
Relative Motion Estimation Based on Sensor Eigenfusion Using

a Stereoscopic Vision System and Adaptive Statistical Filtering

Gennaro Notomista, Università degli Studi di Napoli, gennaro.notomista@iit.it, Italy

Alexander Kammenhuber, Audi AG, alexander1.kammenhuber@audi.de, Germany

Parthasarathy Nadarajan, Technische Hochschule Ingolstadt, Parthasarathy.Nadarajan@thi.de, Germany

Michael Botsch, Technische Hochschule Ingolstadt, Michael.Botsch@thi.de, Germany

Mario Selvaggio, Università degli Studi di Napoli, mario.selvaggio@iit.it, Italy

Abstract

This paper presents a method to estimate the relative motion between two vehicles with high accuracy. The estimated

quantities are intended to be used as a reference system for automotive sensing techniques and online embedded

motion-estimation algorithms. We propose the sensor eigenfusion which makes use of a stereoscopic vision system

mounted on-board of a host vehicle. Highly reliable markers, i. e., QR-codes, mounted on a remote vehicle are used for

robust features detection and tracking. In the case of the mentioned camera system, the proposed method uses the 3D

reconstruction capabilities of stereoscopic vision and optical flow techniques usually used in monocular vision systems.

The measurements are then shaped, smoothed and fused using a Kalman filter. To achieve the required high accuracy

the characteristic statistical parameters of the filter are adapted online according to confidence measures which depend

both on the 3D reconstruction and on the optical flow analysis.

1 Introduction

The ability of estimating the motion of mobile robots

with respect to the environment in which they are moving

is of a great importance. For autonomous mobile robots,

which aim to navigate themselves in an unknown envi-

ronment, this is a non-optional feature. Even more impor-

tant is the case in which the robot requires the motion of

other objects that are present in the environment. In many

cases, for instance, the objects need to be recognized and

categorized as potential obstacles. Another case is repre-

sented by the situations in which a moving object is con-

sidered as a reference for motion planning functions (e. g.

target chasing and dynamic manipulation). A confirma-

tion of what has been mentioned is the great success of

competitions such as the DARPA Grand and Urban Chal-

lenges [1, 2, 3].

A field in which both the above-mentioned cases are rel-

evant is autonomous driving. In order to ensure safe ap-

plications in future road traffic, one key challenge is the

planning of collision-free paths over time. Since the envi-

ronment of an autonomous vehicle or robot is not static,

the motion of other objects needs to be considered. Other

vehicles, pedestrians or animals can, in fact, trigger au-

tonomous intervention functions and, in this way, directly

influence the trajectory of the vehicle. In order to opti-

mally plan this trajectory, quantitative information about

the motion of the remote objects is required. This pa-

per, therefore, is aimed at presenting a method for esti-

mating the relative position and velocity of the objects

present in the environment with respect to a host vehicle.

This way the situation can be evaluated and an eventual

autonomous intervention can be planned enough time in

advance. Commonly used ways of interpreting a situation

are summarized in [4].

Different techniques are already used for environment

detection and description as described in [5]. They al-

ready make use of several sensor technologies involving

radar, laser, infrared, ultrasound and video [6]. Mod-

ern cameras, in particular, are very powerful sensors be-

cause of the huge quantity of information they can deliver

and that can be interpreted in different ways [7]. Meth-

ods to exploit this information have been developed in

stereoscopic vision systems [8] and in monocular sys-

tems that make use of optical flow techniques [9]. This

latter, inspired by biological creatures such as bees [10]

and humans [11], is able to provide information about

the relative motion between the observer and the objects

as shown in [12] and [13]. Different techniques have

been devised in order to combine the depth measurements

(i. e., measures of position in the 3D world) with the op-

tical flow vectors (namely measures of velocity in the 2-

dimensional image space)[14, 15]. Moreover, also the

flow/depth constraint can be exploited to detect moving

objects in a more robust way [16]. Finally, as reported

in [17], optical flow techniques are applied to camera im-

ages stabilized using a stereo architecture and knowledge

on robot kinematics.

In this paper a stereoscopic system has been designed for

the real-time computation of the relative dynamics be-

tween the host and the remote systems. The combination

of the depth information and the sparse optical flow is

performed by means of a statistical filter, whose param-

eters take into account the relationship between the two

measurements techniques. Additionally, the optical flow

analysis is performed on the images of both cameras and

its output is used as part of the measurement vector in the

filtering process. Finally, the statistical parameters of the
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the following equation, relating it to the velocity in the

image plane, can be derived:

vIi = JIiv. (4)

The matrix JIi is the image Jacobian defined as [12]

JIi =

[
− 1

zCi
0 Xi

zCi
XiYi −(1 +X2

i ) Yi

0 − 1

zCi

Yi

zCi
(1 + Y 2

i ) −XiYi −Xi

]
,

(5)

where zCi, the component of the detected feature along

the zC axis, is computed in the camera reference system

of Fig. 1.

Combining all the vectors vIi, relative to the different de-

tected features, in the vector vIc, next equation holds

vIc =

⎡
⎢⎢⎢⎣
vI1

vI2

...

vIn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
JI1

JI2

...

JIn

⎤
⎥⎥⎥⎦v = JIcv. (6)

A least square technique can be employed to solve Eq. (6)

for the vector v. This solution is given by Eq. (7) where

J
†

Ic is the image Jacobian pseudo-inverse

v = J
†

IcvIc. (7)

The vectors v are evaluated for the right and the left im-

age and expressed in the same reference system xCyCzC

of Fig. 1. The weighted average v̄ of these two vectors
CvL and CvR is defined by

v̄ =
1

εL

CvL + 1

εR

CvR

1

εL
+ 1

εR

. (8)

The expression of the errors εL and εR is computed using

the following definition where also the values of vIc, JIc

and v are relative to the left and the right image, respec-

tively:

ε = ‖vIc −JIcv‖ . (9)

3 Statistical Filtering of Measure-

ments

The measurements provided by the 3D reconstruction and

by the optical flow are merged, filtered and fused by the

aid of a Kalman filter (KF). This techniques has been ap-

plied in [26, 27, 28, 29]. In order to obtain a high accu-

racy of the estimates, the KF is designed in such a way

that it takes account for the nonstationarity of the mea-

surement noise. The noise covariance matrix is chosen

adaptively based on confidence measures connected to

the 3D reconstruction and the optical flow analysis, as

explained in Subsection 3.2.

3.1 System Model

Considering only the planar motion, in Fig. 3 the host

and the remote vehicle are depicted in the world refer-

ence system OXY .

xr[n]
ψr[n]

X

Y

O

Xhost

Yhost

yr[n]

Host vehicle

Remote vehicle

Figure 3: Estimated quantities

The host reference system, whose origin coincides with

the mid point of the rear axle of the host vehicle, is also

represented. In this reference system, the quantities xr,

yr and ψr, together with their derivatives, are to be esti-

mated. The well-known KF-equations [30] are used for

this task. The state and observation equations that de-

scribe the dynamic system and which are required to ap-

ply the KF, are described in the following.

The state vector x[n] and measurement vector y[n] for the

KF are introduced as

x[n] =
[
xr[n], yr[n], ψr[n], ẋr[n], ẏr[n], ψ̇r[n]

]T

, (10)

y[n] =
[
x

m
r [n], y

m
r [n], ψ

m
r [n], ẋ

m
r [n], ẏ

m
r [n], ψ̇

m
r [n]

]T

,

(11)

where the superscript “m” indicates that the quantities are

measured, i. e., they contain measurement noise. Since

the relative dynamics of two objects is to be estimated,

a decoupling of xr[n], yr[n], and ψr[n] is assumed. This

way the state equations for xr and ẋr are

xr[n+ 1] = xr[n] + T ẋr[n] +
T 2

2
ηx,s (12)

ẋr[n+ 1] = ẋr[n] + Tηx,s, (13)

where T is the time step, and the second derivative of xr

is modelled as process noise ηx,s. Then, the noise vari-

ance σ2

ηx,s
, that is required in the process noise covariance

matrix in the KF, is determined using the approximation

σ2

ηx,s
≈

1

9

(
ηmax
x,s

)2
, (14)

where ηmax
x,s is the maximum value of the second deriva-

tive of xr. This approximation is based on the 3σ-rule

for Gaussian distributions. The state equations for yr and

ẏr as well as for ψr and ψ̇r are equivalent to Eqs. (12)

and (13). Also the process noise variances for these quan-

tities are approximated equivalently to Eq. (14).

All quantities of the state vector can be measured with the

proposed system and so the observation matrix is a simple

identity matrix. However, the measurement noise vector

ηm ∈ R
6 in the observation equation cannot be assumed

to be a stationary random process, for example because

of the pixel-quantization in the cameras which leads to

a larger noise power for objects that are far away. That

is why the measurement noise covariance matrix Cηm
is

chosen adaptively in this work.
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