
The Journal of Systems and Software 207 (2024) 111857

A
0
n

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

Automated functional and robustness testing of microservice architectures✩

Luca Giamattei ∗, Antonio Guerriero, Roberto Pietrantuono, Stefano Russo
Università degli Studi di Napoli Federico II, Via Claudio 21, 80125, Napoli, Italy

A R T I C L E I N F O

MSC:
0000
1111

Keywords:
Microservices testing
Functional testing
Robustness testing
Causal inference

A B S T R A C T

Microservice Architectures (MSA) are nowadays largely adopted by companies in several domains to provide
on-demand services. The reliability of microservices is fundamental to avoid failures compromising the business
functionalities. MSA automated testing is possible thanks to well-defined service interfaces specified in open
formats like OpenAPI/Swagger.

To support automated MSA functional and non-functional testing, we define a framework that: (i) generates
test cases with valid and invalid inputs, and executes and monitors tests; (ii) provides coverage and failure
information not only on edge, but also on internal microservices; (iii) has the novel feature of identifying
causal relations in observed chains of microservices failures.

We abstract the testing process of MSA, present the MacroHive framework and its causal inference engine,
compare it experimentally to state-of-the-art tools, and discuss its benefits in the MSA testing process.

MacroHive exhibits performance comparable to advanced existing tools in terms of edge-level coverage.
However, MacroHive has a better failure rate and provides the unique advantages of giving insights about
internal coverage and failures, and of inferring causality in failure chains, evidencing microservices to be
improved to increase the whole MSA reliability.
1. Introduction

The Microservice Architecture (MSA) architectural style is nowa-
days largely adopted by companies like Netflix, Amazon, eBay, PayPal,
and Twitter due to the possibility to independently develop and deploy
loosely coupled services running in their own processes and interacting
via lightweight mechanisms (Lewis and Fowler, 2014). These charac-
teristics favor the adoption of lean or agile development practices like
DevOps, enabling rapid and frequent software releases (even many per
day). Such dynamic contexts demand for high automation of the testing
process to assess and improve software quality (Patel and Tyagi, 2022).

As MSA code is polyglot and distributed across various reposi-
tories, black-box testing is usually deemed as a very viable option
for testing, requiring only access to the system with a well-defined
interface (Viglianisi et al., 2020).

Specification-based (black-box) testing foresees two main phases
(Pezzè and Young, 2008): test specification and test cases genera-
tion. A test specification describes how a test case is required to
be. Since MSA specifications are documented with open formats like
OpenAPI/Swagger (Ma et al., 2018),1 the Application Programming
Interfaces (API) of microservices can be automatically retrieved and
parsed to generate a test specification. Then, automatic techniques for

✩ Editor: Prof W. Eric Wong.
∗ Corresponding author.
E-mail address: luca.giamattei@unina.it (L. Giamattei).

1 OpenAPI Initiative, https://www.openapis.org.

RESTful web services can be borrowed for MSA testing, as long as
they are able generate test cases from the specification (Corradini
et al., 2021a; Atlidakis et al., 2019; Arcuri, 2019). State-of-the-art
(SOTA) tools leverage various techniques (depending on the testing
purpose) for generating inputs compliant with the API specification. For
instance, EvoMaster (Arcuri, 2021) generates valid inputs (for functional
testing); RestTestGen (Corradini et al., 2022), RESTler (Atlidakis et al.,
2019), and bBOXRT (Laranjeiro et al., 2021) generate invalid inputs
intentionally violating the specification (for robustness testing).

Since MSA have characteristics that allow the automation of several
tasks within the testing process, we first abstract the main phases of
a typical testing process: after the preliminary identification of the
testing objective (functional or non-functional) we have 5 phases: APIs
specification collection; Tests specification definition; Test suite generation;
Test execution; Test reporting. We then present MacroHive, a framework
built as a collection of microservices deployable along the MSA in a
testing environment. We highlight how MacroHive covers the phases
of the outlined process, comparing it against four state-of-the-art tools
on three well-known benchmark systems (TrainTicket, Sock Shop, and
FTGO).

MacroHive was first presented in own previous work (Giamattei
et al., 2022), focusing on test generation. Here it is extended by a
vailable online 5 October 2023
164-1212/© 2023 The Author(s). Published by Elsevier Inc. This is an open access ar
c-nd/4.0/).

https://doi.org/10.1016/j.jss.2023.111857
Received 18 February 2023; Received in revised form 8 September 2023; Accepted
ticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

25 September 2023

https://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
mailto:luca.giamattei@unina.it
https://www.openapis.org
https://doi.org/10.1016/j.jss.2023.111857
https://doi.org/10.1016/j.jss.2023.111857
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2023.111857&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

The Journal of Systems & Software 207 (2024) 111857L. Giamattei et al.

k
k

causal reasoning -based inferential engine that detects the microservice
culprit for a chain of failures, and reports the chain along with other
metrics to support failure analysis and debugging. MacroHive differs
from state-of-the-art tools in that: (i) it supports both functional and
robustness testing, (ii) it adopts a combinatorial testing strategy, (iii)
it observes internal interactions and report about internal coverage,
which is crucial in MSA testing (Ghani et al., 2019), and (iv) it is the
first tool incorporates causal reasoning to infer the likely root cause of
a failure.

We evaluate MacroHive comparing it to SOTA tools. We first discuss
the extent to which they support the MSA testing process (Research
Question RQ1). Then, we report the results of experiments to quantita-
tively assess MacroHive performance with respect to comparable tools
for functional (RQ2) and for robustness testing (RQ3).

MacroHive shows results comparable to SOTA tools, achieving high
coverage of various response codes in functional testing, and achieving
high failure rate in robustness testing. Unlike other tools, MacroHive
provides the additional advantage of identifying the microservices more
likely to be the culprit in chains of observed failures inside the MSA;
this comes from the integration of a gray-box monitoring infrastructure
– tracking the internal coverage and detecting internal failures (not
visible in a black-box perspective) – and of the causal reasoning-based
inferential engine.

In the following: Section 2 gives an overview of the related work and
of state-of-the-art tools used for MSA testing. Section 3 illustrates the
high-level testing process for MSA. Section 3 describes how MacroHive
supports the testing process. Sections 5 present the experiments and
results, respectively. Section 7 concludes the paper.

2. Related work

Several studies present testing techniques for MSA; a systematic
mapping study is presented by Waseem et al. (2020).

MSA resilience testing is investigated by Heorhiadi et al. (2016) and
Long et al. (2020): the former study proposes the Gremlin framework to
systematically test the failure-handling capabilities of microservices, by
injecting faults into inter-service messages; the latter presents a fitness-
guided technique to find as many bugs in the fault handling logic as
possible in a set amount of time.

MSA reliability testing is investigated in own work (Pietrantuono
et al., 2018), presenting an in-vivo testing technique for on-demand
MSA reliability estimation at any time in the operational phase.

Microservices performance testing is the goal of the FPTS framework
proposed by de Camargo et al. (2016) to evaluate the performance
delivered by single microservices, through a workload created thanks to
annotations to be inserted within their source code. Performance testing
of containerized MSA is addressed by Lei et al. (2019), who propose a
method based on Kubemark, a tool for running Kubernetes experiments
on simulated clusters.2

As for functional testing, because of the prominent role of RESTful
API in MSA (Arcuri, 2021), MSA testing mainly leverages existing
tools for black-box testing of RESTful web services. These tools usually
have as objectives: maximization of API coverage (number of executed
methods), maximization of HTTP response codes coverage, automatic
fault detection. Corradini et al. have empirically compared several
tools (Corradini et al., 2021a): they aim to maximize the coverage of
methods specified in the API via data and operations dependencies; the
comparison is in terms of ‘‘robustness’’, meant as the ability to manage
real-world systems, and of the coverage criteria defined by Martin-
Lopez et al. (2019). The resulting three main tools are: RestTestGen,
RESTler and bBOXRT.

2 Kubernetes community, Kubermark user guide, https://github.com/
ubernetes/community/blob/master/contributors/devel/sig-scalability/
ubemark-guide.md.
2

RestTestGen (Corradini et al., 2022) is a stateful test generator,
that infers data dependencies with an operation dependency graph.
It generates nominal and faulty test cases. Input values are generated
from a dictionary, from examples in the specification, randomly, or by
re-using past observed values.

RESTler (Atlidakis et al., 2019) features stateful input generation via
fuzzing, aiming to find security and reliability issues. It infers producer–
consumer dependencies among the specified request types, and ana-
lyzes feedback from responses in executed tests. Similarly to RestTest-
Gen, input values are selected from a user-configurable dictionary, or
from previously observed values.

bBOXRT (Laranjeiro et al., 2021) is for robustness testing of REST
services. It is designed around method for injecting faults in requests,
attempting to trigger erroneous behaviors. Specification-compliant in-
put values are randomly generated and then mutated to observe the
behavior under a faulty workload.

A state-of-the-art tool for automated testing of RESTful Web Services
is EvoMaster, proposed by A. Arcuri. Initially conceived for white-
box testing, EvoMaster has then been extended to support black-box
testing (Arcuri, 2021). It performs random testing, adding heuristics
to maximize the HTTP response code coverage. EvoMaster did not
take part in the comparison, as Corradini et al. stated that it was not
available yet.

Martin-Lopez et al. (2020) propose RESTest, a black-box tool for
automatic fault detection. They use an Inter-parameter Dependency
Language (IDL). The results obtained depend on the available infor-
mation about dependencies; more information improves results but re-
quires testers to specify dependencies in IDL — this is time-consuming,
requires a deep knowledge of the system under test, and reduces
automation.

MSA testing can thus borrow tools conceived for black box testing
of RESTful Web Services. This alleviates the burden of manual API
testing in service-based systems, which is a common practice in in-
dustry (Arcuri, 2021). However, it also poses challenges that we aim
to address with this work. First, applying the mentioned tools requires
running distinct testing sessions for every edge microservice — a prac-
tice that does not scale well with the number of microservices (Zhou
et al., 2021). Second, microservices’ interactions can result in complex
invocation chains involving internal services in a real-scale application;
when these are insufficiently covered by a test suite, failures may
remain undetected. This may well happen with all described black-box
techniques, as they consider coverage metrics only at the edge level.

RestTestGen, RESTler and bBOXRT are hereafter considered as tools
for robustness testing since they generate inputs violating the spec-
ification to cause failures, while EvoMaster is considered a tool for
functional testing since it generates inputs compliant with the speci-
fication.

3. MSA testing process

The MSA testing process is sketched in Fig. 1. After the preliminary
definition of the testing objective (phase 0⃝), the process entails five
phases.

APIs specification collection. Phase 1⃝ consists of collecting the API
specifications of microservices. They are often in the OpenAPI format,
and include service Uniform Resource Identifier (URI), HTTP method,
type and name of every parameter, and HTTP body. OpenAPI allows
retrieving the interface of a microservice of interest from its IP address
and port number.

Tests specification definition. Phase 2⃝ consists of extracting information
from the API specification to generate the test cases specification. The
API specification of all microservices in the MSA is parsed to extract an
input space model (i.e., the set of factors that might affect the behavior

or output of the system under test) consisting of: HTTP methods, URIs

https://github.com/kubernetes/community/blob/master/contributors/devel/sig-scalability/kubemark-guide.md
https://github.com/kubernetes/community/blob/master/contributors/devel/sig-scalability/kubemark-guide.md
https://github.com/kubernetes/community/blob/master/contributors/devel/sig-scalability/kubemark-guide.md

The Journal of Systems & Software 207 (2024) 111857L. Giamattei et al.
Fig. 1. MSA testing process.
and body templates, HTTP status codes, and parameters’ details (type,
bounds, default value, etc.).

Two solutions to define the set of possible values for each parameter
are:

• Input space partitioning: equivalence classes for all parameters
are defined, and they are categorized into valid and invalid. A
class is valid if it contains only parameter values that comply
with the microservice specification, and invalid if it contains only
values that do not.

• Dictionary definition: a list of parameter values is provided, typ-
ically including those that are known to work better during
testing or that better suit the service. The dictionary may be built
manually before the testing session, and/or automatically during
the test execution.

The last step of this phase is the test oracle definition. A com-
plete OpenAPI specification reports the expected response codes for
each method invocation. These are used to build a test oracle to
automatically evaluate the test outcome. Specification-based solutions
depend on the quality of the documentation; an incomplete/incorrect
specification represents the main limitation. The more detailed the API
specification, the better the definition of the test specification and test
oracle.

Test suite generation. In phase 3⃝ actual test cases are generated from
tests specification. This is accomplished by sampling values from input
equivalence classes (valid and/or invalid values, based on the test
objective), or by sampling/mutating the input values specified in the
dictionary.

Test generation techniques are stateless or stateful. Stateless tech-
niques generate test cases statically from the API specification so that
they do not require feedback from the previously generated tests. State-
ful techniques generate test cases dynamically, using feedback from
executed tests. They model operation and parameter dependencies,
re-using parameter values from previous requests/responses and gen-
erating sequences of requests trying, for example, to create resources
before accessing and/or modifying them.

Test execution. In phase 4⃝ tests are executed as HTTP requests sent
to edge microservices, that in turn can invoke internal microservices
to execute complex business functionalities. A key component of test
execution is monitoring, which involves gathering the request–response
pairs from all microservices. This knowledge is required to comprehend
how the entire MSA behaves when tests are run. We distinguish:

• Black-box monitoring: which collects only request–response cou-
ples exchanged with the edge microservices.

• Gray-box monitoring: which collects also the request–response
couples exchanged with and among internal microservices.

Test reporting. In phase 5⃝ each request–response pair is evaluated by
the test oracle to detect failures. A set of metrics is computed depending
on the testing objective. Response code coverage and response code
class coverage are suitable for functional testing evaluation (Martin-
Lopez et al., 2019), while number of failures and failure rate are
indicative for robustness testing. When looking at an MSA as a whole
3

thanks to gray-box monitoring, these metrics apply also at internal MSA
levels.

Gray-box monitoring data are used also to infer relationships among
operations or microservices (e.g., building an operation/service de-
pendency graph). These relationships can be used to train models
(e.g., Machine Learning models or causal models) able to identify mi-
croservices causing failure patterns in invocation chains for automatic
root cause analysis (Ji et al., 2020; Wu et al., 2020).

4. MacroHive

MacroHive is conceived to support a tester along the MSA testing
process, for both functional and robustness testing. Fig. 2 shows the
four main components in its architecture: uTest, uSauron, uProxy
(uP), and uKnows.

Fig. 2. The four MacroHive components, deployed along with the MSA under test.

uTest is responsible for the first four phases of the testing process.
It automatically retrieves the OpenAPI specification for the MSA under
test in phase 1⃝, defines the test specification 2⃝, generates test cases
3⃝, and execute them performing also black-box monitoring 4⃝.

An extract of an OpenAPI specification is shown in Listing 1. It
describes a service with two parameters — one in path (userId,
required) and one in body (username, required). It returns 201 or 400
HTTP status codes.

Listing 1: A sample microservice OpenAPI specification� ⊵
host : exampleHost :8080
paths : ‘/ user /{ user Id }/username ’ :

post :
parameters :

− name : user Id
in : path
required : t rue
type : in t ege r
− name : body
in : body
required : t rue
schema : ‘ $ref ’ : ‘ . / d e f i n i t i o n s /usernameSchema ’

responses :
‘201 ’ : de s c r i p t i on : ‘ Created ’
‘400 ’ : de s c r i p t i on : ‘ Bad Request ’

d e f i n i t i o n s : usernameSchema :
type : ob jec t
p rope r t i e s :

username :
type : s t r i n g
value : LCG001 #Example value

required :
− username
� �

The Journal of Systems & Software 207 (2024) 111857L. Giamattei et al.

T
t
t
i
m
a
L

l
f

p
i
e
w
f
f
L

i
o
F
v

Table 1
Input space partitioning for the microservice of Listing 1.

Parameter Name Type Equivalence classes Category

𝑝1(required, in path) userId integer

𝑐1,1: positive value in range valid
𝑐1,2: negative value in range valid
𝑐1,3: alphanumeric string invalid
𝑐1,4: no value invalid

𝑝2(required, in body) username string

𝑐2,1: string in range valid
𝑐2,2: specified example value(s) valid
𝑐2,3: empty string invalid
𝑐2,4: no string invalid
b

f

D
A

o
r

s
v
o

uTest parses the retrieved API to extract the input space model.
he equivalence classes are defined for each parameter based on the
ype and then categorized into valid and invalid (e.g., integer: posi-
ive/negative value in range as valid and alphanumeric/empty string as
nvalid) (Bertolino et al., 2020). It also automatically extracts, for each
ethod, the expected output from the API specification, hence building
test oracle. An example of input space model for the specification in

isting 1 is shown in Table 1.
Test generation adopts a combinatorial pairwise strategy, particu-

arly suited to detect multi-factor faults — a high percentage of software
aults (Hu et al., 2020).

For functional testing, uTest generates a nominal test suite, com-
osed of only test cases with valid inputs, namely a test in which the
nputs of all parameters are chosen from valid classes (when available,
xamples and default values are preferred). For instance, a test case
ith valid inputs generated from the specification in Table 1 shall have

or 𝑝1 (userId) a value chosen from class 𝑐1,1 (a positive value in range);
or 𝑝2 (username) a value from class 𝑐2,2 (the specified example value in
isting 1).

For robustness testing, uTest generates a test suite with valid and
nvalid inputs. A test case with invalid inputs is one in which for at least
ne parameter the input values are taken from an invalid input class.
or instance, a test case with invalid inputs shall have for 𝑝1 (userId) a
alue chosen from class 𝑐1,3 (an alphanumeric string) or (𝑐1,4), and/or

for 𝑝2 (username), a value from class 𝑐2,1 (a string in range) or 𝑐2,1 (no
string).

Actual test cases are generated by randomly picking values from
selected equivalence classes.

uSauron and uProxy complement uTest in phase 4⃝ by per-
forming gray-box monitoring. They constitute a service mesh infras-
tructure aiming to trace dependencies between microservices and to
log (both edge and internal) request–response couples generated by
the executed tests. Although many monitoring tools are available
(e.g., Prometheus,3 Jaeger4), we preferred to build our infrastructure
favoring automation and avoiding code instrumentation. uProxy (uP)
is deployed alongside each microservice to test/monitor, complying
with the sidecar pattern (Burns and Oppenheimer, 2016; Jamshidi
et al., 2018). Each proxy performs two tasks:

• acting as a reverse proxy for the coupled microservice;
• sending to uSauron an information packet whenever it collects

a request–response pair.

The information packet is composed of: request/response URL,
request/response body, HTTP response code, response time, and
sender/receiver address. uSauron is a microservice responsible for the
collection of information provided by proxies. In particular, it aims to
log proxies packets and compute fine-grained metrics (e.g., coverage,

3 Prometheus open source monitoring system, https://prometheus.io/.
4 Jaeger open source distributed tracing, https://www.jaegertracing.io/.
4

Fig. 3. Example of Structural Causal Model and intervention.

dependencies) for each test. For this purpose, uSauron runs a dis-
tributed algorithm during a testing session to link collected information
to the executed tests.

The last phase 5⃝ is supported by uKnows, which collects data
y uSauron and uProxy, and exploits causal reasoning to determine

which microservices are responsible for failures and, in general, for
erroneous behaviors.

Causality is the influence by which an event contributes to the
production of other events (Nogueira et al., 2022). There are two main
activities in causal reasoning: Causal Structure Discovery (CSD), aimed
at extracting a causal model (a mathematical representation of causal
relationships between random variables) from observational data; and
Causal Inference (CI), aimed at quantifying the effect of changing one
or more random variables on others, starting from a causal model.
The random variables describe quantity of interest (e.g., a categorical
variable representing the response code of a microservice), and can be
of any type (e.g., both numerical and categorical); the value they take
depends on the probability distribution associated with them.

A widely adopted solution to model causality is to use Graphical
Causal Models (GCMs). A GCM consists of a causal Direct Acyclic Graph
(DAG) where nodes are random variables and edges define cause–effect
(tail-arrow) relationships between couples of variables. The latter
determines the impact of a change of a certain variable, called cause,
over an outcome of interest, called effect. The most prevailing case is
a Structural Causal Model (SCM), a GCM that uses a Functional Causal
Model (FCM), where the value of each variable 𝑋𝑖 is assumed to be
a deterministic function of its parents 𝑃𝑎(𝑋𝑖) and of the unmeasured
disturbance 𝑈𝑖 (𝑋𝑖 = 𝑓 (𝑃𝑎(𝑋𝑖), 𝑈𝑖)). An SCM is formally defined as
ollows.

efinition 1 (Structural Causal Model (SCM)). An SCM is a Directed
cyclic Graph = (𝑿,), where nodes ∈ 𝑿 are random variables

and edges ∈ are the causal relationships between them. Causal
relationships are described as a collection of structural assignments
𝑋𝑖 ∶= 𝑓𝑖(𝑃𝑎(𝑋𝑖), 𝑈𝑖) that define the random variables 𝑋𝑖 as a function
f their (endogenous) parents 𝑃𝑎(𝑋𝑖) and of (exogenous) independent
andom noise variables 𝑈𝑖.

CI aims at estimating the effect of setting one variable 𝑋𝑘 to a
pecific value ‘‘𝑥’’ (i.e., doing an intervention on 𝑋𝑘) on one or more
ariables 𝑋𝑖 of interest. Pearl and Mackenzie (2018) introduced the do-
perator (written as 𝑃 (𝑋 |𝑑𝑜(𝑋 = 𝑥))), a mathematical representation
𝑖 𝑘

https://prometheus.io/
https://www.jaegertracing.io/

The Journal of Systems & Software 207 (2024) 111857L. Giamattei et al.

𝑌
𝑀
c
m
𝑀
l
r
b

t
i
C
d
(
b
o

s
F
(

Fig. 4. Workflow of MacroHive causal inference component (uKnows).
s

of physical intervention, that changes the SCM graph by removing
causal relations of 𝑋𝑘 with its predecessors and replacing the defini-
tion 𝑋𝑘 ∶= 𝑓𝑘(𝑃𝑎(𝑋𝑘), 𝑈𝑘) in the SCM with 𝑋𝑘 ∶= 𝑥. An example
is in Fig. 3(a), where X, Y, and Z represent the behavior (properly
codified — e.g., the HTTP status codes of responses in our case) of 3
microservices (𝑀𝑥, 𝑀𝑦, and 𝑀𝑧) calling each other. A variable 𝑍 is
a function of its parents and of a variable 𝑈𝑧 capturing the random
noise — the noise variables are usually not represented in the graph
for simplicity, but there is a hidden node, 𝑈𝑥, 𝑈𝑦, 𝑈𝑧, associated with
each variable with an arrow pointing to 𝑋, 𝑌 and 𝑍 respectively. When
there is no parent, say for 𝑍, the equation becomes 𝑍 = 𝑈𝑧. In the
example, 𝑈𝑧 is the random variable capturing the behavior 𝑍 and the
value it takes depends solely on the 𝑈𝑧 distribution. The behavior 𝑍
affects the other two (e.g., an erroneous/correct behavior causes others
erroneous/correct behavior), and 𝑋 affects 𝑌 ; thus: 𝑋 = 𝑓 (𝑍,𝑈𝑥) and

= 𝑓 (𝑋,𝑍,𝑈𝑦). Suppose we want to estimate the impact of failure of
𝑥 on 𝑀𝑦 (𝑋 → 𝑌 in the graph). 𝑍 is said to be a confounder since it

ausally affects both 𝑋 and 𝑌 , generating a spurious association. This
eans, for instance, that the failure of 𝑀𝑦 can be falsely attributed to
𝑥, even if 𝑀𝑧 was the ultimate cause. Performing an intervention

eads to the SCM reported in Fig. 3(b), which allows estimating the
eal effect of the behavior 𝑋 on 𝑌 , because 𝑋 is no longer influenced
y 𝑍.

Causal Inference requires a causal model, which can be built in
wo main ways: by intervening on variables and observing the post-
ntervention distributions (through controlled experiments), or by using
SD algorithms that aim to seize causal structure from observational
ata. Causal discovery algorithms can be divided into constraint-based
e.g., PC, FCI, RFCI), score-based (e.g., GES, FGES, GFCI), and FCM-
ased (e.g., LinGAM) (Glymour et al., 2019). An extensive discussion
f CSD algorithms can be found in Nogueira et al. (2022).
MacroHive component uKnows leverages the power of causal rea-

oning to automatically infer causal relations between microservices.
ig. 4 shows its workflow. It extracts the Service Dependency Graph
SDG) from the output of uSauron, collected during the testing ses-

sions, and derives a Direct Acyclic Graph (DAG). Multiple tests in a
session have different inputs, thus dependencies based on different
inputs will be captured by the graph.

Then, uKnows parses and transforms traces in a dataset containing
an entry for every HTTP request, with the microservices involved in
the interaction. The DAG and the dataset are the input for the CSD
algorithm. In particular, the SDG is used as prior knowledge; it specifies
required edges in the causal graph: a causal relation in the causal graph
must exist between two microservices connected in the SDG. Then, the
CSD algorithm infers the final SCM by fitting the causal graph with the
dataset. This model characterizes cause–effect relationships between
microservices.

For CSD, we use py-causal,5 a python library that wraps the Java
tool Tetrad (Ramsey et al., 2018). We use the FCI algorithm (Spirtes
et al., 2001), one of the simplest solutions, with the default settings.6
The FCI algorithm starts with a complete undirected graph connecting

5 py-causal v1.2.1, https://zenodo.org/record/3592985.
6 FCI settings: testId = fisher-z-test, depth = −1, maxPathLength = −1,

completeRuleSetUsed = False.
5

all the nodes and applies conditional independence tests to remove
edges (with only edges that indicate potential causal relationships).
The method tests possible d-separations 𝑋 ⟂⟂ 𝑌 |𝑍 in the skeleton. If
there is at least a variable in Z that d-separates7 the edge, then it is
removed (Nogueira et al., 2022). Finally, FCI applies several rules to
direct the edges (Spirtes et al., 2001). It gives asymptotically correct
results even in the presence of confounders (unobserved direct common
cause of two measured variables) (Glymour et al., 2019). As shown
in Fig. 4, the SCM built from the SDG will have inverted arrows.
For instance, a failure in microservice 𝑀1 is likely to find causes in
downstream nodes (𝑀2, 𝑀3, and 𝑀4) and not the other way around.

In the Interventions step, uKnows does interventions to predict what
would be the effect of a failure (in robustness testing) or of an erroneous
behavior (in functional testing) of a microservice on the others causally
related to it. We consider erroneous behavior HTTP status codes of
classes 4xx and 5xx (Martin-Lopez et al., 2019); we consider failures
only response codes of the class 5xx.

Assume we want to assess the effect of a failure of 𝑀2 on 𝑀1 and
𝑀6 on 𝑀5. We perform interventions on 𝑀2 and 𝑀6, setting them to
fail (Fig. 4) and thus removing all the edges coming from 𝑀2 and 𝑀6
parents. Then, using a new data sample derived by sampling from the
post-intervention distributions, we estimate the outcome by looking
at the sample statistics. If a failure is predicted, a causal relation is
detected and reported in the output (Fig. 4, last step). Note that the
interventions are not physical, but queries to the model — a real
intervention would be to inject a failure in 𝑀2, or to inject a fault to
cause its failure. This allows saving the cost of executing such tests, by
exploring the effect of numerous hypothetical failures of microservices
without actually injecting faults or failures. Clearly, this is traded off
by the accuracy of the estimate, that when using the causal surrogate
model is a prediction of the effect, ultimately depending on the model
accuracy.

To show how interventions are performed, let us consider a chain of
invocations as a sequence of microservices 𝑀1,… ,𝑀𝑛, where 𝑀1 calls
𝑀2 that in turn calls 𝑀3, and so on till 𝑀𝑛. The chain in the SCM will
have all the edges directed in the opposite direction, namely from 𝑀𝑖
to 𝑀𝑖−1. The interventions are done as follows: for each node 𝑀𝑘 in the
chain with at least one out edge (we do not intervene on 𝑀1 as it does
not have effects on others) the engine intervenes on the model querying
what would happen to the 𝑀𝑘’s successors (i.e., do they fail or not?)
if 𝑀𝑘 exhibited an erroneous behavior or failed. In other words, we
evaluate 𝑃 (𝑀𝑖|𝑑𝑜(𝑀𝑘 = 𝑓𝑎𝑖𝑙)) for each 𝑖th successor of 𝑀𝑘 in the chain.
The query on the model returns a value for each microservice in the
chain corresponding to its expected behavior (HTTP status code) if 𝑀𝑘
fails. From the output of the interventions, uKnows builds an output
graph by drawing edges from the nodes which it intervened on to each
node for which a failure is predicted. The result of these interventions
is a graph highlighting the microservices causally involved in erroneous
behaviors (functional testing) or failures (robustness testing). These are

7 Let 𝑋, 𝑌 , and 𝑍 be disjoint subsets of all vertexes in the DAG. 𝑍 d-
eparates 𝑋 and 𝑌 just in case every path from a variable in 𝑋 to a variable

in 𝑌 contains at least one vertex 𝑋𝑖 such that either 𝑋𝑖 is a collider (i.e. the
arrows converge on 𝑋𝑖 in the path) and no descendant of 𝑋𝑖 (including 𝑋𝑖) is
in 𝑍, or 𝑋 is not a collider, and 𝑋 is in 𝑍.
𝑖 𝑖

https://zenodo.org/record/3592985

The Journal of Systems & Software 207 (2024) 111857L. Giamattei et al.

w
o

5

b
c
p
c
o
G
b

e
g
(

c

5

s
2
i
e
H
2
i
C
m
(
2
m
a
t
F

5

w
i

s
r
t
b
t

R

R

R

the microservices that developers should focus on, since they cause
erroneous behavior in other microservices in the system. For example,
in Fig. 4 they are nodes 𝑀2 and 𝑀6. The interventions are done via do-
hy (Sharma et al., 2019), a Microsoft’s library to perform inference
n causal models.

. Experimentation

We investigate how the features of MacroHive – black-box com-
inatorial test generation (uTest), gray-box monitoring (uSauron),
ausal inference (uKnows) – support the testing process for MSA. Ex-
eriments have been conducted assessing the performance in terms of
overage, fault detection, and cost. MacroHive is compared to the state-
f-the-art black-box testing tools EvoMaster (Arcuri, 2021), ResTest-
en (Corradini et al., 2022), RESTler (Atlidakis et al., 2019),
BOXRT (Laranjeiro et al., 2021).

The other tools mentioned in Section 2 – RESTest (Martin-Lopez
t al., 2020), QuickRest (Karlsson et al., 2020), and the Eclipse plu-
in (Ed-douibi et al., 2018) – are either not available or cannot be run
due to internal errors or incompatibility with the case study).

For repeatability and reproducibility, we make available MacroHive
ode for running experiments.8

.1. Experimental subjects

The main experimental subject is TrainTicket, a well-known open-
ource MSA benchmark, composed of 41 microservices (Zhou et al.,
018b). This MSA has been extensively used in previous research and
s considered representative of a real-world MSA (Zhou et al., 2021; Ji
t al., 2020; Zhou et al., 2019; Li et al., 2021; Cortellessa et al., 2022;
ou et al., 2019; Zhou et al., 2018a; Walker et al., 2021; Wu et al.,
021; Liu et al., 2020). It is worth noting that other usual benchmarks
n the related literature, such as Sock Shop9 (6 microservices), Pet
linic10 (3 microservices), FTGO11 (7 microservices), Piggy Metrics12 (3
icroservices), used in Corradini et al. (2021a), Rahman and Lama

2019), Joseph and Chandrasekaran (2020) and Chen et al. (2016,
014), are inadequate for testing MSA: they are (small) collections of
icroservices that do not interact with each other — in this sense, they

re not realistic MSA. For this reason, these subjects are not suitable for
he experiments. However, we report the results also for SockShop and
TGO.

.2. Tests generation

In experiments, MacroHive generates 2-way test suites, as follows:

• For functional testing : test suite with valid inputs;
• For robustness testing : test suite with valid and invalid inputs.

The comparison with RESTler, RestTestGen and bBOXRT is on tests
ith both types of inputs; EvoMaster generates tests only with valid

nputs.
The tools are run 10 times each on any of the 34 externally acces-

ible microservices, out of the 41 in TrainTicket.13 Because EvoMaster
uns tests with and without authentication (a token is provided), each
ool is run both ways for fairness of comparison. Compared tools have
een configured with their default settings or, when available, with
he configuration that was shown to yield the best performance. For

8 MacroHive is available at: https://github.com/uDEVOPS2020/MacroHive.
9 Sock Shop, https://microservices-demo.github.io/.

10 PetClinic, https://github.com/spring-projects/spring-petclinic.
11 FTGO, https://github.com/microservices-patterns/ftgo-application.
12 Piggy Metrics, https://github.com/sqshq/piggymetrics.
13 We found 7 internal microservices in TrainTicket (user-, authentication-,
6

verification-code-, ticket-office-, avatar-, wait-order-, and news-service).
Table 2
Coverage metrics.

Coverage metric Description

Status Code Class Status Code Class (SCC) coverage is 100% when the test suite
triggers both correct and erroneous status codes.
SCC coverage is 50% if test suite triggers only status codes
belonging to the same class (correct or erroneous).
Codes 2xx represent correct executions; codes 4xx and 5xx
represent erroneous executions.

Status Code Status Code (SC) is the ratio of the number of obtained status
codes to the total number of status codes documented in the
specification, for all operations. SC coverage is 100% when,
for each operation, the test suite covers all the status codes.

instance, RESTler has been configured with the BFS-cheap algorithm,
which achieves best results with low time budgets (Atlidakis et al.,
2019). When available, the maximum time budget is set to 150 s,
namely 10 times the average time of a MacroHive testing session. We
use Burp Suite to collect tests input and output (Portswigger, 2021).
Then, we export the logs and feed them in Restats (Corradini et al.,
2021b), a tool to compute coverage metrics.

5.3. Research questions

Q1 How do the different tools support the MSA testing process?
This research question aims to qualitatively investigate the extent
to which the compared tools automate or support the MSA testing
activities described in Section 3.

Q2 How does MacroHive perform in supporting functional testing,
compared to EvoMaster?
Assuming that the test objective is to find unexpected behavior of
the MSA under test when tests with valid inputs are generated, we
consider EvoMaster as a term of comparison. For fair comparison,
we consider the metrics status code coverage and status code
class coverage (Table 2). First, we compare the results of both
approaches considering the system as black-box, then we show
the advantages using MacroHive due to the internal microservices
monitoring and inference.

Q3 How does MacroHive perform in supporting robustness testing,
compared to RestTestGen, bBOXRT, and RESTler?
Assuming that the test objective is to expose failures of the MSA
under test, we consider, for each tool, the number of failures and
the failure rate. As before, we compare the results considering the
system as a black-box, and then highlight the advantages of the
MacroHive’s internal microservices monitoring and inference.

5.4. RQ1: support for the MSA testing process

To answer RQ1 we accurately examined all the compared tools. Our
findings are summarized in Table 3. All tools are able to automatically
generate tests from the specification. A relevant difference concerns
phase 1⃝: MacroHive and EvoMaster automatically collect the API speci-
fication, given the addresses of microservices that expose them,14 while
the other tools require them as input (as JSON files). In other words,
except for MacroHive and EvoMaster, testers have to manually retrieve
the microservices specification and feed them to the tools. Furthermore,
MacroHive can handle many microservices at the same time, generating
a test suite for the entire MSA, while all the other tools can generate
tests for just one API at a time (testing session). Actually, rather than
testing the MSA as a whole, they regard the testing sessions of different
microservices as independent from each other.

14 OpenAPI allows to retrieve a specification via the Swagger user interface,
reachable online with an HTTP request directed to the microservice exposing
it.

https://github.com/uDEVOPS2020/MacroHive
https://microservices-demo.github.io/
https://github.com/spring-projects/spring-petclinic
https://github.com/microservices-patterns/ftgo-application
https://github.com/sqshq/piggymetrics

The Journal of Systems & Software 207 (2024) 111857L. Giamattei et al.

M
r
c
d
s
a
s
e
s
M
w

w

s
p
i
o
B
o
s

Table 3
RQ1: Tools support for the phases of the MSA testing process in Fig. 1.

Phases MacroHive EvoMaster RestTestGen RESTler bBOXRT
functional testing ✓ ✓Test objective robustness testing ✓ ✓ ✓ ✓

API specification
collection

automatic ✓ ✓

manual ✓ ✓ ✓ ✓

API parsing ✓ ✓ ✓ ✓ ✓

input space partitioning ✓ ✓

dictionary definition ✓ ✓

Test
specification
definition test oracle definition ✓ ✓ ✓ ✓ ✓

Test suite
generation

stateless ✓

stateful ✓ ✓ ✓ ✓

requests execution ✓ ✓ ✓ ✓ ✓

black-box monitoring ✓ ✓ ✓ ✓ ✓Test execution
gray-box monitoring ✓

Test reporting
test outcome ✓ ✓ ✓ ✓ ✓

computed statistics ✓ ✓ ✓ ✓

inferred results ✓ ✓
=
a
n
i
t
t

c
e
u
s
m
o

5
m

6. Results

As for test specification definition (phase 2⃝), the tools have a
similar definition of the test oracle: all tests returning a response code
belonging to a 5xx class are considered as failed. In MacroHive, EvoMas-
ter, and RestTestGen the test oracle considers as failed also those tests
with responses that do not comply to HTTP response codes listed in the
API specification. RestTestGen and EvoMaster consider failed also tests
with responses that do not match the schema (i.e., expected response
body) in the API specification.

As for test generation (phase 3⃝), three out of five tools (Evo-
aster, RestTestGen, and RESTler) are stateful. EvoMaster performs

andom testing, adding heuristics to maximize the HTTP response
ode coverage. RestTestGen and RESTler leverage data and operation
ependencies inferred from previously executed tests to choose, re-
pectively, the parameters’ values and requests’ sequences. bBOXRT
nd MacroHive extract input classes from the API specification in a
tateless manner, and then generate inputs for the classes: bBOXRT
xecutes valid requests with random values compliant to the OpenAPI
pecification, and then mutates them to trigger erroneous behaviors;
acroHive uses a combinatorial strategy, generating random values
ithin the boundaries of the input classes (valid and/or invalid).

All the tools are able to collect request–response couples exchanged
ith the edge microservices to execute tests (phase 4⃝). MacroHive is

able to collect also the request–responses couples of internal microser-
vices thanks to the sidecar monitoring infrastructure (uSauron).

As for reporting (phase 5⃝), RestTestGen, bBOXRT, and EvoMaster
how results for individual requests, thus needing other tools to com-
ute metrics. RestTestGen reports also the operation dependency graph
nferred from the execution, while EvoMaster reports the percentage
f consumed budget and the fitness (number of HTTP codes covered).
esides requests’ results, RESTler provides basic statistics like number
f valid/invalid sequences of operations, total object creations, and the
et of reproducible bugs. MacroHive reports, in addition to the HTTP
7

M

SCC coverage, basic statistics both for generation (number of different
paths and method, and number of tests generated) and execution (num-
ber of executed tests, successes, failures, unique failures, and details on
response times). It also reports gray-box coverage metrics of internal
microservices, failure chains, and dependencies. Finally, with its causal
inference engine, it provides automatic reporting and identification of
the critical parts of the system under test, considering the microservices
interaction.

6.1. RQ2: Functional testing

Coverage comparison. EvoMaster and MacroHive compute the Status
Code Class (SCC) and Status Code (SC) coverage reached by the re-
spective test suites. On the output of the 10 repetitions, we perform
a Wilcoxon rank sum test to statistically compare the results. The
null hypothesis of the two coverage datasets coming from the same
population is rejected with p-value = 8.08E−7 for SCC and p-value
1.37E−11 for SC for TrainTicket, while it is not rejected for Sock Shop

nd FTGO since the 𝑝-value is always greater than 0.05. Rejecting the
ull hypothesis ensures that the difference between the two approaches
s statistically significant, allowing us to state which is the best one. On
he contrary, the impossibility to reject the null hypothesis implies that
he techniques are equivalent.

Fig. 5 shows the average Status Code Class coverage of edge mi-
roservices per subject, while Fig. 6 the SCC coverage per TrainTicket
dge microservice. Since SCC coverage considers only two classes, val-
es lower than 50% mean that the test is unable to cover a documented
tatus code (i.e., a status code described in the API) for one or more
ethods of the microservice under test. Overall, MacroHive slightly

utperforms EvoMaster.
For TrainTicket, SCC values of MacroHive are always greater than

0%, meaning that for each microservice it obtains at least one docu-
ented status code for each method, on average.

Fig. 7 compares the average Status Code coverage of EvoMaster and

acroHive per subject, while Fig. 8 compares their SC coverage per
Fig. 5. RQ2: Status Code Class coverage per subject.

The Journal of Systems & Software 207 (2024) 111857L. Giamattei et al.

t
s

I
l
b
w
r
M
m

o
t
o
m
T

f

Fig. 6. RQ2: Status Code Class coverage per edge microservice (TrainTicket).
Fig. 7. RQ2: Status Code coverage per subject.
Fig. 8. RQ2: Status Code coverage per edge microservice (TrainTicket).
a
(
T
e
s
d
t

a
m
a
2
c
l
l
i

I
t

TrainTicket edge microservice. SC values greater than 25% mean that
the techniques obtain at least a quarter of the documented codes, while
the SC coverage is 50% when all the detected codes belong just to one
class. For instance, assume a method with 100 different status codes
specified and just one of them is detected. The SC would be 1%, the
SCC 50%.

Again, MacroHive coverage slightly outperforms EvoMaster, despite
he latter uses heuristics to improve the coverage obtained in a testing
ession.

nternal coverage. With its gray-box sidecar monitoring, MacroHive al-
ows evaluating the coverage of internal microservices when invoked
y other microservices. The following investigation aims to evaluate to
hat extent MacroHive exercises internal microservices through edge

equests. For this analysis we consider only TrainTicket, as the other
SA subjects, as reported in Section 5.1, lack internal interacting
icroservices.

To investigate this aspect, let us define the dependency level 𝐿𝑟
f a request 𝑟 made to an edge microservice 𝑀0 as the length of
he path of requests 𝑝𝑟 = ⟨𝑀0,𝑀1,… ,𝑀𝐿𝑟

⟩ made from 𝑀0 to the
ther microservices in the MSA. For instance, a level-2 dependency
eans that 𝑀0 invoked a service 𝑀1, which in turn invoked 𝑀2. For
rainTicket, the biggest dependency level of all edge microservices is 5.

Fig. 9 shows the internal SCC coverage achieved by MacroHive
8

or each TrainTicket edge microservice. Each plot shows the coverage
chieved through the invocation of the 𝑖th microservice (with 𝑖 ∈
1, 34), namely the edge microservices of TrainTicket) at a certain level.
he internal microservices API is not always known when testing the
dge microservice and observing the internal chain of calls. For this rea-
on, SCC coverage for internal microservices is computed assuming that
ifferent methods of the edge microservice invoke different methods of
he internal microservices.15

We see that for microservice 13 (Fig. 9a) and 9 (Fig. 9b), MacroHive
chieves an internal microservices coverage greater than 80% (for
icroservices invoked at levels 1 and 2 of the invocation chain),

lthough the SCC at the edge microservice is lower than 26% and
4%, respectively. These two microservices have the longest invocation
hains (microservice 13 reaches level 4 and microservice 9 reaches
evel 5). The Figures also show that two edge services with similar edge-
evel coverage can conceal very different internal coverage patterns —
nformation that can help better focus testing efforts.

nference. MacroHive provides automatic identification of causal rela-
ionships between erroneous behaviors (i.e., 4xx and 5xx HTTP status

15 SCC is preferred to SC for working in the absence of the API specification
of internal microservices. It is computed assuming that each method has
response codes 2xx, 4xx, and 5xx (see Table 2).

The Journal of Systems & Software 207 (2024) 111857L. Giamattei et al.
Fig. 9. RQ2: Status Code Class coverage per microservices level.
Fig. 10. RQ2: Example of erroneous behavior.

codes) between different microservices. An example manually extracted
from traces is shown in Fig. 10: the service under test admin-basic-
service sends a request to price-service, which responds with
a code 400 (bad request), and this causes a code 500 in the first one.

MacroHive extracts a causal model from observational data, and
then queries the model with interventions, such as: ‘‘What happens to
other microservices 𝑀𝑖 (𝑖 = 1,… , 𝑘 − 1) if one microservice 𝑀𝑘 in a chain
behaves erroneously?’’ (formally: 𝑃 (𝑀𝑖|𝑑𝑜(𝑀𝑘 = 𝑒𝑟𝑟𝑜𝑟))). Answering this
kind of question allows to evaluate the impact of erroneous behavior
of microservices on others and to extract a graph (Fig. 11), that depicts
cause–effect relations among microservices. This output gives testers
rapid and automatic feedback on the most critical parts of the MSA.
Note that, among other relations, the graph also identified the situation
shown in Fig. 10.
9

Fig. 11. RQ2: Erroneous behaviors cause–effect relations.

6.2. RQ3: Fault detection

Failure rate and unique failures. For a quantitative analysis of failures,
we ran the tools (10 repetitions), and collected the request–response
couples with burp, then evaluated as failing (5xx codes only) or not by
a test oracle.

The Journal of Systems & Software 207 (2024) 111857L. Giamattei et al.
Fig. 12. RQ3: Average failure rate per subject.
Fig. 13. RQ3: Critical differences of failure rate of compared tools.

Table 4
RQ3: Comparison of MacroHive to robustness testing tools.

Tool Per microservice

Failure rate # of tests # of failures # of unique failures

MacroHive 14.9% 266.1 42.5 7.6
ResTestGen 10.3% 5933.1 536.2 13.1
bBOXRT 5.6% 4695.6 271.0 10.7
RESTLer 4.9% 4548.6 213.7 7.9

Fig. 12 reports the Average Failure Rate (AFR), namely the ratio
between the number of failures detected and the number of executed
tests, averaged over edge microservices and repetitions. The Friedman
test is run with a level of significance 𝛼 = 0.05. The test returns p-
value < 2.2E−16 for TrainTicket and p-value < 3.7E−2 for Sock Shop,
rejecting the null hypothesis that failure rate values do not significantly
differ. The differences for FTGO are not significant since the p-value is
greater than 0.05. We perform Dunn’s test to detect which pairs exhibit
a significant difference in the failure rates obtained on the TrainTicket
and Sock Shop applications. While for Sock Shop there is only one
significant difference between MacroHive and RESTler (p-value = 0.029),
for TrainTicket the techniques show different behaviors, as shown by
the plot of the critical difference in Fig. 13. While bBOXRT and RESTler
have statistically significantly lower AFR, values for MacroHive are
similar to ResTestGen. However, MacroHive exhibits the best average
AFR, with almost 15% of generated tests exposing failures.

Table 4 reports number of tests, of failures and of unique failures
(average over microservices). MacroHive stateless combinatorial tech-
nique features a much lower number of tests than the other tools.
These generate at least 17 times the number of tests of MacroHive, try-
ing to cover parameters/operations dependencies through information
collected during test execution.

For a finer analysis of detected failures and to avoid bias due to the
number of executed tests, we further evaluated the number of failed
methods (unique failures), so as multiple failures of the same method to
count as one. This is reported for each tool in the last column of Table 4.
RestTestGen and bBOXRT show the best results on average. They found
respectively 13.1 and 10.7 different failures per microservice. RESTler
and MacroHive behave worse, respectively with 7.9 and 7.6 failures. A
deeper manual inspection of results pointed out that RestTestGen and
bBOXRT were particularly effective in finding failures in microservices
10
Fig. 14. RQ3: Distribution of internal failures across microservices levels.

with few (or none) dependencies. For instance, they found for the
order-service and travel-service (the microservices with the
highest number of failures) respectively {22, 17.6} and {17, 14.6}
against {14, 10} of both MacroHive and RESTler. The first microservice
has zero dependencies, making it easier for stateful tools to generate
valid and invalid input to better exercise it, and although the second has
3 dependencies, the failures RestTestGen and bBOXRT were able to find
(and MacroHive and RESTler not) were mostly related to not-dependent
requests. In summary, the better results are due to: (i) better ability
to find intra-microservice parameter dependencies (in not-dependent
microservices); (ii) better ability to activate faults with input mutations.

Internal failures. A unique feature of MacroHive is the detection of
internal failures. Table 5 reports the results. The subject here is Train-
Ticket . We notice that, on average on repetitions, 33.7 additional
failures are detected with respect to the edge-level failures (almost 1
failure per microservice). Such internal failures are distributed among
level-1 and level-2 dependencies (Fig. 14). We did not find failures at
levels deeper than 2.

Internal failures are the trickiest failures to find, and remained
undetected by other tools. In addition, through the identification of
these failures, MacroHive was able to highlight internal failure prop-
agation chains, as well as possible masking effects. Fig. 15 shows two
situations spotted by MacroHive in TrainTicket. Fig. 15a shows a propa-
gated failure: two failing internal services, security-service and
order-service, cause the edge microservice preserve-service
to fail. Without MacroHive, the propagated failures would have been
associated with edge microservices, while an internal failure is the real
cause. Fig. 15b shows a masked failure: a test passed, despite a failure
occurring in the internal microservice order-service. Masked fail-
ures are not detected by the other compared tools, as they never reach
the edge microservice. This kind of failure can silently corrupt the state
of the MSA and manifest unexpectedly in operation (Wang et al., 2020;
Jagadeesan and Mendiratta, 2020; Mathur, 2020). Undoubtedly, some
of these failures may have been tolerated by the designed fault toler-
ance mechanisms, while others may have simply been prevented from
spreading by the program control flow; engineers want to understand
the causes of the microservice failure in both scenarios.

A further MacroHive feature is the identification of failures oc-
curred in different microservices, yet caused by a common faulty
method in a service. Fig. 16 shows one such case in TrainTicket,

The Journal of Systems & Software 207 (2024) 111857L. Giamattei et al.
Table 5
RQ3: Detailed metrics about failures detected by MacroHive.
MacroHive AFR # of # of unique

internal failures Failures Edge failures Internal failures

Total / 713.6 292.0 258.3 33.7
Per microservice 38.2% 20.9 8.6 7.6 0.9
Fig. 15. RQ3: Examples of failing internal microservices.

Fig. 16. RQ3: A case of common cause failure in the TrainTicket subject.

whose services cancel and execute failed similarly. This informa-
tion would help a tester to spot that the common cause is the method
GET /order/{orderId} of order-service.

Table 6 reports the average number of propagated and masked
failures among all microservices detected by MacroHive, together with
the average number of executed tests and failures observed at the
edge. MacroHive exposes 328.7 propagated failures and 1 masked on
average. In particular, it identifies 18 unique failure propagation chains
and exactly 1 masked failure coming from the microservice cancel-
service (see Fig. 15b).
11
Fig. 17. RQ3: Failures cause–effect relations discovered for TrainTicket microservices.

Inference. MacroHive uKnows service establishes whether the failures
of any two services are causally related or not. To establish a systematic
causal relation between, it is not sufficient to observe one failing trace
(which could be due, for instance, to a rarely occurring condition);
there could also well be relations among a failing microservice and
microservices non-adjacent in the SDG, that do not manifest from the
SDG (e.g., because intermediate microservices could mask the root
microservice failure).

The causal inference engine identifies the microservices whose fail-
ures have a systematic effect on other microservices, thus needing par-
ticular attention, Testers benefit from the inference results in two ways,
as they can discover: (i) the most failure-prone microservices in inter-
actions with others (nodes that are less robust to failures of invoked
microservices); (ii) those microservices whose failure systematically
induce the failure of others.

Fig. 17 shows the cause–effect failure relationships between mi-
croservices found by MacroHive. The arrows in the graphs repre-
sent causal relations between microservices failure (they start from
the service causing the failure). MacroHive found that 10 out of the
18 failure chains (Table 6) were propagated failures (a systematic
causal relation is detected between internal and edge failures). Macro-
Hive is able to decompose propagation chains and to identify causal-
ity on a subset of them. For instance, it detected a level-3 failure
chain (order-service to security-service and security-
service to preserve-service) but highlighted cause–effect re-
lations between two of them (security-service to preserve-
service).
Table 6
RQ3: Number of propagated and masked failures.

Tool Executed tests Edge failures Propagated failures Unique propagated failures Masked failures

MacroHive 4462.6 992 328.7 18 1

The Journal of Systems & Software 207 (2024) 111857L. Giamattei et al.
6.3. Threats to validity

The threats to validity and possible mitigation strategies are as
follows.

Construct validity. Dependencies coverage and internal status code
class coverage are computed on an estimation of the ground truth.
Indeed, it is built only with MacroHive, then dependencies that we are
not able to explore are not considered. Furthermore, we consider a
failure propagated when an edge failure presents at least an internal
failure. This may not always be the case, as we can have mixed chains of
propagated and masked failures. We are working on the identification
of these tricky cases too.

Internal validity. Despite our efforts to ensure that the MacroHive proto-
type is free of defects (including code inspection by senior co-authors),
their presence cannot be excluded and could partly corrupt the ex-
perimentation. Furthermore, the sidecar proxies introduce a delay in
microservices interactions, which could have determined some ob-
served failures. Our inspection of results did not identify any such
case.

External validity. The use of only TrainTicket for the gray-box anal-
ysis hinders generalization. We reported the results with two further
subjects; while they confirm MacroHive performance at edge level, by
their nature (limited internal microservices) they could not be used
for experiments in a gray-box perspective. Finding real-world MSA
subjects is a known problem (Zhou et al., 2018b); we are tackling it
by collaborating with industry in ongoing projects.

7. Conclusions

MacroHive is a framework for generation, execution and gray-box
investigation of the results of functional and robustness tests for mi-
croservice architectures, with a high degree of automation. It features
combinatorial test case generation, an infrastructure for execution and
monitoring of interactions, and a causal inferential engine, giving
testers insights about internal coverage, internal failing services, and
causal relations between failures.

Apart from the combinatorial test case generation, MacroHive pecu-
liarities with respect to existing tools are in that it provides coverage
and failure information not only for edge, but also for MSA internal
microservices, and it identifies causal relationships in observed chains
of microservices failures. The availability of a causal model allows
engineers to query the model for additional tasks, such as evaluating
alternative configurations/deployments, comparing architectural solu-
tions, and placing fault tolerance mechanisms where they are actually
more required.

The experiments show that MacroHive is effective in achieving high
coverage, as well as in detecting a variety of kinds of failures (both
edge and internal). As for functional testing, it generates tests with
edge-level coverage comparable (slightly better) to the state-of-the-art
tool EvoMaster (black-box version), but enriched with useful insights
about the coverage of internal microservices. This increases the tester’s
confidence in the appropriateness of the test suite. For robustness
testing too, the experiments show that the combinatorial test generator
exhibits coverage performance comparable to other tools at the edge
level, but achieves a superior failure rate.

The cost of the technique is paid mostly in terms of overhead
since it requires deploying a proxy for each microservice to monitor.
As each microservice is supplied with a sidecar, two containers are
deployed per microservice. This impacts the deployment process, as
more containers must be independently deployed, and linearly affects
scalability. The monitoring overhead is related to the delay introduced
by proxies redirecting requests (responses) to (from) a microservice.
This is a known issue, one of the main challenges in building a service
12

mesh (Li et al., 2019). The delay due to proxies is the additional
time incurred to forward a request or the corresponding response. We
measured this delay as 1±0.5 ms (median and semi inter-quartile range
over all microservices), with the microservices response time equal to
7±2.5 ms. As this kind of test can be executed in a staging environment,
the overhead does not impact the MSA in production.

MacroHive is a flexible framework, whose components are them-
selves microservices, allowing easy plug in of other tests generators,
and of other monitoring or inferential services as well. Indeed, as future
step, we plan to integrate other test generators (e.g., with search-based
testing strategies), and to exploit the causal model for causality-driven
tests generation.

CRediT authorship contribution statement

Luca Giamattei: Conceptualization, Methodology, Investigation,
Software, Formal analysis, Validation, Writing, Visualization. Anto-
nio Guerriero: Conceptualization, Methodology, Investigation, Formal
analysis, Validation, Writing, Visualization. Roberto Pietrantuono:
Methodology, Supervision, Funding acquisition, Project administra-
tion, Writing, Visualization. Stefano Russo: Methodology, Supervision,
Funding acquisition, Resources, Writing, Visualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

We have shared the link to our code in the paper.

Acknowledgments

This project has received funding from the European Union’s Hori-
zon 2020 research and innovation programme under the Marie
Skłodowska-Curie grant agreement No 871342 ‘‘uDEVOPS’’.

References

Arcuri, A., 2019. RESTful API automated test case generation with EvoMaster. ACM
Trans. Softw. Eng. Methodol. 28 (1), http://dx.doi.org/10.1145/3293455.

Arcuri, A., 2021. Automated black- and white-box testing of restful apis with evomaster.
IEEE Softw. 38 (3), 72–78. http://dx.doi.org/10.1109/MS.2020.3013820.

Atlidakis, V., Godefroid, P., Polishchuk, M., 2019. Restler: Stateful REST API fuzzing.
In: IEEE/ACM 41st International Conference on Software Engineering (ICSE). IEEE,
pp. 748–758. http://dx.doi.org/10.1109/ICSE.2019.00083.

Bertolino, A., De Angelis, G., Guerriero, A., Miranda, B., Pietrantuono, R., Russo, S.,
2020. DevOpRET: Continuous reliability testing in DevOps. J. Softw.: Evol. Process
35 (3), http://dx.doi.org/10.1002/smr.2298, e2298 smr.2298.

Burns, B., Oppenheimer, D., 2016. Design patterns for container-based distributed
systems. In: 8th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud
16). USENIX Association, Denver, CO, pp. 1–6, available at: https://www.usenix.
org/conference/hotcloud16/workshop-program/presentation/burns.

Chen, T., Shang, W., Hassan, A.E., Nasser, M., Flora, P., 2016. CacheOptimizer: Helping
developers configure caching frameworks for hibernate-based database-centric web
applications. In: Proc. of the 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering (FSE). ACM, pp. 666–677. http://dx.doi.org/
10.1145/2950290.2950303.

Chen, T., Shang, W., Jiang, Z.M., Hassan, A.E., Nasser, M., Flora, P., 2014. Detecting
performance anti-patterns for applications developed using object-relational map-
ping. In: 36th International Conference on Software Engineering (ICSE). ACM, pp.
1001–1012. http://dx.doi.org/10.1145/2568225.2568259.

Corradini, D., Zampieri, A., Pasqua, M., Ceccato, M., 2021a. Empirical comparison of
black-box test case generation tools for restful apis. In: 2021 IEEE 21st International
Working Conference on Source Code Analysis and Manipulation (SCAM). IEEE, pp.
226–236. http://dx.doi.org/10.1109/SCAM52516.2021.00035.

Corradini, D., Zampieri, A., Pasqua, M., Ceccato, M., 2021b. Restats: A test coverage
tool for RESTful APIs. In: 2021 IEEE International Conference on Software Main-
tenance and Evolution (ICSME). IEEE, pp. 594–598. http://dx.doi.org/10.1109/
ICSME52107.2021.00063.

http://dx.doi.org/10.1145/3293455
http://dx.doi.org/10.1109/MS.2020.3013820
http://dx.doi.org/10.1109/ICSE.2019.00083
http://dx.doi.org/10.1002/smr.2298
https://www.usenix.org/conference/hotcloud16/workshop-program/presentation/burns
https://www.usenix.org/conference/hotcloud16/workshop-program/presentation/burns
https://www.usenix.org/conference/hotcloud16/workshop-program/presentation/burns
http://dx.doi.org/10.1145/2950290.2950303
http://dx.doi.org/10.1145/2950290.2950303
http://dx.doi.org/10.1145/2950290.2950303
http://dx.doi.org/10.1145/2568225.2568259
http://dx.doi.org/10.1109/SCAM52516.2021.00035
http://dx.doi.org/10.1109/ICSME52107.2021.00063
http://dx.doi.org/10.1109/ICSME52107.2021.00063
http://dx.doi.org/10.1109/ICSME52107.2021.00063

The Journal of Systems & Software 207 (2024) 111857L. Giamattei et al.
Corradini, D., Zampieri, A., Pasqua, M., Viglianisi, E., Dallago, M., Ceccato, M., 2022.
Automated black-box testing of nominal and error scenarios in restful apis. Softw.
Test. Verif. Reliab. 32 (5), 1–33. http://dx.doi.org/10.1002/stvr.1808.

Cortellessa, V., Di Pompeo, D., Eramo, R., Tucci, M., 2022. A model-driven approach for
continuous performance engineering in microservice-based systems. J. Syst. Softw.
183, 111084. http://dx.doi.org/10.1016/j.jss.2021.111084.

de Camargo, A., Salvadori, I., Mello, R., Siqueira, F., 2016. An architecture to automate
performance tests on microservices. In: Proceedings of the 18th International
Conference on Information Integration and Web-Based Applications and Services.
ACM, pp. 422–429. http://dx.doi.org/10.1145/3011141.3011179.

Ed-douibi, H., Cánovas Izquierdo, J.L., Cabot, J., 2018. Automatic generation of
test cases for REST APIs: A specification-based approach. In: 22nd International
Enterprise Distributed Object Computing Conference (EDOC). IEEE, pp. 181–190.
http://dx.doi.org/10.1109/EDOC.2018.00031.

Ghani, I., Wan-Kadir, W., Mustafa, A., Imran Babir, M., 2019. Microservice testing
approaches: A systematic literature review. Int. J. Integr. Eng. 11 (8), 65–80.
http://dx.doi.org/10.30880/ijie.2019.11.08.008.

Giamattei, L., Guerriero, A., Pietrantuono, R., Russo, S., 2022. Automated grey-box
testing of microservice architectures. In: 2022 IEEE 22nd International Conference
on Software Quality, Reliability and Security (QRS). IEEE, pp. 640–650. http:
//dx.doi.org/10.1109/QRS57517.2022.00070.

Glymour, C., Zhang, K., Spirtes, P., 2019. Review of causal discovery methods based on
graphical models. Front. Genet. 10, http://dx.doi.org/10.3389/fgene.2019.00524.

Heorhiadi, V., Rajagopalan, S., Jamjoom, H., Reiter, M.K., Sekar, V., 2016. Grem-
lin: Systematic resilience testing of microservices. In: IEEE 36th International
Conference on Distributed Computing Systems (ICDCS). IEEE, pp. 57–66. http:
//dx.doi.org/10.1109/ICDCS.2016.11.

Hou, X., Liu, J., Li, C., Guo, M., 2019. Unleashing the scalability potential of power-
constrained data center in the microservice era. In: Proceedings of the 48th
International Conference on Parallel Processing (ICPP). ACM, http://dx.doi.org/10.
1145/3337821.3337857.

Hu, L., Wong, W., Kuhn, D., Kacker, R., 2020. How does combinatorial testing perform
in the real world: an empirical study. Empir. Softw. Eng. 25, http://dx.doi.org/10.
1007/s10664-019-09799-2.

Jagadeesan, L., Mendiratta, V., 2020. When failure is (not) an option: Reliability models
for microservices architectures. In: IEEE International Symposium on Software
Reliability Engineering Workshops (ISSREW). IEEE, pp. 19–24. http://dx.doi.org/
10.1109/ISSREW51248.2020.00031.

Jamshidi, P., Pahl, C., Mendonça, N.C., Lewis, J., Tilkov, S., 2018. Microservices: The
journey so far and challenges ahead. IEEE Softw. 35 (3), 24–35. http://dx.doi.org/
10.1109/MS.2018.2141039.

Ji, S., Wu, W., Pu, Y., 2020. Multi-indicators prediction in microservice using granger
causality test and attention LSTM. In: 2020 IEEE World Congress on Services
(SERVICES). IEEE, pp. 77–82. http://dx.doi.org/10.1109/SERVICES48979.2020.
00030.

Joseph, C., Chandrasekaran, K., 2020. IntMA: Dynamic interaction-aware resource
allocation for containerized microservices in cloud environments. J. Syst. Archit.
111, 101785. http://dx.doi.org/10.1016/j.sysarc.2020.101785.

Karlsson, S., Čaušević, A., Sundmark, D., 2020. QuickREST: Property-based test gener-
ation of OpenAPI-Described RESTful APIs. In: IEEE 13th International Conference
on Software Testing, Validation and Verification (ICST). IEEE, pp. 131–141. http:
//dx.doi.org/10.1109/ICST46399.2020.00023.

Laranjeiro, N., Agnelo, J., Bernardino, J., 2021. A black box tool for robustness testing
of REST services. IEEE Access 9, http://dx.doi.org/10.1109/ACCESS.2021.3056505.

Lei, Q., Liao, W., Jiang, Y., Yang, M., Li, H., 2019. Performance and scalability
testing strategy based on kubemark. In: 2019 IEEE 4th International Conference
on Cloud Computing and Big Data Analysis (ICCCBDA). IEEE, pp. 511–516. http:
//dx.doi.org/10.1109/ICCCBDA.2019.8725658.

Lewis, J., Fowler, M., 2014. Microservices - a definition of this new architectural term.
available at: http://martinfowler.com/articles/microservices.html.

Li, Z., Chen, J., Jiao, R., Zhao, N., Wang, Z., Zhang, S., Wu, Y., Jiang, L., Yan, L.,
Wang, Z., Chen, Z., Zhang, W., Nie, X., Sui, K., Pei, D., 2021. Practical root
cause localization for microservice systems via trace analysis. In: 2021 IEEE/ACM
29th International Symposium on Quality of Service (IWQOS). IEEE, pp. 1–10.
http://dx.doi.org/10.1109/IWQOS52092.2021.9521340.

Li, W., Lemieux, Y., Gao, J., Zhao, Z., Han, Y., 2019. Service mesh: Challenges,
state of the art, and future research opportunities. In: 2019 IEEE International
Conference on Service-Oriented System Engineering (SOSE). IEEE, pp. 122–127.
http://dx.doi.org/10.1109/SOSE.2019.00026.

Liu, P., Xu, H., Ouyang, Q., Jiao, R., Chen, Z., Zhang, S., Yang, J., Mo, L., Zeng, J.,
Xue, W., Pei, D., 2020. Unsupervised detection of microservice trace anomalies
through service-level deep bayesian networks. In: 31st International Symposium
on Software Reliability Engineering (ISSRE). IEEE, pp. 48–58. http://dx.doi.org/
10.1109/ISSRE5003.2020.00014.

Long, Z., Wu, G., Chen, X., Cui, C., Chen, W., Wei, J., 2020. Fitness-guided resilience
testing of microservice-based applications. In: IEEE International Conference on
Web Services (ICWS). IEEE, pp. 151–158. http://dx.doi.org/10.1109/ICWS49710.
2020.00027.
13
Ma, S., Fan, C., Chuang, Y., Lee, W., Lee, S., Hsueh, N., 2018. Using service dependency
graph to analyze and test microservices. In: 2018 IEEE 42nd Annual Computer
Software and Applications Conference (COMPSAC), 02. IEEE, pp. 81–86. http:
//dx.doi.org/10.1109/COMPSAC.2018.10207.

Martin-Lopez, A., Segura, S., Ruiz-Cortés, A., 2019. Test coverage criteria for RESTful
web APIs. In: Proc. of the 10th ACM SIGSOFT International Workshop on Au-
tomating TEST Case Design, Selection, and Evaluation (a-TEST). ACM, pp. 15–21.
http://dx.doi.org/10.1145/3340433.3342822.

Martin-Lopez, A., Segura, S., Ruiz-Cortés, A., 2020. RESTest: Black-box constraint-
based testing of RESTful web APIs. In: Kafeza, E., et al. (Eds.), Service-Oriented
Computing. In: Lecture Notes in Computer Science, vol. 12571, Springer, pp.
459–475. http://dx.doi.org/10.1007/978-3-030-65310-1_33.

Mathur, M., 2020. Leveraging Distributed Tracing and Container Cloning for Replay
Debugging of Microservices (Ph.D. thesis). University of California, Los Angeles,
https://escholarship.org/uc/item/7dp9q7j5.

Nogueira, A.R., Pugnana, A., Ruggieri, S., Pedreschi, D., Gama, J., 2022. Methods and
tools for causal discovery and causal inference. WIREs Data Min. Knowl. Discov.
12 (2), e1449. http://dx.doi.org/10.1002/widm.1449.

Patel, A.R., Tyagi, S., 2022. The state of test automation in DevOps: A systematic
literature review. In: Proceedings of the 2022 Fourteenth International Conference
on Contemporary Computing, IC3-2022. ACM, pp. 689–695. http://dx.doi.org/10.
1145/3549206.3549321.

Pearl, J., Mackenzie, D., 2018. The Book of Why: The New Science of Cause and Effect,
first ed. Basic Books, Inc., USA.

Pezzè, M., Young, M., 2008. Software Testing and Analysis: Process, Principles, and
Techniques. John Wiley & Sons.

Pietrantuono, R., Russo, S., Guerriero, A., 2018. Run-time reliability estimation of
microservice architectures. In: 29th International Symposium on Software Reliabil-
ity Engineering (ISSRE). IEEE, pp. 25–35. http://dx.doi.org/10.1109/ISSRE.2018.
00014.

2021. Portswigger: Burp suite. https://portswigger.net/burp.
Rahman, J., Lama, P., 2019. Predicting the end-to-end tail latency of container-

ized microservices in the cloud. In: 2019 IEEE International Conference on
Cloud Engineering (IC2E). IEEE, pp. 200–210. http://dx.doi.org/10.1109/IC2E.
2019.00034.

Ramsey, J., Zhan, K., Glymour, M., Sanchez Romero, R., Huang, B., Ebert-Uphoff, I.,
Samarasinghe, S.M., Barnes, E.A., Glymour, C., 2018. TETRAD - A toolbox for
causal discovery. In: 8th International Workshop on Climate Informatics.

Sharma, A., Kiciman, E., et al., 2019. DoWhy: A python package for causal inference.
https://github.com/microsoft/dowhy.

Spirtes, P., Glymour, C., Scheines, R., 2001. Causation, Prediction, and Search, second
ed. In: Adaptive Computation and Machine Learning, MIT Press, Cambridge, MA,
USA.

Viglianisi, E., Dallago, M., Ceccato, M., 2020. RESTTESTGEN: Automated black-box
testing of restful APIs. In: 13th International Conference on Software Testing,
Verification and Validation (ICST). IEEE, pp. 142–152. http://dx.doi.org/10.1109/
ICST46399.2020.00024.

Walker, A., Laird, I., Cerny, T., 2021. On automatic software architecture reconstruc-
tion of microservice applications. In: Kim, H.e.a. (Ed.), Information Science and
Applications. In: Lecture Notes in Electrical Engineering, vol. 739, Springer, pp.
223–234. http://dx.doi.org/10.1007/978-981-33-6385-4_21.

Wang, T., Zhang, W., Xu, J., Gu, Z., 2020. Workflow-aware automatic fault diagnosis
for microservice-based applications with statistics. IEEE Trans. Netw. Serv. Manag.
17 (4), http://dx.doi.org/10.1109/TNSM.2020.3022028.

Waseem, M., Liang, P., Márquez, G., Di Salle, A., 2020. Testing microservices
architecture-based applications: A systematic mapping study. In: 27th Asia-Pacific
Software Engineering Conference (APSEC). IEEE, pp. 119–128. http://dx.doi.org/
10.1109/APSEC51365.2020.00020.

Wu, L., Tordsson, J., Elmroth, E., Kao, O., 2020. Microrca: Root cause localization
of performance issues in microservices. In: NOMS 2020 - IEEE/IFIP Network
Operations and Management Symposium. IEEE, pp. 1–9. http://dx.doi.org/10.
1109/NOMS47738.2020.9110353.

Wu, L., Tordsson, J., Elmroth, E., Kao, O., 2021. Causal inference techniques for
microservice performance diagnosis: Evaluation and guiding recommendations. In:
2021 IEEE International Conference on Autonomic Computing and Self-Organizing
Systems (ACSOS). IEEE, pp. 21–30. http://dx.doi.org/10.1109/ACSOS52086.2021.
00029.

Zhou, X., Peng, X., Xie, T., Sun, J., Ji, C., Li, W., Ding, D., 2021. Fault analysis
and debugging of microservice systems: Industrial survey, benchmark system, and
empirical study. IEEE Trans. Softw. Eng. 47 (2), 243–260. http://dx.doi.org/10.
1109/TSE.2018.2887384.

Zhou, X., Peng, X., Xie, T., Sun, J., Ji, C., Liu, D., Xiang, Q., He, C., 2019. Latent
error prediction and fault localization for microservice applications by learning
from system trace logs. In: Proc. of the 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE). ACM, pp. 683–694. http://dx.doi.org/10.1145/3338906.
3338961.

Zhou, X., Peng, X., Xie, T., Sun, J., Li, W., Ji, C., Ding, D., 2018a. Delta debugging
microservice systems. In: 33rd ACM/IEEE International Conference on Automated
Software Engineering. ACM, pp. 802–807. http://dx.doi.org/10.1145/3238147.
3240730.

http://dx.doi.org/10.1002/stvr.1808
http://dx.doi.org/10.1016/j.jss.2021.111084
http://dx.doi.org/10.1145/3011141.3011179
http://dx.doi.org/10.1109/EDOC.2018.00031
http://dx.doi.org/10.30880/ijie.2019.11.08.008
http://dx.doi.org/10.1109/QRS57517.2022.00070
http://dx.doi.org/10.1109/QRS57517.2022.00070
http://dx.doi.org/10.1109/QRS57517.2022.00070
http://dx.doi.org/10.3389/fgene.2019.00524
http://dx.doi.org/10.1109/ICDCS.2016.11
http://dx.doi.org/10.1109/ICDCS.2016.11
http://dx.doi.org/10.1109/ICDCS.2016.11
http://dx.doi.org/10.1145/3337821.3337857
http://dx.doi.org/10.1145/3337821.3337857
http://dx.doi.org/10.1145/3337821.3337857
http://dx.doi.org/10.1007/s10664-019-09799-2
http://dx.doi.org/10.1007/s10664-019-09799-2
http://dx.doi.org/10.1007/s10664-019-09799-2
http://dx.doi.org/10.1109/ISSREW51248.2020.00031
http://dx.doi.org/10.1109/ISSREW51248.2020.00031
http://dx.doi.org/10.1109/ISSREW51248.2020.00031
http://dx.doi.org/10.1109/MS.2018.2141039
http://dx.doi.org/10.1109/MS.2018.2141039
http://dx.doi.org/10.1109/MS.2018.2141039
http://dx.doi.org/10.1109/SERVICES48979.2020.00030
http://dx.doi.org/10.1109/SERVICES48979.2020.00030
http://dx.doi.org/10.1109/SERVICES48979.2020.00030
http://dx.doi.org/10.1016/j.sysarc.2020.101785
http://dx.doi.org/10.1109/ICST46399.2020.00023
http://dx.doi.org/10.1109/ICST46399.2020.00023
http://dx.doi.org/10.1109/ICST46399.2020.00023
http://dx.doi.org/10.1109/ACCESS.2021.3056505
http://dx.doi.org/10.1109/ICCCBDA.2019.8725658
http://dx.doi.org/10.1109/ICCCBDA.2019.8725658
http://dx.doi.org/10.1109/ICCCBDA.2019.8725658
http://martinfowler.com/articles/microservices.html
http://dx.doi.org/10.1109/IWQOS52092.2021.9521340
http://dx.doi.org/10.1109/SOSE.2019.00026
http://dx.doi.org/10.1109/ISSRE5003.2020.00014
http://dx.doi.org/10.1109/ISSRE5003.2020.00014
http://dx.doi.org/10.1109/ISSRE5003.2020.00014
http://dx.doi.org/10.1109/ICWS49710.2020.00027
http://dx.doi.org/10.1109/ICWS49710.2020.00027
http://dx.doi.org/10.1109/ICWS49710.2020.00027
http://dx.doi.org/10.1109/COMPSAC.2018.10207
http://dx.doi.org/10.1109/COMPSAC.2018.10207
http://dx.doi.org/10.1109/COMPSAC.2018.10207
http://dx.doi.org/10.1145/3340433.3342822
http://dx.doi.org/10.1007/978-3-030-65310-1_33
https://escholarship.org/uc/item/7dp9q7j5
http://dx.doi.org/10.1002/widm.1449
http://dx.doi.org/10.1145/3549206.3549321
http://dx.doi.org/10.1145/3549206.3549321
http://dx.doi.org/10.1145/3549206.3549321
http://refhub.elsevier.com/S0164-1212(23)00252-2/sb38
http://refhub.elsevier.com/S0164-1212(23)00252-2/sb38
http://refhub.elsevier.com/S0164-1212(23)00252-2/sb38
http://refhub.elsevier.com/S0164-1212(23)00252-2/sb39
http://refhub.elsevier.com/S0164-1212(23)00252-2/sb39
http://refhub.elsevier.com/S0164-1212(23)00252-2/sb39
http://dx.doi.org/10.1109/ISSRE.2018.00014
http://dx.doi.org/10.1109/ISSRE.2018.00014
http://dx.doi.org/10.1109/ISSRE.2018.00014
https://portswigger.net/burp
http://dx.doi.org/10.1109/IC2E.2019.00034
http://dx.doi.org/10.1109/IC2E.2019.00034
http://dx.doi.org/10.1109/IC2E.2019.00034
http://refhub.elsevier.com/S0164-1212(23)00252-2/sb43
http://refhub.elsevier.com/S0164-1212(23)00252-2/sb43
http://refhub.elsevier.com/S0164-1212(23)00252-2/sb43
http://refhub.elsevier.com/S0164-1212(23)00252-2/sb43
http://refhub.elsevier.com/S0164-1212(23)00252-2/sb43
https://github.com/microsoft/dowhy
http://refhub.elsevier.com/S0164-1212(23)00252-2/sb45
http://refhub.elsevier.com/S0164-1212(23)00252-2/sb45
http://refhub.elsevier.com/S0164-1212(23)00252-2/sb45
http://refhub.elsevier.com/S0164-1212(23)00252-2/sb45
http://refhub.elsevier.com/S0164-1212(23)00252-2/sb45
http://dx.doi.org/10.1109/ICST46399.2020.00024
http://dx.doi.org/10.1109/ICST46399.2020.00024
http://dx.doi.org/10.1109/ICST46399.2020.00024
http://dx.doi.org/10.1007/978-981-33-6385-4_21
http://dx.doi.org/10.1109/TNSM.2020.3022028
http://dx.doi.org/10.1109/APSEC51365.2020.00020
http://dx.doi.org/10.1109/APSEC51365.2020.00020
http://dx.doi.org/10.1109/APSEC51365.2020.00020
http://dx.doi.org/10.1109/NOMS47738.2020.9110353
http://dx.doi.org/10.1109/NOMS47738.2020.9110353
http://dx.doi.org/10.1109/NOMS47738.2020.9110353
http://dx.doi.org/10.1109/ACSOS52086.2021.00029
http://dx.doi.org/10.1109/ACSOS52086.2021.00029
http://dx.doi.org/10.1109/ACSOS52086.2021.00029
http://dx.doi.org/10.1109/TSE.2018.2887384
http://dx.doi.org/10.1109/TSE.2018.2887384
http://dx.doi.org/10.1109/TSE.2018.2887384
http://dx.doi.org/10.1145/3338906.3338961
http://dx.doi.org/10.1145/3338906.3338961
http://dx.doi.org/10.1145/3338906.3338961
http://dx.doi.org/10.1145/3238147.3240730
http://dx.doi.org/10.1145/3238147.3240730
http://dx.doi.org/10.1145/3238147.3240730

The Journal of Systems & Software 207 (2024) 111857L. Giamattei et al.
Zhou, X., Peng, X., Xie, T., Sun, J., Xu, C., Ji, C., Zhao, W., 2018b. Benchmarking
microservice systems for software engineering research. In: Proceedings of the 40th
International Conference on Software Engineering: Companion Proceeedings (ICSE-
Companion), ICSE ’18. ACM, pp. 323–324. http://dx.doi.org/10.1145/3183440.
3194991.

Luca Giamattei (Ph.D. student) received the M.S. degree in computer engineering in
2021 from the Federico II University of Naples, Italy. He is currently a Ph.D. student
in Information Technology and Electrical Engineering from the same university. His
main research interests are in testing of DNN-enabled systems and distributed software
systems. In this context, he collaborated in international projects. He published in
international conferences in the field of software engineering and software testing.

Antonio Guerriero (Ph.D.) is Assistant Professor at Federico II University of Naples,
Italy. He received a Ph.D. degree in Information Technology and Electrical Engineering
from the same university in 2022. His main research interests are in testing of ML-
based systems and distributed software systems. In this context, he collaborated on
14
both national and international projects. He published in international conferences and
journals in the field of software reliability, software engineering, and software testing.

Roberto Pietrantuono (Ph.D.) is Associate Professor at University of Naples Federico
II. He is in the Dependable Systems and Software Engineering Research Team since
2007. His research interests focus on software testing and on dependability of software
systems. He co-founded Critiware (www.critiware.com) a company working in critical
systems engineering since 2011. He is involved in several projects and currently
coordinates an MSCA RISE European project (uDevOps). He is senior member of IEEE
and member of ACM.

Stefano Russo (Ph.D.) is Professor of Computer Engineering at Federico II University
of Naples, Italy, where he teaches Software Engineering and Distributed Systems, and
leads the DESSERT research group (www.dessert.unina.it). He (co-)authored over 190
papers in the areas of software testing, software aging, middleware technologies, mobile
computing. He is Associate Editor of IEEE Trans. on Services Computing, and Senior
Member of the IEEE.

http://dx.doi.org/10.1145/3183440.3194991
http://dx.doi.org/10.1145/3183440.3194991
http://dx.doi.org/10.1145/3183440.3194991
http://www.critiware.com
http://www.dessert.unina.it

	Automated functional and robustness testing of microservice architectures
	Introduction
	Related work
	MSA testing process
	MacroHive
	Experimentation
	Experimental subjects
	Tests generation
	Research Questions
	RQ1: support for the MSA testing process

	Results
	RQ2: Functional testing
	RQ3: Fault detection
	Threats to validity

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

