In this study, polymer nanocomposites based on poly(lactic acid) (PLA) and organically modified layered silicates (organoclay) were prepared by melt mixing in an internal mixer. The exfoliation of organoclay could be attributed to the interaction between the organoclay and PLA molecules and shearing force during mixing. The exfoliated organoclay layers acted as nucleating agents at low content and as the organoclay content increased they became physical hindrance to the chain mobility of PLA. The thermal dynamic mechanical moduli of nanocomposites were also improved by the exfoliation of organoclay; however, the improvement was reduced at high organoclay content. The dynamic rheological studies show that the nanocomposites have higher viscosity and more pronounced elastic properties than pure PLA. Both storage and loss moduli increased with silicate loading at all frequencies and showed nonterminal behavior at low frequencies. The nanocomposites and PLA were then foamed by using the mixture of CO2 and N2 as blowing agent in a batch foaming process. Compared with PLA foam, the nanocomposite foams exhibited reduced cell size and increased cell density at very low organoclay content. With the increase of organo- clay content, the cell size was decreased and both cell density and foam density were increased.

Poly(lactic acid)/Organoclay Nanocomposites: Thermal, Rheological Properties and Foam Processing / Y., Di; S., Iannace; DI MAIO, Ernesto; Nicolais, Luigi. - In: JOURNAL OF POLYMER SCIENCE. PART B, POLYMER PHYSICS. - ISSN 0887-6266. - STAMPA. - 43:(2005), pp. 689-698.

Poly(lactic acid)/Organoclay Nanocomposites: Thermal, Rheological Properties and Foam Processing

DI MAIO, ERNESTO;NICOLAIS, LUIGI
2005

Abstract

In this study, polymer nanocomposites based on poly(lactic acid) (PLA) and organically modified layered silicates (organoclay) were prepared by melt mixing in an internal mixer. The exfoliation of organoclay could be attributed to the interaction between the organoclay and PLA molecules and shearing force during mixing. The exfoliated organoclay layers acted as nucleating agents at low content and as the organoclay content increased they became physical hindrance to the chain mobility of PLA. The thermal dynamic mechanical moduli of nanocomposites were also improved by the exfoliation of organoclay; however, the improvement was reduced at high organoclay content. The dynamic rheological studies show that the nanocomposites have higher viscosity and more pronounced elastic properties than pure PLA. Both storage and loss moduli increased with silicate loading at all frequencies and showed nonterminal behavior at low frequencies. The nanocomposites and PLA were then foamed by using the mixture of CO2 and N2 as blowing agent in a batch foaming process. Compared with PLA foam, the nanocomposite foams exhibited reduced cell size and increased cell density at very low organoclay content. With the increase of organo- clay content, the cell size was decreased and both cell density and foam density were increased.
2005
Poly(lactic acid)/Organoclay Nanocomposites: Thermal, Rheological Properties and Foam Processing / Y., Di; S., Iannace; DI MAIO, Ernesto; Nicolais, Luigi. - In: JOURNAL OF POLYMER SCIENCE. PART B, POLYMER PHYSICS. - ISSN 0887-6266. - STAMPA. - 43:(2005), pp. 689-698.
File in questo prodotto:
File Dimensione Formato  
JPolSciB_2005_43_689.pdf

non disponibili

Tipologia: Altro materiale allegato
Licenza: Accesso privato/ristretto
Dimensione 488.26 kB
Formato Adobe PDF
488.26 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/204688
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 248
  • ???jsp.display-item.citation.isi??? ND
social impact