Sfoglia per Rivista  

Opzioni
Vai a: 0-9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Mostrati risultati da 5 a 24 di 27
Titolo Tipologia Data di pubblicazione Autore(i) File
Comparative analysis of Deep Reinforcement Learning configurations in Flow Shop for enhanced Maintenance Management 4.1 Articoli in Atti di convegno 2024 Marchesano, M. G.; Guizzi, G.; Santillo, L. C.
Considering greenhouse gas emissions in a single vendormultiple buyer coordinated supply chain 4.1 Articoli in Atti di convegno 2017 Castellano, D.; Gallo, M.; Santillo, L. C.
Data Analisys approach to support Surgical Schedule Development: the case of A.O.R.N. “Antonio Cardarelli” of Naples (Italy) 4.1 Articoli in Atti di convegno 2024 Converso, G.; D'Amore, A.; Mannelli, M. P.; Fidecicchi, A.
A data-driven prognostic approach for the battery state-of-charge assessment with regard to machine workload 1.1 Articolo in rivista 2019 Vespoli, S.; Grassi, A.; Guizzi, G.; Santillo, L. C.
A decision framework for upgrading ERP systems 4.1 Articoli in Atti di convegno 2016 Zeppetella, Luca; Gebennini, Elisa; Grassi, Andrea; Rimini, Bianca
Deep Reinforcement Learning-Based Controller for Autonomous Guided Vehicles (AGVs) in a Multi- Department Production Plant 4.1 Articoli in Atti di convegno 2023 De Martino, M.; Marchesano, M. G.; Guizzi, G.; Salatiello, E.
Dynamic Optimization of Pickup and Delivery Problems in Industry 4.0: A Vickrey Auction-Based and Multi-Agent Simulation Approach 4.1 Articoli in Atti di convegno 2023 Abate, R.; Vespoli, S.; Guizzi, G.; Marchesano, M. G.
A flow chart analysis of the Smart Products End of Life 4.1 Articoli in Atti di convegno 2022 Popolo, V.; Vespoli, S.; Grassi, A.; Converso, G.
A framework for real-time stress evaluation in Industry 4.0 manual assembly stations 4.1 Articoli in Atti di convegno 2019 Capuozzo, A.; Gallo, M.; Grassi, A.; Murino, T.; Popolo, V.; Tedesco, A.
Impact of Patient and Management Variables on Operating Room Times: An Analysis through the Application of Machine Learning Techniques 4.1 Articoli in Atti di convegno 2024 Scala, A.; Trunfio, T. A.; D'Amore, A.; Mannelli, M. P.; Fidecicchi, A.; Converso, G.
Intelligent Mediator for Supply Chain Coordination: Overcoming Information Asymmetry 4.1 Articoli in Atti di convegno 2024 Salatiello, E.; Grassi, A.; Vespoli, S.
Inventory Level and Lead Time Negotiation for Dynamic Supply Chain Coordination under Information Asymmetry 4.1 Articoli in Atti di convegno 2025 Papa, F.; Salatiello, E.; Grassi, A.; Santillo, L. C.; Vespoli, S.
A manpower allocation problem with layout considerations 4.1 Articoli in Atti di convegno 2014 Zeppetella, Luca; Gebennini, Elisa; Grassi, Andrea; Rimini, Bianca
A methodology for estimating the operating costs of production lines 4.1 Articoli in Atti di convegno 2017 Gebennini, E.; Grassi, A.; Rimini, B.
On Reinforcement Learning in production control and its potentiality in manufacturing 4.1 Articoli in Atti di convegno 2021 Marchesano, M. G.; Guizzi, G.; Castellano, D.; Di Nardo, M.
On the advances of the Industry 4.0 Manufacturing Planning and Control system architectures 4.1 Articoli in Atti di convegno 2021 Vespoli, S.; Converso, G.; Grassi, A.; Santillo, L. C.
On the development of innovative manufacturing planning and control system architectures for the industry 4.0 1.1 Articolo in rivista 2020 Vespoli, S.; Grassi, A.; Guizzi, G.; Santillo, L.
On the modeling of line feeding systems with bin-kanban and logistic trains as polling systems 4.1 Articoli in Atti di convegno 2015 Bursi, Fabio; Gebennini, Elisa; Grassi, Andrea; Rimini, Bianca
A Reinforcement Learning approach in Industry 4.0 enabled production system 4.1 Articoli in Atti di convegno 2022 Marchesano, M. G.; Salatiello, E.; Guizzi, G.; Santillo, L. C.
Reinforcement Learning-Based WIP Control for Balancing Productivity and Lead Time in Manufacturing Systems 4.1 Articoli in Atti di convegno 2024 Vespoli, S.; Santillo, L. C.
Mostrati risultati da 5 a 24 di 27
Legenda icone

  •  file ad accesso aperto
  •  file disponibili sulla rete interna
  •  file disponibili agli utenti autorizzati
  •  file disponibili solo agli amministratori
  •  file sotto embargo
  •  nessun file disponibile