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Abstract— This paper presents the implementation of a new
boarding strategy that exploits passenger and hand-luggage
detection and classification to reduce the boarding time onto
an airplane. A vision system has the main purpose of providing
passengers data, in terms of agility coefficient and hand-luggage
size to a seat assignment algorithm. The software is able
to dynamically generate the passenger seat that reduces the
overall boarding time while taking into account the current
airplane boarding state. The motivation behind this work is to
speed up of the passenger boarding using the proposed online
procedure of seat assignment based on passenger and luggage
classification. This method results in an enhancement of the
boarding phase, in terms of both time and passenger experience.
The main goal of this work is to demonstrate the usability of
the proposed system in real conditions proving its performances
in terms of reliability. Using a simple hardware and software
setup, we performed several experiments recreating a gate
entrance mock up and comparing the measurements with
ground truth data to assess the reliability of the system.

Index Terms— computer vision, agility measurement, board-
ing strategy

I. INTRODUCTION

A common issue in airline industry is the minimization
of the time airplanes spend on the ground at the air-
ports. This time, which is usually referred to as turnaround
time (TAT), requires therefore special attention. Among the
different ground operations that are performed during the
TAT, passengers boarding cannot be easily parallelized since
it cannot start until other processes, such as fueling, cleaning
and catering, have been successfully completed. Hence, the
boarding process plays an important role with respect to the
TAT since it is on its critical path [1]. The main objective
of this paper is to present the implementation of a new
boarding strategy that is able to reduce the overall boarding
time by exploiting an online seat assignment algorithm based
on passenger and hand-luggage classification. In order to
provide the opportune data to the boarding software, the
proposed system makes use of vision sensors and image
processing algorithms.

In the past few years computer vision systems (CVS)
have been widely employed to enhance the performances
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degli Studi di Salerno, f.sbrizzi1@studenti.unisa.it

2Stanislao Grazioso, Mario Selvaggio and Gennaro Notomista, Depart-
ment of Industrial Engineering, Università degli Studi di Napoli “Federico
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of transportation systems and the infrastructures related to
them. The main objective of such usage has to be found
in the fact that by making transportation systems sensing
the human environment around them, they can actually
respond according to the environment changes. The field of
autonomous driving, for instance, constitutes one of the most
common field of application: intelligent vehicles make use
of vision based pedestrians and vehicles detection for fast
decision making and collision avoidance or traffic analysis
and monitoring.

In the previous literature, works that have considered
the application of CVS in airports mainly focus on the
employment of cameras for surveillance [2] or boarding
control [3]. In our previous work [4] a different application of
computer vision dealing with the speeding up of passenger
boarding into airplanes has been proposed. In this work a
seat allocation algorithm exploiting passenger and luggage
data is compared to currently used boarding strategies and
it shows better performances in terms of saved time in the
overall boarding phase.

In this paper we propose the validation of the optimal
boarding strategy proposed in our previous work, where it
has been demonstrated that the usage of our system con-
stitutes an important step forward for enhancing passenger
experience while boarding onto an airplane compared to
current boarding approaches. In order to give an overview
of the proposed boarding controller Fig. 1 depicts it in terms
of block scheme. As it can be noticed, the controller is
dependent on both real parameters obtained online and the
current state of the system in terms of previously allocated
seats. In the following sections we report our results applied
without loss of generality to the system presented in [4].
Furthermore, this work is also aimed at proving the technical
feasibility of the automatic boarding strategy developed in
the above mentioned work.

The main contributions the present work is intended to
give are:
• real-time evaluation of passenger and luggage parame-

ters extracted from images after a classification process;
• measure of the reliability in obtaining these parameters

in different scenarios.
The rest of this paper is organized as follows. In the

second part of this section we provide the related work in
classifier-based object and people detection. In Section II
we present an overview of the theory behind the developed
boarding method. Section III is dedicated to the experimental
setup: employed hardware and software architectures are
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Fig. 1. Block scheme of the considered online boarding strategy. When the passenger arrives at gate, she/he is scanned by vision sensors to retrieve
her/his agility and luggage size. By using these data, the controller is able to output the passenger seat taking into account the current state of occupancy
of the airplane. The overall output is the resulting reduced boarding time.

explained in detail. Section IV is related to the results of the
experiments, mostly focused on proving the reliability of the
proposed system in correctly obtaining the input parameters
required by the algorithm. Section V concludes the paper
and discusses possible future developments.

A. Related Work
Since Viola and Jones in [5] introduced a classifier-based

object detection for face recognition a lot of work has
been done in this field. Dalal and Triggs in [6], looking
at the spatial distribution of edge orientations, proposed to
use of grids of Histograms of Oriented Gradient (HOG)
descriptors for human detection and simple linear SVM
for classification, obtaining impressive results on the MIT
pedestrian dataset [7]. In the same work, they also introduced
a more challenging dataset, i. e. the INRIA person dataset.
Tuzel et al. in [8] presented a new algorithm to detect humans
in images but in this case using covariance matrices as
object descriptors, improving the results of Dalal and Triggs.
Wu and Nevatia in [9] applied combination of HOG and
covariance descriptors coming to a cascade structure where
each weak classifier corresponds to a local image region,
from which several different types of features are extracted.
Bégard et al. in [10] addressed the problem of real-time
pedestrian detection by considering different implementa-
tions of the AdaBoost algorithm. In [11] Dollar proposed
a learning approach which automatically learns individual
component classifiers and combines these into an overall
classifier. Mikolajczyk et al. in [12] presented a different
method for detecting people, dividing the human body into
several parts and applying a cascade of detectors for each
part. Feature selection and the part detectors are learned from
training images using AdaBoost. Most applications deal with
pedestrian ([13], [14]) and vehicle detection ([15], [16]) in
autonomous driving field ([17], [18]). Spreeuwers et al. in
[19] proposed a face recognition system for automatic border
control. Other applications can be found in the works of
Beymer et al. [20] and Buch et al. [21]. A comprehensive
overview of people detection techniques can be found in [13].
Using these techniques we aim at evaluating two parameters,
namely agility and hand luggage coefficients, essential for
the online seat allocation algorithm. Regarding the former,
currently, there is not a universal accepted definition. A
review about different techniques for evaluating agility can
be found in [22]. It has been defined as the ability to change
direction rapidly [23], [24] or the ability to change direction

rapidly and accurately [25], [26]. Some authors have given
a definition of agility including not only whole-body change
of direction but also rapid movement and direction change of
limbs [27]. More recently a more detailed definition has been
given by [22] describing the agility as a rapid whole-body
movement with change of velocity or direction in response
to a stimulus. Using people detection and shape recognition
techniques the agility coefficient and luggage size can be
calculated as explained in the following section.

II. REVIEW OF THE ALGORITHM

In this section the operating principles of the seat alloca-
tion algorithm are presented. The main parameters that have
been used here and the methods adopted to retrieve them
are explained in detail. Then the usage of these parameters
for the proposed seats allocation approach is presented. In
our system, passengers are classified by means of an agility
coefficient, from now on indicated by α , and a hand-luggage
coefficient, referred to as β , used to evaluate the optimal seat
for each coming passenger. A computer vision algorithm
acquires these parameters from images performing shape
recognition of both the passenger and her/his luggage. Im-
ages streamed by a camera sensor are classified making use
of simple rectangular features based on Haar basis functions
[28]. The following procedure is used in order to obtain infor-
mation from images: first, an offline feature-based classifier
is trained for both people and luggage detection; then, we
use the trained algorithm to classify the input images and
extract two-dimensional geometric features; finally the α and
β coefficients are calculated.

A. Agility Coefficient

In order to make the agility detection simpler and suitable
for real-time operations, the idea is to quantify the agility
by monitoring the variation over time of the modulus and
the direction of the velocity vector applied to the Center of
Gravity (CoG) of people during their motion (see Fig. 2).
We considered the people CoG coincident with the center
of the rectangle surrounding the detected body shape. Three
images are needed to be processed in order to relate the index
α with the acceleration vector modulus and the variation of
the velocity vector direction. To detect the velocity vector
in space, two cameras (frontal and lateral) are employed,
one giving images with information in the plane xy, the
second one in the plane yz. The axes xyz are those of
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Fig. 2. Measurement of passenger agility starting from Center of Gravity
(CoG) displacement in three equally time-spaced frames.

the common reference system adopted for both cameras.
The frontal camera follows the CoG in the image plane:
the coordinates xi and yi represent this in the xy plane.
These vary little in the three shots and their change is also
due to the perspective transformation. The most significant
contribution to the velocity vector is the velocity in the z
direction detected by the lateral camera, whose role is more
relevant for detecting agility. The coordinates xi come from
the frontal camera, while yi and zi from the lateral one.
Eq. (1) shows the evaluation of the two velocity vectors,
i and i+1 which can be obtained from the three images:

vi,i+1 = vxi,i+1 î+ vyi,i+1 ĵ+ vzi,i+1 k̂ =

=
xi+1− xi

∆t
î+

yi+1− yi

∆t
ĵ+

zi+1− zi

∆t
k̂, i = 1,2.

(1)

where ∆t is the time interval between consecutive shots, on
the order of 100 ms, î, ĵ, and k̂ are the axis unit vectors. Let
θx, θy and θz be the angles between each velocity vector and
the x, y and z axis, these can be calculated as in Eq. (2) and
used to capture the changes in the orientation of the velocity
vector with respect to the reference system:

θxi,i+1 = cos−1 vxi,i+1
|vi,i+1|

θyi,i+1 = cos−1 vyi,i+1
|vi,i+1|

, i = 1,2.

θzi,i+1 = cos−1 vzi,i+1
|vi,i+1|

(2)

Now, the resulting acceleration vector can be computed:

a = ax î+ay ĵ+azk̂

=
vx2 − vx1

∆t
î+

vy2 − vy1

∆t
ĵ+

vz2 − vz1

∆t
k̂,

(3)

The vector θ̇ whose components are associated with the rate

of variation of the direction of the velocity vectors is then:

θ̇θθ = θ̇x î+ θ̇y ĵ+ θ̇zk̂

=
θx2 −θx1

∆t
î+

θy2 −θy1

∆t
ĵ+

θz2 −θz1

∆t
k̂.

(4)

To compute the desired agility index as useful scalar value,
the norm of a and θ̇θθ are calculated from Eq. (3) and (4).
The resulting agility index α is shown in Eq. (5), where
ã represents the normalized acceleration norm and ˜̇

θ the
normalized speed of variation norm of the velocity directions
of the selected passenger:

α =
ã+ ˜̇

θ

2
. (5)

These scalar values forming the index are normalized with
respect to ideal parameters coming from tests on young
athletic people, assumed as reference for agility (agility equal
to 1). Further details are reported in [4].

B. Hand-Luggage Coefficient

The evaluation of the β parameter is shown in Eq. (6)

β = Ã, (6)

where Ã is the area of the rectangle that encloses the
luggage shape, normalized with respect to the maximum
area (550×350 mm) which represents the maximum allow-
able cross-section of hand-luggage for most airlines. If the
passenger is detected without luggage, this parameter is set
to 0, while if two pieces of luggage are detected for a single
passenger, it is set to 1 anyway.

C. Seat Assignment Algorithm

The algorithm is based on a dynamic seat assignment and
it focuses on four elements, evaluated for each passenger:
• passenger agility, indicated by α as in Eq. (5)
• hand-luggage coefficient related to the luggage size,

represented by β as in Eq. (6)
• group ID and group dimension, if the passenger belongs

to a group
• reserved seat, if the passenger has got one.

If the passenger has got a reserved seat or she/he belongs to
a group, it is supposed these information are already printed
on the ticket, and they will be given as constraints to the seat
allocation algorithm. If the passenger has a reserved seat, that
seat, of course, will be assigned. If the passenger belongs to
any group, and, if there is already at least another member
of the same group on board, the passenger will be assigned
to a seat next to her/his fellow traveler. Otherwise in case
the passenger is the first of the her/his group, the algorithm
will find the number of near seats, according to the group
size, as more in the back of the airplane as possible. Since
usually people belonging to the same group board together,
the interference with other passengers behind them will be
minimized if they are going to sit in the back of the plane.
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When the occupancy state of the plane is high there may
not be a sufficient number of near seats, so the algorithm
will divide the group into subgroups until it is possible,
otherwise, in the worst case, an individual seat to each of
the group members will be assigned. If the passenger does
not belong to any group, neither has got a reserved seat, α

and β come into play. To the passengers whose α is higher
than a maximum threshold the algorithm will assign the next
seat in the Steffen sequence [29] as more in the back of the
airplane as possible. Whereas to the passengers whose α is
lower than a minimum threshold the next seat in the Steffen
sequence as more in the front of the airplane as possible
will be assigned. The maximum and the minimum thresholds
have been obtained based on simulation and on a tuning
procedure. The values which have been used are: 0.75 for the
maximum threshold 0.25 for the minimum threshold. If the
value of α is between the two boundaries, the algorithm will
take into account also the value of β and the assignment will
follow the same logic explained for α . If even β is between
the two boundaries the seat assigned to the passenger will
be the next one in the Steffen sequence. Table I summarizes
the explained procedure. See [4] for a comparison between
the performances of the described method and the boarding
strategies currently adopted in the airports.

III. IMPLEMENTATION

The computer vision algorithms described in the previous
sections have been implemented and tested in a real scenario.
The evaluated agility and hand-luggage coefficients have
been used as inputs to the simulated boarding strategy
described in [4].

A. Hardware and Software

The main control unit of the proposed system is a Rasp-
berry PI microcontroller equipped with a 900 MHz quad-core
ARM Cortex-A7 CPU and 1GB RAM. This is connected
to a PI camera provided with a 5-Megapixel Omnivision
OV647 sensor. The maximum frame rate the camera is able

TABLE I
LOGIC FOR THE SEAT ASSIGNMENT

ααα βββ Seat assignment logic

[0, 0.25] − find the seat on the
closest local maximum

[0.75, 1] − find the seat on the
closest local minimum

]0.25, 0.75[ [0, 0.25] find the seat on the
closest local maximum

]0.25, 0.75[ [0.75, 1] find the seat on the
closest local minimum

]0.25, 0.75[ ]0.25, 0.75[ assign the next seat
in the sequence

video
stream

passenger
seat

- shape detection
- agility and hand-luggage
  coefficient calculation

seat allocation algorithm

1.6 m

1.5 m

Fig. 3. Hardware and experimental setup.

to reach is 30 fps. This parameter, however, was limited by
the computational time required by the image processing
functions. The algorithm continuously analyzes the video
stream provided by the camera and outputs the estimated
agility value of the detected passenger as well as the hand-
luggage coefficient. The developed software is based on the
OpenCV C++ library. The people detector uses the HOG
technique, provided by the library, while the hand-luggage is
detected using a cascade classifier. For testing purposes this
has been previously trained using a database of 600 images of
passengers, which have been proved to be sufficient to train
a working classifier. Fig. 3 shows the employed hardware
and software setup.

B. Experimental Setup

For the purpose of evaluating the performances of the
proposed boarding strategy in real conditions, we performed
several experiments using the above mentioned hardware
setup. Our main goal was that of demonstrating reliability
and adaptability of our system in multiple situations. Hence,
we considered three working scenarios in which a different
number of people are simultaneously present in front of the
camera:
• single person
• queue of people
• crowd.

These experiments are intended to reproduce the usage of
the system once installed at the gates in the airports.

During the experiments the camera has been mounted in
a fixed position and opportunely oriented towards the place
where passengers queue up. In this configuration the camera
images contain the passenger and her/his luggage. The de-
scribed settings are shown in Fig. 3. People participating in
the experiments have been also previously instructed to walk
in a straight line path according to the particular experimental
case. Also because of this reason, only one camera has been
employed to evaluate passenger agility. For testing purposes,
in fact, the lateral components of the velocity have been
neglected, as already explained in Section II-A. A more
refined estimation can be obtained considering them in the
calculation of the passenger acceleration.
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Fig. 4. Agility and hand luggage measurements taken on real scenario
for different passengers in 250 experiments. In Fig. 4(b) ls represents the
true luggage size while thinner lines enclose the measurement range of
acceptability. Blue marks are accepted values while red marks are retained
wrong measurements.

IV. EXPERIMENTS

This section presents the results of the performed experi-
ments and compares them with the expected ones in terms of
reliability of the system. The real experiments constitute an
essential validation of our previous work in which randomly
generated inputs have been used to compare our boarding
method with other existing ones using simulation [4].

A. Single Person

In this experiment our system is in charge of identifying
and classifying one person at a time. This is intended to
show the system behavior in an ideal situation in which there
is no possibility to miss a person or to wrongly associate
luggage to passengers like in the other considered cases
(queue and crowd). Different people have normally walked
through the scene at their own gait. We compared the values
of luggage size measured in 250 experiments with the real
value previously determined to be 70% of maximum allowed
size (labeled as ls in Fig. 4(b)). On the other hand, the
agility is computed starting from the motion of the passenger
while crossing the camera field of view. The measured
values for the presented experiments are shown in Fig. 4(a).
These values have been then exploited to determine the
percentage of succeeded scans. In other words, we compared
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Fig. 5. Passenger grouping based on detected luggage size and measured
agility (different colors represent different people categories).

the measured quantities with the real ones, and accepted
the measure as succeeded if it is sufficiently close to the
real one. Since no restrictions have been put on the people
movements we only considered the luggage measurement.
The range of acceptability of the measures is determined by
an upper and a lower threshold values expressed in terms
of percentage of the real value (thinner horizontal lines in
Fig. 4(b)). By choosing ±20% of acceptable error, the results
have demonstrated a percentage of reliability of 84%. The
variance of the data is 0.0103 assessing the fact that our
system can successfully be employed under these working
conditions. Finally, Fig. 5 shows the plane agility/luggage
size. The square [0,1]× [0,1] is subdivided into 9 zones
according to the threshold values used by the algorithm. The
threshold values between the zones are those described in
Section II and summarized in Table I.

B. Queue

In order to test the robustness of our system we performed
experiments with multiple people simultaneously present in
front of the camera. This experiment is intended to show
the capability of the system to handle multiple people and
luggage detection and provide correct association between
them. This constitutes an important step for speeding up the
whole procedure since people are not forced to stop before
the scanning phase. In most cases a group of three/four
people are present simultaneously in front of the camera
forming a queue (walking in a straight line). The percentage
of reliability of the system in this experiment is set to
be the percentage of corrected associations between the
person and her/his luggage. The association is computed
on the basis of the minimum euclidean distance between
each luggage midpoint and each person center of gravity. In
our experiments we noticed that this approach never fails or
wrongly associates luggage to people so the queue case can
be robustly handled by our system.

C. Crowd

The case of crowd, although very uncommon at the gate,
has been considered in order to test the capabilities of
our system to handle cases of partial occlusions of the

776



scene objects. The same number of people were present
simultaneously in the scene with no prearranged walking
path to be followed. In this case the percentage of reliability
of the system is not comparable with other experiments. We
expected that in such situations the percentage of reliability
of the system would have sharply decreased. This situation
provides us with guidelines towards further developments in
which occlusions of both people and hand-luggage have to
be considered.

V. CONCLUSIONS

In this paper we presented the validation of a passenger
seat assignment system that makes use of computer vision
to speed up airplane boarding. In order to explain how this
system works, the realistic scenario of a boarding process has
been recreated. Using images streamed by cameras placed
in designed positions, both passenger agility and the size
of the hand-luggage have been estimated. These quantities
have been used as input to previously developed passenger
seat assignment algorithm. To make the calculation of these
parameters suitable for real time applications, a fast and
robust approach has been developed. The agility is quantified
by monitoring the variation over time of the modulus and the
direction of the velocity vector applied to the CoG of people
during motion. We identified the velocity in the translational
direction as the parameter that has the larger influence in the
calculation of agility. As regards the size of hand-luggage, it
is evaluated considering the area of rectangle that encloses its
shape normalized with respect to a threshold value, chosen as
the maximum allowable cross-section for most airlines. The
performed experiments confirm that our system can correctly
handle different cases and is suitable for implementation in
real airport scenarios.
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