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A B S T R A C T   

This paper aims to contribute to the comprehensive and systematic safety assessment of Auto-
mated Driving Systems (ADSs) by identifying unknown hazardous areas of operation. The current 
methodologies employed in this domain typically involve estimating the distributions of situa-
tional variables based on human-centered field test, crash databases, or expert knowledge of 
critical values. However, due to the lack of a-priori knowledge regarding the influential factors, 
their critical ranges, and their distributions, these approaches may not be entirely suitable for the 
assessment of emerging automated driving technologies. To deal with this challenging problem, 
here we propose a testing methodology incorporating realistic yet unobserved driving conditions, 
distinguished by numerous situational variables, so to encompass unknown unsafe conditions 
comprehensively. Our methodology utilizes stochastic simulation and uncertainty modeling 
techniques to account for the variability of realistic driving conditions and their impact on ADSs’ 
performances. By doing so, we aim to identify unsafe operational regions and triggering condi-
tions that can lead to hazardous behaviors, thus improving the development and safety of 
automated driving functions. For our purposes, the Latin Hypercube Sampling technique and the 
recently proposed PAWN density-based sensitivity analysis method are employed. We apply this 
methodology for the first time in the specific field of ADSs design and validation, using an 
exemplificative use case. We discuss and compare the results obtained from our approach with 
those obtained from a traditional approach.   

1. Introduction 

The trajectory towards fully automated driving is currently in progress and can reshape future mobility. The spread of vehicles 
equipped with advanced automated driving capabilities that can accomplish the entire range of Dynamic Driving Tasks (DDTs) is 
anticipated to significantly enhance road safety (Singh, 2015), optimize energy consumption (Wadud et al., 2016), and alleviate traffic 
congestion (Bengler et al., 2014). Nonetheless, before market deployment, newly developed or emerging Automated Driving Systems 
(ADSs) must undergo thorough testing to guarantee acceptable levels of reliability and safety, which are primary objectives to 
accomplish. Consequently, the assessment of the safety performance of ADSs is a crucial and increasingly important matter in the 
automotive industry (Varga et al., 2023). 

The assessment of innovative driving solutions is carried out at different stages of the development process in the automotive field, 
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from design to pre-sale prototypes and Field Operational Tests (FOTs). Distance-based methods were initially used, but they resulted to 
be inefficient due to the large number of testing kilometers required to assess safety and reliability performance of ADSs (Kalra and 
Paddock, 2016). Consequently, scenario-based testing has become the primary adopted methodology. The scenario-based approach 
focuses on intentionally varying and analyzing the operating scenarios of ADSs, emphasizing the more challenging conditions a vehicle 
may encounter. The SOTIF (Safety of The Intended Functionality) paradigm, based on the ISO standard (ISO 21448:2022, 2022), 
guides the verification/validation process for ADSs. This standard extends the functional safety model used for conventional vehicles 
(International Organization for Standardization, 2011), with a focus on hazardous events resulting from insufficiencies of the intended 
functionality. ISO 21448 demands the identification of unknown unsafe regions of operation in as much detail as possible. The ADSs’ 
Operational Design Domain (ODD) establishes the boundaries of the entire operation region, identifying the conditions under which a 
given ADS is designed to operate. In any given ODD, a comprehensive and systematic safety assessment plays a vital role in the 
verification/validation process to ensure ADSs meet the requirements of ISO 21448. 

In this context, we propose a methodology to analyze influencing factors, i.e., the parameters of an ADS and/or of the related ODD 
that may influence the system’s performance. However, due to the limited or absent experience with innovative ADSs, a-priori 
knowledge of the critical range and distributions of these parameters is missing. Therefore, testing must also ensure sufficient coverage 
of scenarios, which involves exploring the scenario space to ensure that all factors that could affect the System Under Test (SUT) are 
adequately explored. 

The conventional assessment methodology, where a-priori information is available, is the so-called Test Matrix (TM), as described 
by Zhao et al. (2017) and Menzel et al. (2018). Under the assumption that all parameters in the ODD are discrete and have finite values, 
the tests cases are selected based on cluster analysis of historical datasets, such as Crash Imminent Test Scenarios for Integrated 
Vehicle-Based Safety Systems, as described by Najm and Smith (2007) and in the National Motor Vehicle Crash Causation Survey 
(Highway Traffic Safety Administration, 2008). Possible critical situations are identified based on expert knowledge or data analysis (e. 
g., observing the frequency of occurrence, the degree of risk or injury level of recorded accidents). Test repeatability is a significant 
advantage of TM methodology, which made it a standard in many FOTs, such as Autonomous Emergency Braking (AEB) protocol (Euro 
NCAP, 2021), APROSYS (APROSYS, Dissemination and Use Plan M1-M60 Deliverable D8.2.10”, 2009) and ASSESS (Lemmen et al., 
2012). For a complete overview of studies exploiting the TM methodology, see table 5 in Alghodhaifi and Lakshmanan (2021) and 
related references. Given its ease of use, the TM will probably remain the preferred methodology for safety performance assessment 
(Zhao et al., 2017) under simplified testing conditions. However, its suitability for validating autonomous driving solutions has been 
recently put at stake. A major limitation is that the exhaustive exploration of scenarios to achieve the coverage requirement is only 
applicable if the ODD is reasonably small (Sun et al., 2022; Zhang et al., 2021). Moreover, the unsafe tested scenarios in current TM- 
oriented FOTs are only a tiny subset of real-world hazardous conditions as accidents, fortunately, are rare events to observe. This 
limitation becomes particularly apparent when testing innovative systems, as the required observations for large datasets on which the 
TM methods are founded are not suitable. Indeed, the algorithms (or technologies) being evaluated may exhibit superior performances 
within a limited set of predefined conditions, thereby potentially undermining the overall effectiveness of the testing process (Zhao 
et al., 2017). For instance, in the EuroNCAP tests for AEBs, some situational variables are fixed, like the road alignment, the speed of 
surrounding vulnerable users (e.g., bicyclists and pedestrians), or the obstacle position. This work will prove the limitations of such an 
approach, which considers only a deterministically identified (small) set of conditions. 

To deal with the problem of covering the vast sets of testing conditions due to the explosion of parameter combination (wide ODDs 
with many parameters), Combinatorial Testing (CT) has been widely adopted, as by Amersbach and Winner (2019). The main idea is to 
generate a minimum set of test cases satisfying the so-called T-wise coverage, that is all T-tuples of the considered parameter must be 
tested at least once. The methodology assumes that most system defects are due to a subset of factors and could be exploited by 
examining, according to Kuhn et al. (2010), the combinations of both scenario configuration parameters and SUT’s input parameters. 
Since a failed scenario could emerge from a T-wise combination of configuration and input parameters, the number of tests could 
drastically increase again. To overcome the problem, some researchers recently combined CT with other methods, such as the Bayesian 
one to realize the black-box optimization (Gao et al., 2020) or backtracking algorithm and motion planner (Rocklage et al., 2018). 
Moreover, as for TM, the CT methodology assumes discrete parameters, whereas they are prevalently continuous in real-world sce-
narios. In any case, the T parameters should come from empirical evidence currently absent for testing innovative ADSs. 

In summary, testing new or emerging technologies presents several significant challenges. One issue is the exploration of use cases 
that do not exist in currently available datasets. Additionally, new or improved technologies that empower existing driving functions 
can result in unexpected critical conditions or driving circumstances that are not present in currently adopted testing datasets. The 
number of unknown unsafe scenarios may be much greater than that of known dangerous scenarios, and it is questionable if the data 
from human-centered FOTs or crash databases are valid to obtain the empirical distributions of the influencing factors needed to test 
the performance of innovative ADSs (Batsch et al., 2021). Furthermore, concerning the ODD of innovative ADSs, it is unknown how 
new technologies interact with factors related to the heterogeneity of surrounding road users, their behaviors, the variability of road 
characteristics or weather conditions, and the highly non-linear interactions among all influencing factors. Therefore, there is a need to 
improve the assessment procedure of ADSs by considering realistic (but unobserved) driving conditions into a test to cover unknown 
unsafe scenarios. 

A possible way to deal with this problem is to improve the representativeness of available datasets using Naturalistic Driving 
Studies (NDSs) (see Tables 3 and 4 in Alghodhaifi and Lakshmanan (2021)), where automated vehicles are tested under real-world 
driving conditions. Thus, also real-world dispersion of factors is experienced. However, this approach is challenging during the 
early stages of the development process due to the high number of kilometers of road tests required (Kalra and Paddock, 2016) since 
the rate of exposure to hazardous conditions is low (Favarò et al., 2017). As a result, assessment results are not robust enough. 
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A different approach to explore potentially unsafe scenarios is employing stochastic simulations, such as Crude Monte Carlo (CMC). 
CMC involves sampling situational variables from estimated distributions, including those from existing databases and distributions 
based on NDSs data. For factors that are unknown or not covered by available data (or invalidated by innovation), uniform/normal 
distribution is assumed over a feasible range of variability. A significant advantage of the CMC method is the stochasticity of scenarios 
(de Nicolao et al., 2007; Eidehall and Petersson, 2008; Yang and Peng, 2010). For example, de Nicolao et al. (2007) developed a 
stochastic pedestrian model to design the Risk Assessment Unit of the PROTECTOR project properly. They evaluated the collision 
probability for each pedestrian-vehicle configuration by a Monte Carlo strategy. A comprehensive review of Monte Carlo simulation 
studies can be found in Alghodhaifi and Lakshmanan (2021), Batsch et al. (2021), and (Zhang et al., 2021). Since critical events are 
rare, CMC-based approaches are inefficient in finding critical scenarios. To this end, variance reduction techniques, such as Importance 
Sampling (IS) (Glynn and Iglehart, 1989), have been proposed (Xu et al., 2018). For instance, Zhao et al. (2017) exploited the IS 
approach to assess an automated vehicle in cut-in, lane-changing, and car-following scenarios, proving that the sample size can be 
reduced by 300 to 100,000 times w.r.t. the CMC method. However, IS can only be applied in low-dimensional situations (Au and Beck, 
2003), and a minimal level of a-priory knowledge about the parameters’ distributions is required (see Alghodhaifi and Lakshmanan 
(2021) and Batsch et al. (2021)). 

The methodologies previously described rely on expert knowledge or available data to estimate situational variable distributions in 
ADS testing, which may not be suitable for new or emerging automated driving technologies due to the lack of reliable data. Addi-
tionally, these methods may not adequately cover unsafe or unknown conditions for an ADS. Therefore, a more unbiased approach that 
addresses real-world driving conditions is necessary for ADS testing. 

To address the challenges related to testing ADSs under realistic and uncertain driving conditions, we propose a testing method-
ology that utilizes stochastic simulation and uncertainty modeling techniques. Specifically, it employs a quasi-random Monte Carlo 
technique, namely the Latin Hypercube Sampling (LHS), and the PAWN density-based sensitivity method. The primary aim is to 
quantify the impact of situation variability on the pass-fail rate of a driving automation use case. We will compare the results of our 
proposed approach with those obtained from a deterministic testing approach to evaluate its effectiveness. 

As far as we know, the PAWN method (Pianosi and Wagener, 2018, 2015) has not yet been used to test ADSs. Pianosi et al. (2020) 
provide an in-depth overview of the current fields of application of the method. Combining the PWAN method with the LHS approach 
has been previously tested to address sampling issues for unknown distributions. The combination of these two methods ensures that 

Fig. 1. Schematic representation of the methodological framework employed in this study.  
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the proposed approach meets the coverage requirements for effective scenario exploration. That is, the proposed approach satisfies the 
requirements of SOTIF for the reliable verification of ADSs. It is possible to identify safe and unsafe operational regions, as well as the 
triggering conditions leading to hazardous behaviors, to improve the development of automated driving functions and enhance the 
safety of ADSs. 

The LHS technique (Helton and Davis, 2003) allows quasi-random sampling of situational variables to explore the full range of 
situations in a cost-effective manner. This avoids the creation of clusters or gaps that can distort statistical analyses of simulation 
results or increase computational effort. Situational variables are sampled from physically feasible ranges of variation rather than 
being inferred from real-world driving data. Rather, the study aims to discover unsafe unknown situations and unveil harmful con-
ditions. As the method performs a full exploration of the space of situational variables, it is possible to encounter combinations of 
factors that are more critical than those of the testing scenarios based on known real-world data, which represent only a small subset of 
cases in deep uncertainty conditions. Thus, the proposed approach encompasses a Worst-Case Scenario Evaluation (WCSE) (Sun et al., 
2022) by exploring the critical values of situational variables when there is no other information available on unknown unsafe con-
ditions or when such information is deliberately ignored. Moreover, the PAWN density-based sensitivity analysis method allows 
identifying the situational variables that contribute the most to the pass-fail rate variability and the values that trigger failures. This 
information can help understand the sources of harmful conditions for a given use case and improve the testing protocol. The PAWN 
method is employed since: (i) it is easy applicable to nonlinear models; (ii) it is independent from the type of output distributions 
(symmetric, multimodal, or highly skewed); (iii) provide robust results for a relatively low sample size. 

The proposed approach is tested for robustness on the EuroNCAP AEB Car-to-Bicyclist Nearside Adult 50% (CBNA-50) scenario. 
The approach evaluates the impact of several factors, including vehicle speed, bicycle speed and size, obstacle position, and road slope, 
on the pass-fail rate of the trial. Trials are generated through MATLAB/Simulink simulation environment, which emulates the motion 
of vehicles, the virtual road environment, and the AEB response to interactions with the surrounding environment. Although the 
automation functions of this use case are not highly complex, the study demonstrates that even moderately complex cases can fail to 
discover unknown unsafe testing conditions through deterministic approaches. 

In this paper, we describe the proposed methodology in section 2. Section 3 describes the use case, the simulation environment, and 
the design of the experiment. Results are discussed in section 4, and conclusions and future research perspectives are drawn in Section 
5. 

2. Methodology 

To achieve the objectives described in Section 1, we apply the methodological framework outlined in Fig. 1. The framework ground 
on the well-known modelling under uncertainty. Since engineering applications are pervaded by uncertainties, deriving from different 
and heterogeneous sources, retrieving information on the magnitude, composition, and most significant sources of uncertainty is 
essential for accurate decision-making process. These systems (or their models) are characterized by several parameters, which we 
refer to as influencing factors or simply factors. These factors include situational variables that describe the scenario and boundary 
conditions in which the system operates. The greater the number of factors, the higher the uncertainty of the quantity of interest 
(output), a summary scalar variable measuring the system’s performances. The proposed framework employs a simulation model of an 
ADS, and then propagate the uncertainty of factors by means of simulations. 

With specific regard to the field of traffic simulation, the methodology has been applied in the study of car-following (Punzo et al., 
2021), charging strategy for electric buses (Liu et al., 2021), demand flow (Dantsuji et al., 2022) and assessment of connected vehicles 
on the performance of traffic networks (Coppola et al., 2022). To the best of our knowledge, the methodology has never been applied to 
investigate the performances of ADSs. 

Given the use case and the model of the SUT, the methodology consists of four consecutive steps. The first one involves the 
identification and characterization of the different source of uncertainty that could affect the performance of the SUT (Roy and 
Oberkampf, 2011). Factors assumed as non-influential or whose variation is not of interest for the experiment are keep fixed. 
Conversely, the input factors to be analyzed are randomly chosen from all the levels of interest. Hence, it is necessary to characterize a 
feasible variability space of each input factors according to its physical meaning. Moreover, if the input factors are considered sto-
chastic variables, their Probability Density Functions (PDFs) must be defined. If the PDFs are unknown and/or the comparison of 
simulated occurrence with real-world ones is not of interest, a common approach is to assume them as uniformly and independently 
distributed within their range of variability. It is important to note that a trade-off between the number of factors considered and their 
range of variability and the need to limit the output variance is necessary to obtain robust results. In this study, the uncertain inputs are 
assumed to be uniformly and independently distributed with unknown PDFs. 

The second step of the methodology entails selecting a quantity of interest (output), which is an output variable that serves as an 
indicator of the degree of pass-fail of the SUT in the given use case. This variable measures the extent to which an ADS has accomplished 
or failed to complete the designated driving task. 

The third step involves mapping the PDFs of factors into the output distribution. To achieve this, a simulation model emulating the 
SUT behavior and the surrounding environment in used. Then, several input sets are randomly generated in the entire input feasibility 
space to estimate the empirical CDF of the output. Each set of the sample consists of a tuple containing a random value of each un-
certain input factor. Latin Hypercube Sampling (LHS) approach is employed to generate a quasi-random sample in the multi- 
dimensional space of input factors, so to ensure an exhaustive input mapping by evenly exploring the whole input space. Then, the 
simulation model is run for each set of the sample, and the quantity of interest (output) is calculated. It is worth noting that the sample 
size significantly affects the computational effort, and the optimal sample size may vary depending on the number of input factors and 
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the complexity of the model’s response. Thus, a trade-off between sample size and reliable results is required. 
The final step is to perform a sensitivity analysis (Razavi et al., 2021) to quantify the relative contribution of each uncertain input 

factor to the variability of the output. The selection of the specific sensitivity method to employ depends on the purpose of the study, 
available computing resources, and specific problem characteristics, such as the linearity or non-linearity of the input–output rela-
tionship and the characteristics of the output distribution. 

The following section introduces and explain the sensitivity analysis method employed in this study, which differs from those 
previously used in the transport sector. 

2.1. PAWN sensitivity analysis 

Let us consider a generic input–output relationship 

y = f (x) 1 

where £ = [x1, x2, …, xp, …, xm] ∈ H ⊆ ℝM is the input vector of M factors, while y ∈ ℝ is a scalar output variable. 
Global Sensitivity Analysis (GSA) approaches consider the variation of each input factor within its space of variability to identify 

the interaction with the output y. According to Saltelli et al. (2008), GSA approaches have three primary purposes: (i) Factor Priori-
tization (FP) or Ranking, i.e., ranking the inputs factors based on their relative contribution to output uncertainty; (ii) Factor Fixing (FF) 
or Screening, i.e., determining the inputs that do not give any contribution to output uncertainty; (iii) Factor Mapping (FM), i.e., 
determining the regions in the inputs space that produce specific output values. To determine the relative impact of each input factor 
on the output variability, sensitivity indexes are computed. These indexes range from 0 to 1, with higher values indicating greater 
influence and a value of zero indicating non-influence. This allows us to achieve the aforementioned objectives. 

The technical literature commonly employs variance-based methods to determine the relative contribution of input factors to the 
output variability. These methods assume that the second-order moment (variance) is an appropriate indicator of output uncertainty. 
However, for output distributions that are multi-modal or highly skewed, this assumption can be unsuitable and yield contradictory 
outcomes (Borgonovo et al., 2011). 

To overcome the above-described limitation, we employ the recently developed PAWN method, as described in Pianosi and 
Wagener (2015) and Pianosi and Wagener (2018), to quantitatively assess the influence of input factors on the output. It has been 
widely applied in climate or atmospheric sciences for assessing complex environmental models, as in Chaturvedi and Rajasekar (2022), 
Koo et al. (2020) and Yang et al. (2019). The employed method belongs to the density-based category, which use sensitivity indexes 
that are independent of the type of output distributions (symmetric, multimodal, or highly skewed) since the entire probability dis-
tribution is considered. These methods measure sensitivity by estimating the variations induced in the output distribution when 
removing the uncertainty about one (or more) input. Most existing methods estimate the sensitivity index of an input xp by measuring 
the distance between the unconditional PDF of the output y (all inputs vary simultaneously) and the conditional distributions obtained 
by changing all inputs but xp. However, PDFs are typically unknown, and their estimation (e.g., via kernel density estimation methods) 
could require a significant computational effort. Unlike other density-based methods, the PAWN one characterizes the conditional and 
unconditional distributions by their Cumulative Distribution Functions (CDFs). To measure the distance between these CDFs, the 
Kolmogorov-Smirnov (KS) statistic is exploited: 

KS
(
xp
)
= max

y

⃒
⃒Fy(y) − Fy|xp

(
y|xp

) ⃒
⃒ 2 

where Fy(y) is the unconditional CDF of the output y and Fy|xp (y|xp) is the conditional CDF of the output y when the input factor xp 
(p = 1, …, M) is kept fix. Since the KS (xp) statistic is a function of xp, the related PAWN index Sp considers a statistic (maximum, median 
or mean) over all possible value that xp can assume: 

Sp = stat
xp

max
y

⃒
⃒Fy(y) − Fy|xp

(
y|xp

) ⃒
⃒ 3 

Considering Eq. (2), the previous equation can be also stated as 

Sp = stat
xp

[
KS

(
xp
) ]

4 

Like other sensitivity indexes, the PAWN one assumes values in the range [0, 1] and the higher is its value, the more influential is xp. 
Therefore, it can be used for both FP and FF purposes. 

Due to the complexity of the input–output relationship, the computation of PAWN indexes needs to be approximated numerically. 
This also opens the possibility of exploiting datasets generated by a generic sampling strategy, such as the LHS employed in this work. 
The estimation procedure foresees dividing the range of variation of each input factor xp into n equally spaced intervals. The generic 
interval is denoted as ℑk and is adopted to define the conditional sample YUpk (∀p ∈M). The unconditional sample YU corresponds with 
the entire sample Y or a subsample (this will be clearer once the regional response is introduced). Accordingly, the estimated PAWN 
sensitivity indexes can be computed as follows: 

Ŝp = stat
k=1,⋯,n

max
y

⃒
⃒F̂y(y) − F̂y|xp

(
y|xp ∈ I k

) ⃒
⃒ 5 

where F̂y (y) is the empirical distribution of the unconditional sample YU, obtained by varying all factors at once; F̂y|x (y|xp ∈ ℑk) is 
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the observed distribution of a conditional sample YUpk obtained by varying all factors at once but xp (∀ p ∈ M), which is set to the k-th 
conditioning value xp 

(k) (k = 1, …, n). 

Since KS(I k) = max
y

⃒
⃒
⃒F̂y(y) − F̂y|xp

(
y|xp ∈ I k

) ⃒⃒
⃒, Eq. (5) can be recast in a more compact way 

Ŝp = stat
k=1,⋯,n

KS(I k) 6 

The estimation procedure involves defining two tuning parameters, i.e., the sample size N and the number n of conditioning points. 
Regarding N, the more complex the model of the SUT, the higher the number of uncertainty factors, and the more extended the range 
for each of those, the larger the sample size. However, performing a large number of trials is the most computationally demanding step 
of the whole procedure. Hence, a trade-off between available computing resources and model complexity is necessary. More detailed 
suggestions about selecting the value of N can be found in Pianosi and Wagener (2018), where authors provide two case studies 
considering models with different levels of complexity. As a rule of thumb, N > 500 is suggested. Regarding the number of conditioning 
points n, the proposed rule of thumb is n ≥ 10. 

A crucial step is to evaluate the robustness of the PAWN indexes to the chosen sample size. To this end, sensitivity computation is 
repeated using different bootstrap resamples (Efron and Tibshirani, 1994) of the input–output dataset to obtain a distribution of PAWN 
indexes, whose mean value is used as a robust estimation. Moreover, confidence intervals are derived to correctly infer whether 
differences in sensitivity indexes are significant enough to discriminate between relevant and non-relevant input factors (Sarrazin 
et al., 2016). In principle, the sensitivity index of a non-influential parameter should have a value of zero. However, due to estimation 
errors, non-zero indexes can be obtained also for the non-influential parameters. Accordingly, an artificial input factor (the dummy 
parameter labeled with p = m + 1) is introduced to identify influential and non-influential factors. The dummy parameter does not 
affect the output distribution, hence Fy|xp (y|xm+1) = Fy(y) for all conditioning points in Eq. (2) and Sdummy = 0. Again, due to estimation 
errors, it can assume non-zero values (Sdummy > 0) when using Eq. (5). If the sensitivity index of a factor is significantly larger than the 
one of the dummy, it is considered influential. Otherwise, nothing can be concluded about this input factor because its non-zero 
sensitivity may be due to an actual effect of the input on the output or approximation errors. The dummy parameter can be consid-
ered a measure of the accuracy in estimating estimated PAWN indices by exploiting a limited sample size. The procedure to prove the 
robustness of the sensitivity values, as well as to derive the PAWN index of the dummy parameter, includes: i) deriving the uncon-
ditional sample YU by randomly extracting a subsample of size Nc (Nc = N/n is the size of the conditional sample) and repeat the 
subsampling for a prescribed number of times; ii) performing bootstrap without replacement from YU since Nc < N; iii) deriving a 
distribution of estimated PAWN sensitivity indexes and confidence intervals by applying Eq. (6) for each bootstrap resample of YU; iv) 
computing the PAWN sensitivity of the dummy parameter and comparing it with the ones of the M input factors. 

The PAWN sensitivity of the dummy parameters can be estimated as follows: 

Ŝdummy = stat
k=1,⋯,n

max
y

⃒
⃒
⃒F̂

(k)
y (y) − F̂y|xm+1 (y)

⃒
⃒
⃒ 7 

where F̂y
(k)(y) is the empirical distribution of the k-th resample of the unconditional output sample YU; F̂y|xp (y|xm+1) is the con-

ditional distribution of the dummy parameter, equal to F̂y(y) since it does not affect the output distribution. 

2.1.1. Regional response sensitivity analysis 
The PAWN sensitivity index Ŝp can also focus on a specific sub-range of the output distribution rather than the entire range. By way 

of example, assume to estimate PAWN indexes over the range y > yt, being yt a predefined minimum value of the output, Eq. (2) can be 
rewritten as follows: 

K̂S
(
xp
)
= max

y>yt

⃒
⃒F̂y(y) − F̂y|xp (y)

⃒
⃒ 8 

The computation of PAWN indexes for different sub-ranges is easy since it does not require any new runs of the simulation but just 
the application of Eq. (5) and Eq. (8). 

In technical literature, this technique for SA, able to focus on specific regions of the response surface, is known as Regional 
Response Probabilistic Sensitivity Analysis (RRPSA) and can be used for FM. 

3. Experimental setup 

As previously mentioned in Section 2, the implementation of the proposed methodology requires the propagation of the PDF of the 
input factors into the output distribution, which is achieved through simulation models. Here we shall elucidate the implementation of 
the methodology, delineating its four-step process. Prior to that, we shall introduce the use case along with the SUT and the (related) 
vehicle dynamics model. It is worth noting that, in what follows, the vehicle that is equipped with the SUT will be referred to as the Ego 
Vehicle. 

It is worth to recall that this work does not aim to evaluate a specific driving assistance solution. Rather, it aims to develop a 
procedure to identify the factors that influence the output in the testing setup. This application effectively handles the uncertainty 
arising from various parameters that define operations in terms of initial and boundary conditions. As a result, it has the potential to be 
applied to numerous driving automation solutions and use cases. 

Finally, we remark that the proposed testing methodology is, globally, implemented in the MATLAB/Simulink environment. In 
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what follows, for the sake of completeness, the simulation environment and tools used for each component will be defined. 

3.1. Use-Case 

We examinate the effectiveness of the proposed testing approach in a specific use case. The testing conditions we consider are the 
one of the CBNA-50 scenario (Euro NCAP Test Protocol-AEB/LSS VRU systems, 2021), which is an officially recognized EuroNCAP test. 
In this use case, the Ego Vehicle travels along a straight road at a constant speed towards a bicyclist crossing its path from the nearside. 
The Ego Vehicle is equipped with an AEB system (that is the SUT). The bicycle travels at a constant speed and approaches from the right 
side. Additionally, there is an obstacle on the right side of the road, blocking the Ego Vehicle’s radar’s field of view. The initial speed 
and position of both actors are set up such that without braking, the bicycle and the Ego Vehicle would collide at a predetermined point 
location (Fig. 2). Although the situation may seem straightforward, many parameters could impact the system’s functionality and 
introduce significant uncertainty. 

All the actors, their behavior (behavior of the bicyclist) and objects in the scenario are implemented in Simulink. 
The official EuroNCAP test protocol specifies most of the testing variables as follows:  

1. dry, uniform, solid-paved surface with a consistent slope between level and 1%;  
2. daytime testing in dry conditions (no precipitation);  
3. wind speeds below 5 [m/s];  
4. Ego Vehicle speed in the range 20–60 [km/h], with 5 [km/h] incremental steps;  
5. bicycle speed fixed at 15 [km/h];  
6. position of the obstacle fixed at 3.55 [m] and 15 [m]. 

We use the official EuroNCAP test protocol as baseline for comparison purposes. The Ego Vehicle, with nine speed values ranging 
from 20 [km/h] to 60 [km/h], and the position of the obstacle, with two possible positions, are the only variables subjected to testing 
variability. For the sake of comparison, we also acknowledge the potential variation in road slope, which can assume values of − 1, 0, or 
1 [deg]. As for the wind speed, a constant value of 0 [m/s] is assumed. Taking into account all the feasible combinations of these 
discrete input parameters, the total number of tests amounts to 54. Here we dispute the approach adopted by the EuroNCAP test, 
assumed as an example of a testing procedure biased by limited a priori judgment on the effecting variables. 

3.2. Ego Vehicle modelling 

The longitudinal motion of the Ego Vehicle is here developed by the application of the Newton’s laws of motion. More in detail, the 
vehicle state can be described by the set of forces acting along the direction of the velocity on the vehicle body (Coppola et al., 2022): 

ṗ(t) = v(t)

v̇(t) = u(t − τa) − gsin(θ) − gcos(θ)
Cr

1000
(c1 ⋅ v(t − τa) + c2 ) −

ρair

2 ⋅ m
CDAf v2(t − τa)

9 

Fig. 2. Car-to-cyclist testing scenario, with specific measures to quantify the position and severity of a view-blocking obstruction.  
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where τa = 0.1 [s] is the actuator delay; p(t) [m] and v(t) [m/s] are the position and the speed of the Ego Vehicle; u(t) [m/s2] is the 
driving/braking control acceleration; m = 1430 [kg] is the Ego Vehicle mass; Cr = 1.75, c1 = 0.0328, c2 = 4.575 are the rolling 
resistance parameters; ρair = 1.2256 [kg/m3] is the air density; CD = 0.29 is the air-drag resistance coefficient; Af = 2.46 [m2] is the 
frontal area of the Ego Vehicle; g = 9.81 [m/s2] is the gravitational acceleration; θ [rad] is the road slope. 

The Ego Vehicle is here assumed to be equipped with a GPS to measure the absolute position, an Inertial Sensor to measure the 
acceleration in the direction of the motion and a Wheel Speed Sensor to measure the velocity in the direction of the motion (Bifulco 
et al., 2011). To sense the surrounding environment, an ideal frontal vision system (e.g., a radar) with a horizontal field of view of ± 50 
[deg] and a detection range of 150 m (Bosh Mobility Solutions) is employed. Furthermore, to realistically mimic the behavior of a real 
vehicle, we consider the following constraints acting on the vehicle dynamics in Eq. (8) and limiting its capabilities (European 
Parliament Regulation 2019/2144, 2019; Lengyel et al., 2020): i) maximum acceleration amax = 2.5 [m/s2]; ii) maximum deceleration 
bmax = 9 [m/s2]; iii) maximum jerk jmax = 20 [m/s3]. 

The Ego Vehicle model is implemented in Simulink. 

3.3. SUT: Autonomous Emergency braking 

The Autonomous Emergency Braking (AEB) (Yang et al., 2022) is an advanced assistant system that automatically starts braking in 
case of an impending collision when the driver fails to respond. Its primary objective is to prevent collisions with other road users or, if 
inevitable, minimize the impact by reducing the collision speed. Various AEB solutions are currently available in the market, and 
although there may be variations in the hardware and algorithm implementation, the system’s fundamental operation is well- 
established. The functional specification of the SUT used in this study is as follows:  

i. a vision system (e.g., a radar) calculates the relative distance and relative speed between the Ego Vehicle and the detected 
objects;  

ii. a control logic activates the braking system when the Time-To-Collision (TTC) reaches a threshold of 1.5 [s]; according to Wang 
et al. (2021), the TTC is the inverse of the ratio between the spacing and the relative speed and assumes relevant values when the 
speed of the vehicle that follows is greater than the one of the leading vehicle;  

iii. when activated, the braking system applies a deceleration of 6 [m/s2], a value that ensures consistency with an Anti-Block 
System (ABS). 

The SUT model and the radar system model are implemented in Simulink, exploiting the Automated Driving Toolbox. 

3.4. Source of uncertainty 

One of the objective of this study is to assess the relative influence of the input factors on the performance of the SUT. Hence, the 
identification and the characterization of the source of uncertainty is a crucial step. 

Given the set of conditions and the elements defined by the CBNA-50 scenario (Section 3.1), we define the uncertain factors to 
investigate and the parameters to keep constant (are expected to not have an impact on the test.). For example, light conditions remain 
unchanged during this test as they have no effect on the radar. Each simulation trial also maintains certain distinct critical aspects of 
the experiment, such as the type of vehicles involved (a car and a bicycle), the path of the vehicles, and the expected point of impact. 
Conversely, all remaining aspects are varied and assume the role of input parameters for the considered use case. It is important to 
respect and leverage the relationships among the parameters in the real world. For example, in this use case, the conflict point, where 
the collision is anticipated to occur, remains the same for any initial conditions (position and speed) of the two road users considered 
and any combination thereof. As such, only two of these parameters can be modified arbitrarily and are hence independent. Inde-
pendent parameters are the factors, while fixed parameters such as light conditions are not identified as factors. 

For the considered use case, we have identified seven input factors, listed in Table 1. The longitudinal slope is the slope of the road 
in the direction of the vehicle’s trajectory. The Ego Vehicle speed is the velocity the car maintains from the start of the simulation to the 
beginning of the braking maneuver. The bicycle speed is constant throughout the test. The length and width of the bicycle are the 
longitudinal and lateral dimensions of the bicycle. The obstacle’s position (X and Y in Fig. 2) is the distance between the bicycle and the 
obstacle. For each considered input factor we have considered its physical-meaning range of variation, whose upper and lower bound 

TABLE 1 
Input Factors and their range of variability.  

Factors Lower bound Upper bound Unit of 
measure 

Longitudinal Slope  − 3.45  +3.45 degree [deg] 
Ego Vehicle Speed  20.00  60.00 kilometers per hour [km/h] 
Bicycle Speed  10.00  40.00 kilometers per hour [km/h] 
Bicycle Length  1.40  2.00 meters [m] 
Bicycle Width  0.50  0.65 meters [m] 
Obstacle position X (see Fig. 1)  0.00  10.00 meters [m] 
Obstacle position Y (see Fig. 1)  2.00  20.00 meters [m]  
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are reported in Table 1. Accordingly, these factors are modelled as random variables assumed to be independently and uniformly 
distributed within their feasible ranges of variation (unknown PDFs). As a consequence, factors can vary with continuous values, 
producing a continuous and homogeneous seven-dimensional space. 

3.5. The quantity of interest 

To evaluate the influence of each input factor to the performance of the SUT, i.e., evaluate the rate of success/failure, we compute a 
scalar output serving as quantity of interest. Specifically, we calculate the distance between the front bumper of the Ego Vehicle and the 
expected point of impact serving as the output of interest. This distance is calculated after the Ego Vehicle speed reaches zero. Positive 
distances indicate that the Ego Vehicle successfully avoided the collision by detecting the obstacle and activating the braking system in 
time (success). Conversely, negative distances indicate that the Ego Vehicle failed to avoid the collision, with the stop occurring after 
the expected point of impact (failure). 

3.6. Model evaluation 

The model evaluation step allows papping the PDFs of factors into the output distribution. To this end, the simulation model 
composed of the vehicle dynamics, the SUT, the cyclist and the obstacle is run several times. As preliminary step, a quasi-random 
sample in the multi-dimensional space of input factors, following a uniform distribution law, is generated via the LHS approach. 
Each set of the sample consists of a tuple (in this case a vector of M elements) containing a random value of each uncertain input factor. 
This approach ensures an exhaustive input mapping by evenly exploring the whole input space. For each run, the quantity of interest 
(output) is calculated so to estimate its distribution. For the implementation, we used the lhsdesign function in MATLAB. Then, the 
simulation model is run in Simulink environment for each set of the sample, and the quntity of interest (output) is calculated. In our 
case, the total number of simulation runs is N = 4000. 

3.7. Pawn 

As described in Section 2.1, the PAWN method estimates the sensitivity indexes by distance between the conditional and un-
conditional CDFs of the output, as described by Pianosi and Wagener (2018). In our case, the N = 4000 simulation runs are used to 
estimate the unconditional distribution of the output (stop distance). Starting from this generic input–output dataset < x,y>, the 
PAWN indexes are computed following the approximation procedure described in Section 2.1. Specifically, we split the range of 
variation of each input factor xp into n = 20 equally spaced intervals and define the conditional sample YUpk (∀p ∈ M) accordingly. 
Then, applying Eq. (5) – Eq. (7) and the intermediate tasks, the approximated PAWN indexes are computed. 

The PAWN analysis is implemented using the MATLAB adaptation of the latest version of the SAFE toolbox developed by (Noacco 

Fig. 3. Scatter plots of each input factor xp (p = 1, …,7) against simulations output. The black line is the zero value. The red points represent the 
average output calculated at each bin into which each input’s range was divided. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 
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et al., 2019). 

4. Results and discussion 

In this section, we will examine the results of the N = 4000 simulations. We will analyze the relationship between the uncertain 
input factors (Table 1) and the output both qualitatively and quantitatively. It is worth recalling that the output is the stop distance, 
which is the distance between the front bumper of the Ego Vehicle and the expected point of impact, expressed in [m]. A negative value 
indicates a system failure resulting in a crash. 

4.1. Visualization of results 

The qualitative analysis is assessed through specific visual analyses, involving scatterplots and histograms. These visualizations 
provide straightforward and intuitive evidence of the relationship between the input factors and the output. 

The procedure tests the seven factors xp (p = 1, …,7) listed in Table 1. Fig. 3 illustrates the related scatter plots, which refer to the 
analysis of all the simulation runs and the same number of points (4000, one for each run) compose each plot. The y-axe of each sub- 
plot corresponds to the output variable y (stop distance [m]), whereas the x-axe refers to a different factor. The plots show the average 
values of the output distributions for each factor (red points), whereas the black line represents the zero value. The system’s success/ 
failure is represented by points above/below the black line. The results demonstrate that the speed of the bicycle and of the Ego Vehicle 
significantly affect the success/failure. Indeed, the higher the bicycle speed (the same is for the Ego Vehicle speed), the more the SUT 
fails, as expected. Moreover, the average value distribution of the output for the bicycle speed highlights a threshold of approximately 
32 [km/h], which identifies the separation between predominantly negative and predominantly positive values. With respect to the 
Ego Vehicle speed, the threshold for the separation between predominantly negative and predominantly positive values is around 50 
[km/h]. Another significant factor is the slope of the road, but it appears to be less relevant, as the average line is slightly angled and 
there is significant dispersion across the average. As expected, the road slope has a negative impact on the SUT when the Ego Vehicle is 
going downhill (i.e., negative slope values) since it hinders the braking action of the AEB. The remaining factors do not seem to have a 
significant effect on the output. 

The results of the regional analysis are in agreement with the previous findings (see Fig. 4). This analysis divides the output into two 
categories: successful (positive values, shown in blue) and failed (negative values, shown in orange). As previously discussed, the 
bicycle speed and the Ego Vehicle speed have the most significant impact on the distribution of the output histogram. In particular, the 
rate of failed tests surpasses that of successful tests at approximately 30 [km/h] and 48 [km/h] for the two respective input factors. 
Therefore, for this use case, the most unfavorable scenarios are those characterized by high values of these two input factors. The road 
slope also has some impact on the results, as expected. The lowest slope values, corresponding to a downward slope, result in the worst 
cases. 

Fig. 4. Regional analysis. Histograms of each factor xp (p = 1, …,7) in behavioral tests (succeeded) against CDF of factors in non-behavioral tests 
(failed). Behavioral tests are shown in blue, while non-behavioral tests in orange. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 
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4.2. PAWN sensitivity analysis results 

Here we discuss the impact of each input factor xp on the output y (stop distance [m]) from the perspective of GSA. The PAWN 
method, introduced in Section 2.1, is employed to quantify the relative influence of input factors by computing their CDFs. 

Before delving into the analysis, a preparatory step involves assessing the resulting empirical distribution of the output y (Fig. 5). 
The results indicate that the stop distance falls within the range of [-6.843, 4.975] [m] depending on the input values according to the 
parameter uncertainty. The mean value is μy = 0.914 [m], the median is μey = 1.191 [m], and the variance is σ2

y = 4.665 [m2]. 
According to the variance and the mean, the standard deviation is σy = 2.160 [m], and the coefficient of variation (σy / μy, also known 
as relative standard deviation) is cvy = 3.363. The shape of the output distribution in Fig. 5 indicates that it is negatively skewed with a 
left tail. To examine the asymmetry of the distribution appropriately, we calculate the third-order central moment μy

3 = E[(y – μy)3], 
and its standardized version γ = E [(y - μy)3/σy

3] referred to as skewness: if the distribution of the considered variable is symmetric 
concerning the mean, then all odd-order moments are null. In this case, μs,y = -6.123 [m3] and γy = -0.607 confirm the asymmetry of 
the distribution, hence supporting our choice of adopting the PAWN method. 

Then, we estimate the PAWN sensitivity indexes according to Eq. (5). The results of this analysis are presented in Fig. 6. The Output 
CDFs panels of Fig. 6 display the unconditional and conditional CDFs of the output variable y (stop distance) in response to the un-
certainty associated with each input factor xp (p = 1, …,7). Herein, the red lines represent the empirical unconditional output dis-
tribution F̂y(y), while the grey lines represent the conditional ones F̂y|x (y|xp ∈ ℑk). The more the conditional distributions are shifted w. 
r.t. the unconditional one, the higher the influence of xp on the output variability. In our case, left-shifted distributions indicate a 
negative impact, as they increase the probability of a negative value for the stop distance, while right-shifted distributions indicate a 
positive impact. The Sensitivity Index panels of Fig. 6 report the KS statistics for all the n = 20 conditioning points of each input factor as 
defined in Section 2.1. The dashed horizontal red lines in the sensitivity index panels indicate the threshold of significant sensitivity, 
which is the value assumed by the dummy variable according to its definition given in Section 2.1 We use grayscale for the circles 
representing the n conditioning levels of each input factor xp corresponding to the grayscale used in the plots of the Output CDFs 
panels. The sensitivity index plots also report two statistics for KS: the median (as a summary statistic) and the maximum (to spot 
extreme behaviors). A significant dispersion and separation from the threshold line can be appreciated in the KS axis of bicycle speed 
and Ego Vehicle speed; this outcome indicates that these parameters significantly influence the stop distance. This trend is also 
apparent by examining the distance between conditional and unconditional CDFs. Upon considering the median KS PAWN sensitivity 
indexes, it is notable that they are equal to Ŝbs

m = 0.365 and Ŝes
m = 0.320 for bicycle speed and Ego Vehicle speed, respectively. This 

implies that, on average, the speed of the bicycle is the most crucial factor, followed by that of the Ego Vehicle. In the case of road slope, 
there exists a minor disparity between the KS and the threshold line (conditional CDFs are slightly shifted from the unconditional one). 
In this case, the PAWN index value Ŝsl

m = 0.113 suggests that this parameter is of secondary relevance. The average results of the other 
input parameters imply a low influence on the output variable y. 

4.2.1. Robustness of the results 
With the aim to evaluate the reliability of the aforementioned findings, we conduct a robustness analysis utilizing the bootstrapping 

technique. Furthermore, a convergence analysis is performed on the selected sample size N. 
We perform 50 bootstraps resamples without replacement to estimate the distribution of sensitivity indexes of input factors. The 

results in Fig. 7 confirm that the most influential input factor is the bicycle speed, followed by the Ego Vehicle speed and, finally the 
road slope. The median sensitivity values of the remaining parameters are below the threshold line, indicating that they may have a 
low influence on the output or that their estimated sensitivity is due to random effects. Therefore, these parameters are classified as 
potentially uninfluential. Regarding the influential factors, the distribution boxes indicate that the bicycle speed sensitivity index is 
less dispersed and skewed than the other two input factors. The Ego Vehicle speed, on the other hand, has the most dispersed dis-
tribution. This outcome highlights how the median KS sensitivity index of each factor could be affected by the estimation errors and/or 

Fig. 5. Empirical unconditional PDF f̂y(y) of the output y.  
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the variability of the index over the conditioning point range (i.e., over the range of variability of the input factor). 
Furthermore, we conduct a convergence analysis of the sensitivity indexes to verify that the sample size is adequate to capture the 

effects of all the input factors (Markkula et al., 2018). The purpose of this analysis is to determine the minimum number of runs 
required to obtain a stable ranking of the input parameters. We compute the median values of the sensitivity indexes for sample sizes 
ranging from 500 to 5000, incrementing the size by 500 at each iteration. As shown in Fig. 8, the sensitivity index values decrease as 
the sample size increases until they stabilize at around 3500 model runs. Furthermore, the separation between influential and non- 
influential input factors becomes more pronounced with increasing sample size. It is noteworthy that, for sample sets with<2000 

Fig. 6. Sensitivity behavior of the output y in response to each input factor xp (p = 1, …,7): (a) bicycle speed, (b) Ego Vehicle speed, (c) slope, (d) 
bicycle length, (e) later position of the obstacle, (f) bicycle width, (g) longitudinal distance of the obstacle. Output CDFs panels (first and third rows): 
empirical unconditional output distribution F̂y(y) (red lines) and conditional ones F̂y|x (y|xp ∈ ℑk) for each input factor xp (p = 1, …,7). Sensitivity 
Index panels (second and fourth): Kolmogorov-Smirnov (KS) statistics at different conditioning levels of each input factor xp (p = 1, …,7); the 
dashed red lines represent the threshold of significant sensitivity. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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model runs, the sensitivity indexes are overestimated, a phenomenon that has been observed in other studies in different application 
domains (Chaturvedi and Rajasekar, 2022; Sarrazin et al., 2016; Yang et al., 2019). Nevertheless, results in Fig. 8 clearly demonstrate 
that the input factors with the greatest influence (bicycle speed and Ego Vehicle speed) consistently exhibit higher and stable sensi-
tivity index values, even for smaller sample sets of model evaluations. On the other hand, input factors with negligible effects do not 
maintain a stable ranking order, as their sensitivity indexes decrease with an increasing dimension of the sample set. Their sensitivity 
indexes decrease with an increasing dimension of the sample set. The road slope exhibits a distinct behavior, as for a minimal sample 
set dimension (below 500), its sensitivity index is comparable to those of other non-influential input factors. However, it becomes an 
influential factor when the sample size increases to over 500 runs and up to 1500 runs. As the number of runs increases, the divergence 
between slope and non-influential input factors becomes more evident, as the slope increasingly influences the output, while the other 
factors become increasingly non-influential. Overall, the ranking of input factors at N = 1500 is consistent with those at N = 4000 and 
N = 5000 (regarding influential factors). We argue that, at least in our case, N = 4000 is a reliable sample size. The ranking of 

Fig. 7. PAWN sensitivity indexes for each input factor xp (p = 1, …,7). Bootstrapping estimates the distribution of each PAWN index. Boxplots are 
employed to display variation in the sample: the bottom and top edges of a box indicate the 25th and 75th percentiles, while the red line inside the 
box the median value. The horizontal red line represents the KS of the dummy parameter. Input parameters are sorted according to their PAWN 
index values. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 8. Convergence assessment of PAWN sensitivity indexes for stop distance estimating by increasing model evaluations.  
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influential parameters obtained after bootstrapping and convergence analysis is consistent with the one in Fig. 6, thus confirming the 
robustness of the PAWN results. 

The robustness of indices could be theoretically checked by varying the number of conditioning intervals n. However, Pianosi and 
Wagener (2018) and Wang et al. (2020) have shown that the choice of n has a limited impact on the estimation of sensitivity indexes if 
it assumes a sufficiently high value (equal to or higher than 10). In particular, as n increases, only a slight increase in the indices of less- 
influential factors can be observed. This trend mainly concerns input parameters with low sensitivity indices and does not affect the 
overall input ranking. Thus, the choice of n does not impact the key conclusion that these parameters are non-influential, as their 
indexes remain below the one of the dummy parameter. Given the above discussion, the analysis of the effect of the tuning parameter n 
is not considered, as a value of n higher than the suggested one has already been chosen, and further insights would not be gained. 

4.2.2. Regional response probabilistic sensitivity analysis 
As previously discussed in Section 2.1.1, the PAWN sensitivity indexes can be applied to a particular sub-range of the output 

distribution rather than the entire range. This allows for the identification of regions within the input space that lead to specific output 
values. In this study, we focus on regions within the input space that result in a negative output value (y < 0), which corresponds to a 
system failure. 

Some of the findings presented in Section 4.2 suggest that a localized analysis would be beneficial. Specifically, the results in Fig. 6 
indicate that using the max KS leads to an increased importance of certain input factors. Notably, the position of the two most 
influential factors is swapped, with the Ego Vehicle speed becoming the most significant input factor, followed by the bicycle speed. 
More in detail, Fig. 6b demonstrates that for Ego Vehicle speeds exceeding 50 [km/h], the corresponding sensitivity indexes are very 
high, and the associated conditional CDFs are significantly shifted to the left of the unconditional CDF. This suggests that a sub-range of 
these input parameters has a significant negative impact on the output and, consequently, on the system’s performance. In contrast, 
while the bicycle speed (Fig. 6a) has a greater influence on the output variation overall, there is no sub-range of bicycle speed that has 
as significant an impact on the output as the Ego Vehicle speed does. Lastly, the ranking of the road slope remains unchanged. Based on 
the previous discussion, we conduct a detailed analysis of the localized impact of input factors on the output to achieve the following 
objectives: (i) gain insights into the input–output mapping; (ii) reinforce the visual inspection of scatter plots with quantitative evi-
dence of local effects. To accomplish this, we compute the PAWN sensitivity indexes for a specific subset of the output. Specifically, we 
examine failed cases by applying Eq. (4) with y < 0. 

The results in Fig. 9 validate the findings in Fig. 6a-b. confirming that bicycle speed, Ego Vehicle speed, and road slope are 
influential factors, and revealing a ranking swap between bicycle speed and Ego Vehicle speed when analyzing only failed cases. The 
boxes in the distributions show that the median KS of Ego Vehicle speed is the most dispersed, indicating greater sensitivity to esti-
mation errors and index variability in each conditioning interval. Similar trends are observed for bicycle speed, while the distribution 

Fig. 9. PAWN sensitivity indexes for each input factor xp (p = 1, …,7) over the sub-range y < 0. Bootstrapping estimates the distribution of each 
PAWN index. Boxplots are employed to display variation in the sample: the bottom and top edges of a box indicate the 25th and 75th percentiles, 
while the red line inside the box the median value. The horizontal red line represents the KS of the dummy parameter. Input parameters are sorted 
according to their PAWN index value as in Fig. 6. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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for road slope is less dispersed. The distributions of the remaining factors are below the red threshold line, indicating that they are 
uninfluential, and their ranking remains unchanged. These findings provide further quantitative evidence of the localized effects of 
input factors on the output, and reinforce the insights gained from visual inspection in Fig. 6. 

The presented results underscore two crucial aspects of the proposed assessment methodology. Firstly, the median values of 
sensitivity indices computed over the entire range of input factors should be considered as a summary statistic, as they can be 
influenced by specific sub-ranges of input factors. Hence, localized evaluations are necessary to identify extreme behaviors. Secondly, 
the range uncertainty of input factors has a significant impact on the related sensitivity indices, as highlighted by Wang et al. (2020). 
The broader the range of variation, the more prone the input factor is to uncertainty. Therefore, identifying the feasible (or plausible) 
range of uncertainty for each input factor in practical applications is a crucial step. 

5. Comparison with EuroNCAP results 

In this section, we compare the results obtained from the proposed testing approach with those achieved using the EuroNCAP 
approach. It is important to note that the testing conditions employed for the EuroNCAP approach are the same as those described in 
Section 3.1. 

The framework we propose explores different combinations of factors, and the results indicate that test failure occurs in approx-
imately 30% of cases (1213 fails on 4000 simulation runs), as appreciable from the cumulative distribution in Fig. 10. In contrast, 
simulations performed using the EuroNCAP reference values (represented by red dots in Fig. 10) result in test failure in only about 18% 
of cases (10 fails on 54 simulation runs). The findings suggest that EuroNCAP does not sufficiently investigate the SUT’s functioning 
since its coverage of the explored cases is inadequate in dealing with input factor variability. Notably, when a failure occurs, the stop 
distance never assumes values lower than − 2.71 [m] in the EuroNCAP simulations, while values up to − 6.84 [m] are obtained using 
our proposed testing framework. Thus, the EuroNCAP does not allow to correctly estimate the extent of the failed cases. 

To conduct a more detailed analysis of the differences between the two testing approaches, below we report the failed cases in the 
input factor plan. For the sake of clarity, only the parameters that play a significant role in causing a failure are reported, as depicted in 
Fig. 11. This allows us to emphasize the failure conditions (in terms of input parameter combinations) that are captured by the 
EuroNCAP approach and those that are not. The results in Fig. 11 clearly highlight that the EuroNCAP testing approach fails to identify 
input factor combinations that lead to critical scenarios. For instance, in Fig. 11a such test can spot failures due only to high values of 
the Ego Vehicle speed (the bicycle speed if kept constant at 15 [km/h]), while the proposed testing approach demonstrates that the test 
failure can be due to different combinations of the two considered input factors. Similar considerations also apply to the results in 
Fig. 11b and c. 

In conclusion, the proper functioning of a given AEB system could result in being non-tested for some conditions in which it fails, 
giving rise to an incorrect evaluation of the SUT. 

6. Conclusions 

In this paper, we proposed a methodology that utilizes stochastic simulation and uncertainty modeling techniques to identify 
unknown unsafe operation regions for ADSs in accordance with ISO 21448. We employed a quasi-random sampling approach to 
exhaustively explore the range of possible situations that a vehicle may encounter, and the PAWN density-based sensitivity method to 

Fig. 10. Cumulative Distribution Function of the simulation outputs, marking with circles the outputs of the exploration done with the EuroN-
CAP standards. 
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analyze the performance of an exemplary automated driving assistance system. In so doing, we identified the situational variables that 
most strongly influence the pass-fail rate variability and the corresponding triggering conditions. The PAWN sensitivity method was 
chosen because it is independent from the shape of the output distribution, ensuring unbiased results even for multi-modal or highly 
skewed distributions, it is easy applicable to nonlinear models and provides robust results also for a relatively low sample size. 

The proposed methodology was applied to the well-known use case Euro NCAP AEB Car-to-Bicyclist Nearside Adult 50% in order to 
prove its robustness. Specifically, the CBNA-50 scenario used to test an AEB system was adapted to the proposed framework by 
eliminating some of the deterministic assumptions about the testing conditions. The study investigated the influence of vehicle speed, 
bicycle speed and size, obstacle position, and road slope on the pass-fail rate of the trial. These factors were assumed to be inde-
pendently and uniformly distributed within feasible physical ranges that reflect a broad range of real-world scenarios. The stop dis-
tance was used as an output variable to quantify the pass-fail rate of the trial. The EuroNCAP approach was also used as a baseline for 
comparison in its original form. The simulation analysis was conducted using the MATLAB/Simulink environment, which allows for 
the emulation of vehicle motion, virtual road environments, and the AEB functioning. A total of 4000 simulation runs were performed. 

The preliminary step involved the examination of the empirical distribution of the output variable, which turned out to be 
negatively skewed with a left tail. This outcome strengthened the rationale behind adopting the PAWN approach. Then, PAWN 
sensitivity indexes were computed leveraging two statistics for the Kolmogorov-Smirnov test, namely the median (median KS, as a 
summary statistic for average behaviors) and the maximum (max KS, to spot extreme behaviors). The results indicated that the most 
influential factors for the AEB system were the bicycle’s speed and the Ego Vehicle’s speed. The road slope was found to have a low but 
still significant importance, while other factors such as the obstacle’s position did not significantly affect the system’s performance. 
The robustness of the obtained indexes was verified through bootstrapping technique, and a convergence analysis demonstrated that 
the selected sample size of runs enabled the attainment of a stable ranking of input parameters. Results highlight that, when using the 
max KS instead of the median KS, a swap in the ranking position between the bicycle speed and the Ego Vehicle one was observed. This 
suggested that a subset of the input parameters strongly and negatively affected the output and, consequently, the system’s perfor-
mance. To investigate this localized effect, PAWN indexes were recomputed over the sub-range of the output y < 0 (failed cases). 

Considering this sub-range, the Ego Vehicle speed was found to be the most influential input factor, while the bicycle speed ranked 
second. The road slope still had a low but significant influence, while the other factors remained insignificant. Two important im-
plications arose from this finding. Firstly, median sensitivity index values computed over the whole range of the output should be 
considered as a summary statistic, necessitating further evaluations of localized effects to identify possible extreme behaviors. Sec-
ondly, the range uncertainty of input factors significantly affects the related sensitivity indexes. The larger the variation range, the 
higher the input factor’s exposure to uncertainty. Therefore, detailed exploration of the plausible uncertainty range of each input 
factor in practical applications is crucial. Lastly, the traditional testing approach, exemplified by the EuroNCAP test, produced very 
different results from those obtained by extensively exploring the factor space. The EuroNCAP test only analyzed a small subset of the 
input space based on predetermined assumptions about the phenomenon. Despite the relatively simple automated system and tested 
use case, the uncertainty was sufficient to invalidate the traditional methods. 

Fig. 11. Scatter plots of failed cases in the input factors plane with the proposed approach (blue circle) and with the EuroNCAP one (red dots): (a) 
Ego Vehicle speed-bicycle speed plane; (b) Ego Vehicle speed – slope plane; (c) Bicycle speed-slope plane. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 
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The results of the analysis confirmed that the proposed methodology satisfies the coverage requirements specified in the ISO 21448, 
enabling the reliable verification of ADSs. It facilitates the identification of safe/unsafe operating regions and trigger conditions, 
which, in turn, improve the development of automated driving functions and enhance ADS safety. Therefore, the methodology pre-
sented in this study is deemed appropriate for identifying the factors that influence ADS performance efficiently. Notably, tests 
conducted with an appropriate uncertainty analysis tools produce much more robust results than those based solely on statistical 
databases, particularly when human driver system databases are used to investigate the worst-case scenarios for an ADS. As auto-
mation systems’ complexity is anticipated to increase, the use of stochastic approaches, as proposed here, is strongly recommended to 
obtain reliable results. 

The methods employed in this experiment are subject to certain limitations stemming from their underlying assumptions. The 
PAWN method assumes that factors are continuous and uncorrelated, while in real-world problems input factors can be correlated and 
their joint distribution can take various forms. Ignoring correlation effects and multivariate distributional features can significantly 
bias or even falsify the sensitivity analysis results (Razavi et al., 2021). Another limitation concerns the choice of size of simulation 
runs, which requires a trade-off between the need for a small size and reliable results. This trade-off is strongly influenced by the 
number of considered input factors, their possible correlations, and the model complexity, making the selection of this simulation 
parameter non-trivial. Moreover, even with a large sample size, some critical scenarios may be missing. 

Considering the above discussion, future development of this study could include assessing more sophisticated automated driving 
systems; exploiting sensitivity methods accounting for correlation effects and multivariate distributions; and more accurate sampling 
methods, such as the Modified Latin Hypercube Sampling. 

CRediT authorship contribution statement 

Angelo Coppola: Conceptualization, Methodology, Software, Formal analysis, Investigation, Validation, Writing – original draft, 
Writing – review & editing. Claudio D’Aniello: Conceptualization, Investigation. Luigi Pariota: Conceptualization, Methodology, 
Validation, Supervision, Writing – original draft, Writing – review & editing. Gennaro Nicola Bifulco: Conceptualization, Method-
ology, Formal analysis, Validation, Supervision, Funding acquisition, Writing – original draft, Writing – review & editing. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper. 

Acknowledgments 

This research was supported by the Italian Ministry of Research (Ministero dell’Università e della Ricerca - MUR) within the 
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