In a screen designed to identify novel inducers of autophagy, we discovered that STAT3 inhibitors potently stimulate the autophagic flux. Accordingly, genetic inhibition of STAT3 stimulated autophagy in vitro and in vivo, while overexpression of STAT3 variants, encompassing wild-type, nonphosphorylatable, and extranuclear STAT3, inhibited starvation-induced autophagy. The SH2 domain of STAT3 was found to interact with the catalytic domain of the eIF2α kinase 2 EIF2AK2, best known as protein kinase R (PKR). Pharmacological and genetic inhibition of STAT3 stimulated the activating phosphorylation of PKR and consequent eIF2α hyperphosphorylation. Moreover, PKR depletion inhibited autophagy as initiated by chemical STAT3 inhibitors or free fatty acids like palmitate. STAT3-targeting chemicals and palmitate caused the disruption of inhibitory STAT3-PKR interactions, followed by PKR-dependent eIF2α phosphorylation, which facilitates autophagy induction. These results unravel an unsuspected mechanism of autophagy control that involves STAT3 and PKR as interacting partners.

Cytoplasmic STAT3 Represses Autophagy by Inhibiting PKR Activity / Shen, Shensi; Niso Santano, Mireia; Adjemian, Sandy; Takehara, Tetsuo; Malik, Shoaib Ahmad; Minoux, Hervé; Souquere, Sylvie; Mariño, Guillermo; Lachkar, Sylvie; Senovilla, Laura; Galluzzi, Lorenzo; Kepp, Oliver; Pierron, Gérard; Maiuri, MARIA CHIARA; Hikita, Hayato; Kroemer, Romano; Kroemer, Guido. - In: MOLECULAR CELL. - ISSN 1097-2765. - 48:5(2012), pp. 667-680. [10.1016/j.molcel.2012.09.013]

Cytoplasmic STAT3 Represses Autophagy by Inhibiting PKR Activity

MAIURI, MARIA CHIARA;
2012

Abstract

In a screen designed to identify novel inducers of autophagy, we discovered that STAT3 inhibitors potently stimulate the autophagic flux. Accordingly, genetic inhibition of STAT3 stimulated autophagy in vitro and in vivo, while overexpression of STAT3 variants, encompassing wild-type, nonphosphorylatable, and extranuclear STAT3, inhibited starvation-induced autophagy. The SH2 domain of STAT3 was found to interact with the catalytic domain of the eIF2α kinase 2 EIF2AK2, best known as protein kinase R (PKR). Pharmacological and genetic inhibition of STAT3 stimulated the activating phosphorylation of PKR and consequent eIF2α hyperphosphorylation. Moreover, PKR depletion inhibited autophagy as initiated by chemical STAT3 inhibitors or free fatty acids like palmitate. STAT3-targeting chemicals and palmitate caused the disruption of inhibitory STAT3-PKR interactions, followed by PKR-dependent eIF2α phosphorylation, which facilitates autophagy induction. These results unravel an unsuspected mechanism of autophagy control that involves STAT3 and PKR as interacting partners.
2012
Cytoplasmic STAT3 Represses Autophagy by Inhibiting PKR Activity / Shen, Shensi; Niso Santano, Mireia; Adjemian, Sandy; Takehara, Tetsuo; Malik, Shoaib Ahmad; Minoux, Hervé; Souquere, Sylvie; Mariño, Guillermo; Lachkar, Sylvie; Senovilla, Laura; Galluzzi, Lorenzo; Kepp, Oliver; Pierron, Gérard; Maiuri, MARIA CHIARA; Hikita, Hayato; Kroemer, Romano; Kroemer, Guido. - In: MOLECULAR CELL. - ISSN 1097-2765. - 48:5(2012), pp. 667-680. [10.1016/j.molcel.2012.09.013]
File in questo prodotto:
File Dimensione Formato  
Shen Mol Cell.pdf

solo utenti autorizzati

Descrizione: articolo principale
Licenza: Accesso privato/ristretto
Dimensione 2.86 MB
Formato Adobe PDF
2.86 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/621022
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 224
  • ???jsp.display-item.citation.isi??? 205
social impact