein L-induced secretion. Cyclosporin A, but not cyclosporin H, inhibited protein L-induced release of IL-4 and IL-13 from basophils. Thus, protein L acts as a bacterial Ig superantigen to induce the synthesis and release of IL-4 and IL-13 from basophils by interacting with kappa L chains of the IgE isotype.

Immunoglobulin superantigen protein L induces IL-4 and IL-13 secretion from human Fc epsilon RI+ cells through interaction with the kappa light chains of IgE / Genovese, Arturo; Borgia, Guglielmo; Björck, Lars; Petraroli, Angelica; DE PAULIS, Amato; Piazza, Marcello; Marone, Gianni. - In: JOURNAL OF IMMUNOLOGY. - ISSN 0022-1767. - 170:4(2003), p. 1854-61.

Immunoglobulin superantigen protein L induces IL-4 and IL-13 secretion from human Fc epsilon RI+ cells through interaction with the kappa light chains of IgE

GENOVESE, ARTURO;BORGIA, GUGLIELMO;PETRAROLI, ANGELICA;DE PAULIS, AMATO;PIAZZA, MARCELLO;MARONE, GIANNI
2003

Abstract

Peptostreptococcus magnus protein L is a multidomain bacterial surface protein that correlates with virulence. It consists of up to five homologous Ig-binding domains (B1-B5) that interact with the variable domain of Ig kappa L chains. Intact protein L stimulates the synthesis and the release of IL-4 and IL-13 from human basophils in vitro. A protein L fragment covering the Ig-binding domains B1-B4 also induced IL-4 and IL-13 release from basophils. There was an excellent correlation (r(s) = 0.82; p < 0.001) between the maximal percent IL-4 release induced by protein L and that induced by anti-IgE and between intact protein L and the B1-B4 fragment (r(s) = 0.90; p < 0.01). Removal of IgE bound to basophils markedly reduced the IL-4 release induced by anti-IgE, protein L, and B1-B4. Preincubation of basophils with protein L or anti-IgE caused complete cross-desensitization to subsequent challenge with the heterologous stimulus. IgE purified from myeloma patients PS and PP (lambda chains) blocked anti-IgE-induced IL-4 release, but not the releasing activity of protein L. In contrast, IgE purified from myeloma patient ADZ (kappa chains) blocked both anti-IgE- and protein L-induced secretion. Cyclosporin A, but not cyclosporin H, inhibited protein L-induced release of IL-4 and IL-13 from basophils. Thus, protein L acts as a bacterial Ig superantigen to induce the synthesis and release of IL-4 and IL-13 from basophils by interacting with kappa L chains of the IgE isotype.
2003
Immunoglobulin superantigen protein L induces IL-4 and IL-13 secretion from human Fc epsilon RI+ cells through interaction with the kappa light chains of IgE / Genovese, Arturo; Borgia, Guglielmo; Björck, Lars; Petraroli, Angelica; DE PAULIS, Amato; Piazza, Marcello; Marone, Gianni. - In: JOURNAL OF IMMUNOLOGY. - ISSN 0022-1767. - 170:4(2003), p. 1854-61.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/635210
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact