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Abstract: This study involved 643 high school students to assess their performance in using different
representations of linear functions—graphs, tables, and algebraic relationships—in mathematics and
kinematics. The results show that students encounter greater difficulties when they have to interpret
representations involving algebraic relations in mathematics. Furthermore, it is shown how the
ability to switch from one type of representation to another is influenced by spatial reasoning skills,
orientation toward physics, and self-confidence in the field of mathematics and physics. Implications
for teaching kinematics and linear functions are briefly discussed.
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1. Introduction

The OECD PISA (Program for International Student Assessment for the 2018 report
(see [1]) studies in recent years have revealed widespread difficulty for Italian pupils in
science and mathematics. These difficulties have serious consequences on the scientific
education of students, who will be increasingly required to participate in the public debate
on issues involving scientific topics as informed citizens [2]. Although several measures
have been implemented locally over the past years to improve this situation, a coherent
framework does not yet seem to emerge that can help in describing, interpreting, and
overcoming students’ difficulties on basic topics in mathematics and science, and in physics
in particular. In this article, we will focus on how high school students (10th grade) interpret
linear functions in the context of linear functions and in one-dimensional (1-d) kinematics
(uniform rectilinear motions). In particular, we will analyze the students’ ability to represent
a linear function or a motion using different forms of representation: the objects of our
research will be graphs, tables, and algebraic formulas.

The choice of kinematics as the area of our study is justified by the massive use in this
field of different types of representations (graphs, equations, tables) and by the presence of
known misconceptions that influence the understanding of the representations of motions.
The choice of linear functions is due to the fact that, although this topic is targeted both in
the middle and high school math syllabi, the PISA tests’ data show persistent difficulties
of students in obtaining information from written texts and diagrams. Considering the
definition of mathematics literacy given by PISA in [1], namely the “students’ capacity to
formulate, employ and interpret mathematics in a variety of contexts, including reasoning
mathematically and using mathematical concepts, procedures, facts and tools to describe,
explain and predict phenomena”, we chose to focus this research on the ability to obtain
information from a specific representation, consequently identifying the same information
in a different type of representation.

The didactic context chosen for this research consists entirely of a large audience of
students from technical and professional institutes in a large city in the South of Italy.
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This choice responds to the need to investigate the difficulties encountered in the physical
and mathematical field of a sample that national and international surveys indicate to be
consistently below the average performance in the age group of 14–15 years. To understand
possible reasons for these difficulties, in addition to the ability to solve the proposed
exercises on linear functions and 1-d kinematics, we investigated the students’ ability
in spatial reasoning, confidence in the answers given, and perceived orientation toward
physics in math and physics, to show if and how cognitive and metacognitive variables
affect the students’ performance.

In the next section, we will briefly review the results obtained so far in the research in
physics education regarding the students’ difficulties in kinematics concepts (e.g., velocity),
the related mathematical concepts (e.g., slope), and the typical representations (e.g., graphs).
In the second, third, and fourth sections, we present the methods of analysis, the measuring
instruments, and the results, respectively. In the concluding section, we will discuss the
possible didactic implications of this study.

2. Theoretical Framework
2.1. Students’ Difficulties in Kinematics

As mentioned above, kinematics is one of the fields of physics in which several studies
have been conducted on students’ ideas since the 1970s [3–7]. One of the most common
misconceptions of students that emerges from these studies is to consider the graph of a
law of motion as a photograph of motion itself [5]. This can happen because, to imagine
how a phenomenon that occurs as time changes is graphically represented, and to interpret
it correctly, it is necessary to resort to the abstract idea of function. This difficulty can
also be due to a lack of attention that students show in reading the variables on the axes
of the graphs. Another common misconception that emerges from the interpretation of
distance-time graphs by the students is the so-called “point-interval confusion” [8]: from
the interviews with the students carried out in this research, it is evident that, in their
reasoning, they often do not distinguish an instant from an interval of time; this implies,
for example, not being able to distinguish the concepts of average speed and instantaneous
speed. This difficulty emerges only in a purely physics context and it is different from not
being able to interpret the limit of the incremental ratio, through which the instantaneous
speed is defined. Understanding the concept of instantaneous velocity would also help to
clarify what is meant by the initial velocity of a motion. In the kinematic description, the
initial velocity is a characteristic of motion for its entire duration. However, this physical
dimension does not often appear in the reasoning of students, which instead includes naïve
concepts such as that of “initial push” or “force in the direction of motion” [9], which would
“wear out” in some way during motion. This shows how the same students, ignoring or not
having understood the first principle of dynamics, interpret the initial dimension of motion
as a force and not as a velocity. This probably happens because the students imagine a real
situation, where the presence of friction implies that in order to have an object in motion
it is necessary to apply a force on it. Furthermore, students do not always exactly know
the vectorial relationship between speed variations and applied forces. For example, in the
same study [9], most students think that an object dragged by another one along a given
direction, when released, does not gain speed in that direction.

Another specific difficulty in kinematics is the one that many students show in dealing
with negative speeds [3]. A first observation should be made on the used terms, as in the
Italian language, unlike for example the English one, the same word is used to indicate both
the module of the vector and one of its components along a given direction. In this way,
students do often not recognize negative speed or misinterpret it. Furthermore, students
also have difficulties in interpreting the negative component of a vector, which requires,
even in a very simple case such as the one-dimensional one, the operation of projection of a
vector along an axis.

In the analysis of misconceptions relating to kinematics, as evidenced by more recent
research studies [10–12], a problem of knowledge transfer emerges between the context of
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mathematics and that of physics. In fact, it is now commonly accepted that mathematical
knowledge and skills are necessary but not sufficient for solving problems in physics. Often,
however, it is not enough to have only physical knowledge, it is also necessary to know how
to connect the two fields. Regarding this aspect, it should be noted that, for example, the
difficulties related to the concept of negative velocity overlap with the greater difficulty that
students often present in understanding the decreasing functions. As a further example,
other studies report that knowing how to determine the slope in a y-x graph and knowing
how to qualitatively interpret distance-time graphs is not always sufficient to determine
the speed in a graph [13]. For these reasons, it can be useful to study students’ specific
difficulties with mathematical entities such as graphs.

2.2. Students’ Difficulties with Graphs

Much research has highlighted students’ difficulties in understanding and use of
mathematical entities (such as graphs) widely used in the kinematic field. For instance,
the concept of slope [11], is often confused with the altitude at which a point is found on
the curve of the graph representing the law of motion, even though this misconception
disappears with increasing age. Other students, on the other hand, identify the slope of
a line as the angle between the line itself and the abscissa axis. This idea may be due to
the confusion between angle and area; in this case, the error would in fact also be not
considering the slope as a dimensionless quantity. Furthermore, the slope is confused
with the intercept value at the origin, or students think that the slope sign depends on the
quadrants in which the line is drawn. This also reveals the fact that some students are
influenced by how the line is represented in the quadrants of a Cartesian plane, for example,
if it passes from one quadrant to another, not being aware of its infinity extension on both
sides. Finally, some students swap the numerator and denominator in the definition of
slope. However, although they do not have a precise idea of the concept of slope, many
students often manage to solve qualitative questions about it, as it remains a term that is
part of the common language. On the other hand, the use of the word “slope” in common
language could also generate problems: for example, some students may find difficulty
when dealing with negative slopes. This difficulty, in addition to the difficulties related
to the concept of negative numbers highlighted in many areas, could also reflect the fact
that in the common language the slope is a definite positive, and it is often expressed in
percentage terms (such as in road signs).

The process of understanding graphs can be interpreted on the base of the Carpenter
and Shah model [8,11], which includes a sequence that integrates perceptual and conceptual
aspects. The former refers to the recognition of patterns, such as decoding and interpreting
the positive or negative slope and the types of curves represented; the latter refers to the
qualitative and quantitative interpretation of the observed models, such as those regarding
the labels and axes scales, or the units of measure).

2.3. Students’ Difficulties with Other Representative Formats

The modality with which motions are often represented in kinematics is not limited to
Cartesian graphs. Also, functions in mathematics are represented with graphical and textual
modalities. In the literature, various examples of interaction effects of the representation
format with the type of functions to be studied are reported [13]. In particular, the type of
modality used to describe a certain phenomenon significantly influences both the test results
and the resolution strategies adopted (especially in the field of kinematics). It has been found,
for example, that a certain modality can facilitate the study of a given function and, at the
same time, can make that of another function more difficult. In particular, students perform
worse on linear functions when they are represented by means of formulas rather than tables.
Another interesting result obtained in [13] concerns the fact that by allowing students to
choose the modality of representation of the question, the number of correct answers increases
for some individuals, while for others it decreases. The mentioned study also highlights the
existence of a relationship between the age of the students and their preferred representation
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format; in particular, the choice of formulas increases with age, but this does not imply that
fewer errors are made in this way than using other representations. This choice could in fact
depend exclusively on the more frequent use of formulas compared to graphs and tables in
traditional teaching, due to their conciseness.

To address these difficulties, students should become aware of how the same phe-
nomenon can be described using different representations. In this study, we focus on the
so-called “representational fluency”, defined as “the ability to interpret and construct rep-
resentations, and to know how to pass from one to the other” [13], limiting our attention to
the case of the linear functions. The ability to switch between different representations is a
key aspect of acquiring problem-solving skills [13]. The authors also show that, for different
types of functions (for example, direct and inverse proportionality), students perform better
in the transitions between graphs and tables, while they show greater difficulties in the
transition between formulas and graphs and between graphs and formulas. However, the
authors note that a secondary interaction effect between the type of representation and the
type of function can affect students’ performance.

2.4. Metacognitive Skills Relating to the Interpretation of Representations

Given that the ability to switch between different modalities depends on the starting
representation (table, graph, and formula in increasing order of difficulty), a possible
interpretation is that students’ difficulties in correctly answering questions with different
representations of the same phenomenon may be due to an erroneous perception of their
ability to interpret one type of representation compared to another. Therefore, to investigate
the effect of this perception, it may be useful to study the level of self-confidence in the
response given to a specific problem. The assessment of one’s own understanding is defined
as “the aspect of thinking regarding one’s own reasoning” [14]. A correct self-judgment
is a prerequisite that would allow students to regulate their learning, recognizing the
aspects they need to improve on. Research in educational psychology has found evidence
of the so-called Dunning–Kruger effect, according to which, generally, individuals who
lack content knowledge also lack metacognitive abilities; because of this, the students with
the worst results tend to overestimate their knowledge (overconfidence bias), while those
with the best results are generally more accurate in this judgment. Other studies [13] have
also shown that in some cases students who obtain better results cannot clearly distinguish
the items they are able to answer from those they are unable to answer, thus demonstrating
a not complete understanding of the concepts under investigation.

Another construct that can influence the ability to correctly interpret different types of
representations is the “orientation toward physics” that, based on a validated instrument,
measure grouping the literature on metacognition about information’s elaboration in the
learning process, self-efficacy (related to Bandura’s framework, see [15]), self-regulation in
study activities, engagement in learning and anxiety management [16]. These dimensions
are highly correlated and may significantly impact students’ achievements during their
school careers [16].

For both of these constructs, previous results indicate a significant gender difference.

2.5. Spatial Reasoning Skills

Another important factor that can potentially influence the understanding of the
representations of motions (especially in the extrapolation of information from graphs) is
the spatial ability, defined as “the ability to generate, store, retrieve and transform well-
structured visual images” [9,12,17]. The differences between individuals in spatial ability
have been studied since the 1920s when psychometric research demonstrated the difference
between this ability from verbal and numerical ones. In [9], an example of research is
reported concerning the study of the relationship between the resolution of different types
of problems in physics and spatial ability. The results show that physicists show a high level
of spatial ability, to a greater extent than students of non-scientific subjects. This evidence
indirectly shows that this ability is a component of intelligence relevant to problem-solving.
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Furthermore, the authors show that the description of the trajectory of an object using
vectors and the inference of the characteristics of a motion starting from its description
in another reference system can be linked to spatial ability, while the typical problems of
one-dimensional kinematics are mostly related to the ability to manipulate equations.

Furthermore, some research has shown that for students with low spatial skills, some
misconceptions related to one-dimensional motions are more resistant, such as the interpre-
tation of the graph representing the law of motion as a photograph of the motion itself [9].
Therefore, it is possible that students with high spatial ability, through their daily experience
of motions, have developed more sophisticated ways of analyzing them, helping them in
understanding concepts. Overall, such evidence suggests that the correct interpretation of
graphs can be a direct or indirect consequence of a high level of spatial ability.

Finally, recent studies on eye tracking have also shown a correlation between spatial
ability and eye fixation on the area of interest of the motion [11], as well as with the
ability to solve problems correctly. Using as an interpretative framework the model of
Carpenter and Shah, these studies show how individuals who have correctly identified
the trajectory of a motion move their eyes on the directions of both axes, suggesting that
they are integrating the two directions of motion, while those who answer erroneously
often neglect the horizontal component on a visual level. Instead, students with high
and low spatial ability spend the same time studying the curves represented, suggesting
that both groups focus equally on interpreting the visual representation. Furthermore,
students use the time variable in the same way to interpret motion under consideration,
regardless of their spatial ability. Instead, the actual axes are studied more by students
with high spatial ability, who often give a specific description of what happens interval by
interval, highlighting the changes in the characteristics of the motion. The study of axes
and labels is therefore consistently repeated several times by students with high spatial
ability (“iteration of Carpenter and Shah”). In this study, we will focus on a specific aspect of
spatial ability, the mental rotation, that is, the ability to imagine the possible rotations of
three-dimensional objects [12,18]. To measure this ability, we will use the Mental Rotation
Test (see [18]), in which the emphasis is also placed on the speed of resolution. The previous
results indicate a significant gender difference for this ability too.

2.6. Research Questions

Based on the literature discussed above, the main research questions in this study are:
(RQ1) How does representational fluency differ between mathematics and physics?
(RQ2) How does the representational fluency differ between the different types of

linear functions?
(RQ3) What is the influence of self-confidence, orientation toward physics, spatial

ability, and gender on representational fluency in mathematics and physics?

3. Materials and Methods
3.1. Instruments

In this study, we used several instruments. They are reported in Appendix A (in
English language, but they were submitted in Italian language), following this subdivision:

• A kinematics test, concerning the laws of uniform rectilinear motions, composed of
twenty multiple choice questions divided into three groups (respectively of six, eight,
and six questions). The groups are characterized by a specific representation of the law
of motion (table, graph, or algebraic relation). It is required to identify the other two
corresponding representations, among six possibilities: these correspond to six types
of linear functions, which are obtained by combinations of the sign of the angular
coefficient and the intercept value at the origin, as described below.

• A mathematics test, concerning linear functions, with the same structure as the
physics test.

In these two tests, we used three types of representations: R = algebraic relation,
G = graph, T = table. Consequently, we have six possible transitions, and they will be
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indicated in the following ways: GT, GR, RG, RT, TG, TR, where the first letter indicates
the initial representation and the second the corresponding one that students are asked to
identify. Regarding the classification of linear functions, we will characterize the questions
according to the following notation: PP, PZ, PN, NP, NZ, NN, where the first letter indicates
the sign of the angular coefficient and the second that of the intercept value at the origin
(the letters P, Z, and N represent respectively positive, null, and negative values). The two
contexts, mathematics and physics, differ slightly in the number of questions per type of
function.

In drafting the two tests, attention was paid to some details in order to facilitate the
exercises’ solution. For instance, in the graphs of the laws of motion, only the first and
fourth quadrants are shown to make evident the start of motion in the origin of the time
axis, while in the mathematics section a small section of the second and third quadrants
is reported to show that the domain of the function is given by the whole real axis. In
addition, no numerical values other than the origin are shown on the axes, to avoid the use
of numbers when not necessary, with any calculation errors. Furthermore, all tables show
the same values of the independent variable: 0, 1, 2, 3, and 4. In fact, the use of integer and
equidistant numbers facilitates the deduction of the slope, if the student is mnemonically
induced to apply the analytical formula for its calculation. In particular, for functions with
negative origin intercept, the tables show only negative values of the dependent variable.

The possibility to directly compare the results obtained by students in responding to
the kinematics and mathematics items is guaranteed by the fact that both require the same
procedures for the resolution: the student should recognize the sign of the two parameters
that characterize the line, finding the two corresponding representations consequently.
Thus, it is not necessary to know any formula for the explicit calculation of the values of
these quantities (which, however, could only be carried out starting from the tables’ values).

• A questionnaire about self-confidence in which students are asked to express, for each
group of physics and mathematics questions, the level of confidence in the answer
given. This is done through a linear measurement scale (Likert scale) ranging from
one (“not at all”) to five (“totally”).

• A questionnaire about the orientation toward physics, specifically developed for this
study on the basis of literature, consisting of 30 statements for which the student
must indicate their level of agreement, on a scale from one (“not at all”) to five
(“completely”). The questionnaire is reported in the appendix.

• The Mental Rotation Test (MRT) (see [18]). It consists of 20 multiple choice questions
in which the respondent is asked to indicate out of four three-dimensional figures
proposed, which correspond to a correct rotation of the figure present in the frame.
Each question presents two correct and two wrong alternatives; the wrong ones
correspond to a reflection of the figure itself and to a rotation of the figure present in
another question. Usually, a restrictive evaluative criterion is used, considering only
the answers with both correct alternatives as the correct ones.

Students had 45 min to complete the test, divided into three parts of 15 min each.

3.2. Sample

The sample of the research was made up of 643 high school students, whose age
was between 14 and 15 years old. The percentage of girls in the sample was about 33%
(N = 214). The participants were from seven different schools in a large city in the South
of Italy, attending the second year of their high school course. All students attend the
same type of study course, mainly focused on technical subjects and little on physics, thus
constituting a homogeneous sample.

The classes, through their teachers, have been involved in the study voluntarily, having
given their consent to take part in the research.

All the following steps of the data analysis were carried out by means of the SPSS
statistics package.
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3.3. Reliability

In Table 1 the values of the McDonald’s Omega index for each of the instruments are
reported. All reliability values are satisfactory (McDonald’s Omega > 0.8), so the following
results can be considered representative of the population under investigation.

Table 1. McDonald’s Omega values and sample size for each instrument.

Surveys McDonald’s Omega Number of Items Number of Participants

Kinematics 0.92 20 643
Mathematics 0.89 20 643

MRT 0.88 20 643
Self-confidence

(kinematics) 0.89 3 643

Self-confidence
(mathematics) 0.87 3 643

Orientation toward
physics 0.92 30 643

Data imputation techniques were implemented to replace blank answers, in the fol-
lowing way: for the instruments characterized by the dichotomy in correct/wrong answers
(physics, mathematics, and MRT) all cases corresponding to no answer given were consid-
ered incorrect. For instruments characterized by responses on a Likert scale (self-confidence
and orientation toward physics), we used the median value of the group of participants
coming from the same school, for the corresponding item.

3.4. Scoring of Tests on Kinematics and Mathematics

The analysis of the tests was carried out by assigning 0 points to the wrong answers
and 1 point to the correct ones. Initially, the overall performance of the two tests was
assessed through the total score, obtained by adding those of the individual questions.
Subsequently, average scores were calculated on the groups of questions sharing the same
type of transition or function, separately for the two contexts, kinematics and mathematics.
A paired-sample t-test was performed to observe the difference between the scores in
physics and mathematics on these groups of questions. Then, exploratory factor analysis
was carried out, taking into account both the kinematics and mathematics tests, in order
to identify any common latent dimensions relating to the interpretation of representation
modalities in mathematics and physics. The “parallel analysis” method was used to choose
the number of optimal factors, namely comparing the results obtained with those generated
by a random matrix. The McDonald’s Omega was then recalculated for each of the latent
factors found, to assess their reliability.

3.5. Confidence Bias

Average confidence scores were first calculated separately for the two contexts for
the groups of questions that share the same starting representation (e.g., a table, a graph,
a formula). Then we normalized the obtained scores (values between +0.2 and +1) and
subtracted the normalized average scores of the corresponding group of knowledge ques-
tions (values between 0 and +1), obtaining an estimate of the accuracy of self-evaluation.
Note that, in this way, the range of possible values for the accuracy of self-evaluation
varies between −0.8 to +1. Due to the normalization of the confidence scale, values of
accuracy of self-evaluation between 0 and +0.2 indicate that the student is averagely cali-
brated. Values between +0.2 and +0.4 indicate moderate overconfidence bias, while values
greater than +0.4 indicate significant overconfidence bias. Negative values indicate under-
confidence bias. Then, the average accuracy of self-evaluation scores was calculated and
a paired-sample t-test was performed to study the differences between the physical and
mathematical contexts, as well as the gender differences.
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3.6. Factor Analysis of the Orientation toward Physics Questionnaire

Since we used a newly developed instrument, exploratory factor analysis was carried
out on the orientation toward physics items, using the criterion of the inflection point in the
eigenvalue graph to choose the number of latent dimensions to be considered. Items with
loadings lower than 0.4 were not included in the final solution. Then, McDonald’s Omega
was recalculated for each factor. Subsequently, the average scores for the obtained factors
were calculated, and a paired-sample t-test was performed to evaluate the significance of
the difference between these dimensions for the two contexts (kinematics and mathematics).
Finally, gender differences for each dimension were assessed.

3.7. Scoring of the Mental Rotation Test

We assigned a score of 0 to wrong answers and 1 to correct ones of the Mental Rotation
Test (MRT). For each participant, an average score was calculated, and gender differences
were evaluated.

3.8. Linear Regression

Multiple linear regression analysis was carried out to investigate the influence of
confidence, orientation toward physics, spatial ability, and gender on the mean scores
obtained on the average score in the kinematics and mathematics knowledge questions,
respectively, and on each of the latent factors found through exploratory factor analysis.
The generic equation of linear regression is:

Yquest = α + β1XSC_K + β2XSC_M + β3XOTP + β4XSP + β5XG + ε (1)

where: Yquest is the normalized average score obtained on the kinematics and mathematics
tests, and on each of the latent factors; α is a coefficient that estimates the constant effects
not due to the independent variables; XSC is the average normalized self-confidence score
in kinematics and mathematics; XOTP is the average normalized score for each of the factors
of the orientation toward physics scale; XSP is the average normalized score for spatial
ability; XG is the gender variable (coded as 0 for males and 1 for females); ε is the estimate
of the regression error; βi are the estimates of the normalized regression coefficients.
The regression was carried out by means of the SPSS statistics package, following the
“backward” method.

4. Results
4.1. Tests on Kinematics and Mathematics

The average scores for the tests of kinematics and mathematics are (6.2 ± 0.2)/20 and
(5.7 ± 0.2)/20, respectively. For most questions the frequency of correct answers is less
than 50%, thus confirming that the sample involved in the study presents considerable
difficulties in interpreting the graphical, tabular, and algebraic representations. In Figure 1
the normalized average scores, for all groups of transitions in kinematics and mathematics,
are reported.

A paired samples t-test was carried out to compare the results for each transition in
kinematics and mathematics. It is observed that the differences between the two contexts
are significant only for transitions between graphs and formulas (in both verses). The par-
ticipants reported better results with transitions that exclude formulas, while for the other
transitions the average scores are higher when the formula is the starting representation.
The analysis considering the types of function is shown in Figure 2.
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Figure 1. Normalized average scores in kinematics (black) and mathematics (gray) for type of
transition between different representations (see methods section for definitions). Whiskeys for each
vertical bar represent the standard errors of the average score. The significance (p) of the t-tests,
carried out to compare the two contexts for each type of transition, was classified into two ranges:
p > 0.05→ ns (not significant differences); p < 0.01→ ** (highly significant differences).

Figure 2. Normalized average scores in kinematics (black) and mathematics (grey) for type of function
represented (see definition in the methods section). Whiskeys for each vertical bar represent the
standard errors of the average score. The significance (p) of the t-tests, carried out to compare the
two contexts for each type of function, was classified into three ranges: p > 0.05→ ns (not significant
differences); 0.01≤ p≤ 0.05→ * (significant differences); p < 0.01→ ** (highly significant differences).

The differences between the scores in kinematics and in mathematics are significant,
except for decreasing functions with negative values. In general, the functions of type
PP (i.e., increasing with positive values) are the simplest to deal with. There is a highly
significant difference in the understanding of transitions for increasing and decreasing
functions, both in kinematics (average score for increasing function = 0.32 ± 0.01; average
score for decreasing function = 0.29 ± 0.01; t (642) = 4.633, p < 10−3, d = 0.18) and in mathe-
matics (average score for increasing function = 0.30 ± 0.01; average score for decreasing
function = 0.27 ± 0.01; t (642) = 5767, p < 10−3, d = 0.14). The average score for the NN
group of functions (i.e., decreasing with negative values) in mathematics is the only one
higher than the corresponding one in physics, but the differences are not significant. This
aspect shows that, in the mathematical context, the parameters of the linear functions are
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confused with each other more easily than in physics, especially in the case of PN and NP
groups of functions. In fact, the question with the lowest percentage of correct answers
(9.3%) occurs in mathematics with the TR transition for an increasing function with negative
values.

These results suggest the existence of common latent factors in the interpretation of
the transitions presented in the tests. Four factors were obtained from the exploratory
factor analysis:

• Factor 1 = Transitions between graphs and tables, which gathers 12 questions, six from
kinematics and six from mathematics, that require a transition between a graph and a
table, in both directions. The average score for these items is 0.48 ± 0.01, while the
McDonald’s Omega of the scale is 0.92.

• Factor 2 = Transitions with formulas in physics, which groups together 14 kinematics
questions that present an algebraic relationship as a starting or final representation.
The average score is 0.24 ± 0.01, while the McDonald’s omega of the scale is 0.91.

• Factor 3 = Transitions from formulas in mathematics, which gathers eight mathematics
questions that have an algebraic relationship as starting representation. The average
score is 0.23 ± 0.01, while the McDonald’s omega of the scale is 0.87.

• Factor 4 = Transitions toward formulas in mathematics, which gathers six mathematics
questions that have an algebraic relationship as the final representation. The average
score is 0.17 ± 0.01, while the McDonald’s Omega on the scale is 0.52. This value
suggests that the last scale is not reliable.

Therefore, we proceeded to re-analyze the eigenvalues of the factor analysis, and we
tried to choose only the first three factors, thus combining factor 3 and factor 4: the new
factor gathers 14 items that share an algebraic relationship as starting or final representation.
The average score is 0.20 ± 0.01, while the McDonald’s Omega is 0.86.

These latent dimensions suggest that solving problems with graphs and tables requires
the same cognitive ability, regardless of the physical or mathematical context, while the
presence of relationships brings out different reasoning as the context varies (mathematics
or kinematics). Furthermore, the type of function does not influence the factorization,
therefore the type of transition is the characterizing feature of each question. The average
score on the first latent factor differs significantly from each of the other two factors
(t (642) > 3.9, p < 10−3, d > 0.20).

4.2. Confidence Scale

We report in Figure 3 the normalized average scores for the groups of knowledge
questions characterized by the same starting representation, both in kinematics and mathe-
matics, as a function of the corresponding self-confidence (normalized) score. We note that
students feel more confident when the starting representation is a graph and less confident
when the starting representation is a relationship, especially in kinematics.

The participants are substantially calibrated both in kinematics (average overconfi-
dence = 0.18 ± 0.01) and in mathematics (average overconfidence = 0.19 ± 0.01). Figure 4
reports the normalized average scores for the accuracy of self-evaluation; paired samples
t-tests show that the differences between mathematics and kinematics are significant, except
for the transitions with tables as starting representations. The accuracy of self-evaluation
scores is higher in mathematics, probably because of the higher amount of study dedicated
to it, compared to physics. Moderately over-confident students are on average (namely
considering the average percentage for the six groups of transitions identified) about 30%
of the total, while the percentage of significantly over-confident students is about 18%.
There are no significant differences in the accuracy of self-evaluation due to gender.
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Figure 3. Trend of the normalized average scores for the kinematics (K) and mathematics (M)
knowledge questions with tables (T), graphs (G), and algebraic relations (R) as starting representations,
as function of the corresponding self-confidence.

Figure 4. Normalized average scores of the accuracy of self-evaluation in kinematics (black) and
mathematics (grey). The whiskey for each bar represents the standard errors of the average score. The
significance (p) of the t-tests, carried out to compare the two contexts for each type of transition, was
classified into three ranges: p > 0.05→ ns (not significant differences); 0.01 ≤ p ≤ 0.05→ * (significant
differences); p < 0.01→ ** (highly significant differences).

4.3. Questionnaires about the Orientation toward Physics

From the exploratory factor analysis carried out on the orientation toward physics
items, two latent factors emerged (see Appendix B for the loading matrix), which we can
interpret as follows:

• Factor 1 = Self-regulation and Metacognition (McDonald’s omega = 0.89).
• Factor 2 = Self-efficacy (McDonald’s omega = 0.82).

The average scores for these two dimensions are shown in Figure 5.
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Figure 5. Average scores for the dimensions of the orientation toward physics measurement. The
vertical bars for each column represent the standard errors of the scores.

The other dimensions measured by the questionnaire, namely engagement and anxiety
management, are excluded from the solution as the factor loadings of the corresponding
items are lower than the established threshold.

We observe that the students show greater organization skills than problem-solving
abilities: the differences between the two factors are statistically significant (t (642) = 8.213,
p < 10−3, d = 0.60). The self-evaluation about problem-solving is significantly differ-
ent between males and females (males’ average score = 3.09 ± 0.03; females’ average
score = 2.89 ± 0.05; t (641) = 3.444; p < 10−3, d = 0.70), while for the first factor the differences
are less significant (males’ average score = 3.17 ± 0.03; females’ average score = 3.30 ± 0.04;
t (641) = −2.504; p = 0.13, d = 0.58).

4.4. Mental Rotation Test

The average score for the mental rotation test is very low (6.2 ± 0.2 out of 20). Gender
differences in favor of the male gender are confirmed (males’ average score = 6.7 ± 0.2;
females’ average score = 5.1 ± 0.3; t (641) = 4.371; p <10−3).

4.5. Linear Regression

We report in Table 2 the standardized regression coefficients obtained from the linear
regression analysis, together with the correlation coefficient and the variance explained. We
chose gender, self-confidence (both in kinematics and mathematics), the two dimensions
of the orientation toward physics, and spatial ability as independent variables (namely
their average scores, as described above). The normalized average scores in kinematics
and mathematics, as well as those related to the three factors extracted by these tests, were
selected as dependent variables. Overall, we have five dependent variables, for which we
carried out a different regression analysis. If an independent variable does not affect the
dependent one, the regression coefficient is not significant (ns).

It is also observed that, as expected, the score in the Mental Rotation Test is strongly
predictive for all the dependent variables considered. Similarly, perceived confidence in
kinematics is predictive of the outcome in kinematics and in the transitions with formulas
in physics. Conversely, perceived confidence in mathematics is predictive, especially for
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performance for mathematics items. Gender correlates negatively with performance in
mathematics in a slightly significant way, but this does not happen in kinematics. On the
other hand, the orientation toward physics has a different impact depending on its factors:
the dimension linked to the organization skills and the elaboration of information does not
influence the outcomes, while self-efficacy is a strong predictor, especially in mathematics
and for transitions that do not include algebraic formulas.

Table 2. Standardized regression coefficients. Legend: * 10−3 ≤ p ≤ 0.05; ** p < 10−3; “ns” means
“not significative influence” (p > 0.05).

Variables:
Dependent→
Independent

↓

Kinematics Mathematics

Transitions
between

Graphs and
Tables

Transitions
with

Formulas in
Kinematics

Transitions
with

Formulas in
Mathematics

Correlation
coefficient 0.53 0.52 0.47 0.50 0.47

Variance
explained (%) 28 27 22 24 21

Gender −0.03 ns −0.07 * −0.00 ns −0.05 ns −0.09 *
Self-

confidence
(kinematics)

0.29 ** 0.12 * 0.15 * 0.28 ** 0.15 *

Self-
confidence

(mathematics)
0.09 ns 0.22 ** 0.14 * 0.09 ns 0.19 *

Self-regulation
and

Metacognition
0.16 ns 0.02 ns −0.03 ns 0.05 ns 0.05 ns

Self-efficacy 0.11 * 0.16 ** 0.15 ** 0.11 * 0.11 *
Spatial ability 0.26 ** 0.21 ** 0.24 ** 0.22 ** 0.18 **

5. Discussion

In this section, we discuss the results obtained, answer the research questions, and
present some implications of the study.

5.1. How Does the Representational Fluency Differ between Mathematics and Physics?

From the analysis carried out on the kinematics and mathematics items, most of
the difficulties emerge when dealing with representational fluency in mathematics. We
observed that the differences between the two contexts (kinematics and mathematics) are
significant especially when it is necessary to identify the correlation between graphs and
formulas (in both directions). In particular, for graphs, the differences between mathematics
and physics also emerge in the case of elementary functions, such as those increasing and
with positive values. The literature has shown that it is often difficult to distinguish a graph
of the law of motion from the corresponding trajectory, but we would expect that in the
mathematical context, where the variables play a more abstract role, it will be easier to
interpret a y(x) function on an x-y plane through a system of Cartesian axes. Despite this,
our data do not support this hypothesis, confirming the idea that, for instance, a kinematic
graph can help students to understand the information reported in a table. About algebraic
relations, the existence of two different factors relating to transitions with formulas, one
in physics and the other in mathematics, suggests that the reasoning schemes adopted by
students are different in the two contexts when they have to solve problems with algebraic
relations. Conversely, tables and graphs seem to play the same role in the process of
extracting and comparing information.

This interpretation can indirectly justify why students show misconceptions in kine-
matics that are resistant to traditional teaching, which is mainly focused on a training
approach characterized by numerical manipulation of the quantities. Our findings thus
suggest that a conceptual understanding of the phenomenon under study is not necessarily
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associated with the mathematical understanding of related formulas. Our study also shows
that transitions involving algebraic relationships in physics are easier to understand for
students than the same type of transitions in mathematics, although students’ perception
is the opposite: in particular, students feel more confident in transitions with formulas in
mathematics, while they give less correct answers in this context. This also happens with
graphs and tables. These results also show that a lack of calibration about self-confidence
can lead to not using all the cognitive resources necessary to solve this kind of problems.

5.2. How Does the Representational Fluency Differ between the Different Types of
Linear Functions?

From the analysis carried out, difficulties mostly concern the interpretation of negative
increasing functions and positive decreasing functions. Such evidence suggests a difficulty
in understanding the meaning of the slope sign. This evidence also confirms that in these
cases students apply reasoning based on plane geometry to interpret trends over time:
for example, in the case of an increasing function with negative values, the line can be
interpreted as the path of a body that moves away from the origin, but which at the same
time approaches the abscissa. Similarly, in the case of a decreasing function with positive
values, the line can be interpreted as the path of a body that moves away from the origin,
following the hypotenuse of a right-angled triangle formed by the axes and the line. In
both cases, the confusion between the law of motion and the trajectory is confirmed.

5.3. What Is the Influence of Self-Confidence, Orientation toward Physics, Spatial Ability, and
Gender on Representational Fluency in Mathematics and Physics?

Data analysis confirms the role of spatial ability in the correct interpretation of graphs
in both kinematics and mathematics. This is coherent with the results obtained by the
authors of [12], who found correlations very similar to ours (between 0.28 and 0.32) between
spatial ability and problem-solving skills which involve the interpretation of graphs, such
as those of force and acceleration. As for the other independent variables measured in
this study, the predominant role of confidence as a predictor of students’ performance is
confirmed. In particular, the confidence in kinematics questions significantly influences
not only the total score, but also the latent factor which represents the ability to interpret
the transitions between graphs and tables, and the transitions with formulas in kinematics.
Self-confidence in mathematics has a significant impact on the total score, while on the
latent factors the effect is lower. Paradoxically, although slightly better results have been
obtained in physics, the students show higher confidence in mathematics than in kinematics.
This evidence confirms the results of international comparative studies (such as [19])
for which the perception of confidence is an index of how well students evaluate their
knowledge, helping them to plan their study and review it critically. In our case, the
participants do not show a relevant overconfidence bias, that is, they do not significantly
overestimate themselves. The substantial calibration is justified by the fact that students,
both in kinematics and in mathematics, show that they generally feel less confident in their
own answers—on a scale from 1 to 5, the average score is about 2.5—especially when the
starting representation is a formula, despite being a type of representation widely used
in school practice. This result confirms that these students need to improve not only the
preparation but also their perception of this preparation, as the latter can negatively impact
performance and motivation in answering standardized questions correctly.

In our model, gender does not influence students’ performances, as well as the self-
regulation and metacognition dimension, while self-efficacy is confirmed as the strongest
predictor among the other dimensions of the “orientation toward physics” construct, as
was expected looking at the literature [20].

The results of these linear regressions have to be interpreted within some limitations.
First of all, the variance explained by the models is always lower than 30%, which is not
a good percentage. Spatial ability was measured by a standardized instrument, as well
as the performances in kinematics and mathematics, from which we were able to grasp
the particular role played by the algebraic relationships in both contexts. Probably, the
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tool regarding the orientation toward physics should be improved in terms of several
constructs, as the dimension representing engagement in the learning process could play an
important role in predicting the students’ outcomes. We could not perceive it because of the
distribution of the factor loadings, from which the distinction between the metacognitive
activities regarding the information’s elaboration and the self-regulation of the study
activities does not emerge, representing another result we did not expect. Furthermore,
some of these dimensions could play a role as a mediator of the relationship, but in order
to measure these effects we should be sure to deal with reliable variables. This is the way
to improve the significance of the results presented, which can represent an exploratory
base from which to start, also involving participants coming from different school courses
and in an international context.

Finally, we can observe that the physics field in the “orientation toward physics” does
not play a specific role, as it can be replaced with a more general study field, given the
items’ formulation.

6. Conclusions

The aim of this research was to highlight how different representations of linear phenom-
ena, such as uniform rectilinear motion, stimulate students’ different reasoning and resolution
strategies. The results of this study can be exploited in didactic interventions for the first years
of high schools, in which different aspects of a phenomenon are modeled using elementary
representations such as graphs, tables, and algebraic relationships also for domains other
than the ones analyzed here (e.g., economy). Furthermore, our results suggest that students’
difficulties in physics could be addressed through better use of tables and graphs, which
present fewer conceptual obstacles than that involving algebraic relationships. Considering
these results, it is desirable that more effective and targeted training will make teachers aware
of the potential and limits of the different types of representation.
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Appendix A

Appendix A.1. Test on Kinematics with the Corresponding Self-Confidence

A cyclist is racing with a constant speed on a straight road. For each of the following
3 graphs (see Figure A1) which represent the position x in meters as a function of time t in
seconds, indicate the table (see Figure A2) and the value of the parameters of the algebraic
relationship x = x0 + vt (see Figure A3) that describes the cyclist’s motion.
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Figure A1. Figure from the test on kinematics.

Figure A2. Figure from the test on kinematics. Subfigures (a–f) represent the possible options for the
above question.

Figure A3. Figure from the test on kinematics.

How confident are you about your answers from 1 (not at all) to 5 (completely)?
A car is moving on a road with a constant speed. The relationship between position x

and time t is given by x = x0 + vt. Indicate which of the following graphs (see Figure A4)
and which of the following tables (see Figure A5) represents the trend of position x as a
function of time t when:

• X0 > 0 and v > 0: Graph ______ Table ______
• X0 > 0 and v < 0: Graph ______ Table ______
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• X0 < 0 and v > 0: Graph ______ Table ______
• X0 < 0 and v < 0: Graph ______ Table ______

Figure A4. Figure from the test on kinematics. Subfigures (a–f) represent the possible options for the
above question.

Figure A5. Figure from the test on kinematics. Subfigures (a–f) represent the possible options for the
above question.

How confident are you about your answers from 1 (not at all) to 5 (completely)?
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An airplane is traveling with a constant speed. For each of the three tables (see
Figure A6) that describe the relationship between the position (in “m”) and the time (in “s”),
indicate which graphs (see Figure A7) correspond to the table and the corresponding value
of the parameters of the algebraic relationship x = x0 + vt (see Figure A8) which expresses
the motion of the ‘airplane’:

Figure A6. Figure from the test on kinematics.

Figure A7. Figure from the test on kinematics. Subfigures (a–f) represent the possible options for the
above question.

Figure A8. Figure from the test on kinematics.

How confident are you about your answers from 1 (not at all) to 5 (completely)?
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Appendix A.2. Test on Mathematics with the Corresponding Self-Confidence

The variable y depends linearly on the variable x according to the formula y = ax + b.
For each of the following 3 graphs (see Figure A9) that describe the relationship between
y and x, indicate the corresponding table (see Figure A10) and the value of a and b (see
Figure A11):

Figure A9. Figure from the test on mathematics.

Figure A10. Figure from the test on mathematics. Subfigures (a–f) represent the possible options for
the above question.

Figure A11. Figure from the test on mathematics.

How confident are you about your answers from 1 (not at all) to 5 (completely)?
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The variable y depends on the variable x according to the formula y = a + bx. Indicate
which of the following graphs (see Figure A12) and which of the following tables (see
Figure A13) represents the function when:

• a > 0 and b > 0: Graph ______ Table ______
• a > 0 and b < 0: Graph ______ Table ______
• a < 0 and b > 0: Graph ______ Table ______
• a < 0 and b < 0: Graph ______ Table ______

Figure A12. Figure from the test on mathematics. Subfigures (a–f) represent the possible options for
the above question.

Figure A13. Figure from the test on mathematics. Subfigures (a–f) represent the possible options for
the above question.
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How confident are you about your answers from 1 (not at all) to 5 (completely)?
The variable y depends linearly on the variable x according to the formula y = ax + b.

Indicate for each of the tables below (see Figure A14), the corresponding graph (see
Figure A15) and the corresponding values of a and b (see Figure A16):

Figure A14. Figure from the test on mathematics.

Figure A15. Figure from the test on mathematics. Subfigures (a–f) represent the possible options for
the above question.

Figure A16. Figure from the test on mathematics.

How confident are you about your answers from 1 (not at all) to 5 (completely)?
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Appendix B.

Loading Matrix of the Orientation toward Physics Items

Here we report the loading matrix (see Table A1) obtained from the exploratory factor
analysis of the questionnaire on orientation toward physics.

Extraction method: factorization of the main axis.
Rotation method: Promax with Kaiser normalization.
The saturation coefficients with an absolute value lower than 0.4 have been suppressed.
Some items do not saturate on any factor.

Table A1. Loading matrix obtained from the exploratory factor analysis on the orientation toward
physics items.

Items
Ability in Organizing Study,
Information Processing and

Class Participation

Ability to Solve Problems and
Manage Emotions

Maintain a constant rate of study throughout the school year 0.757
Use the available study materials effectively

(textbook, notes, etc.) 0.696

Organize home study time effectively 0.673
Take clear notes when the teacher explains 0.660

Keep your concentration high during the lesson, even when
your classmates are disturbing 0.657

Always respect the established study program 0.629
Grasp and rework the essential contents of a lesson 0.622
Adapt my study method to the topics I am studying 0.585

Plan the study according to the difficulty of the topics 0.576
Rework the topics studied in written form adequately 0.557

Establish achievable performance goals by evaluating my
abilities and limits 0.547

Attend lessons consistently 0.527
Be constant in studying to get good marks at the end of the

school year 0.519

Understanding the most important concepts 0.497
Making connections and identifying similarities and
differences in the different materials I am studying 0.433

Solving problems alone
Knowing how to find links with other subjects

Present in oral form the topics I have studied adequately
Intervene in class to ask the teacher for further explanation

Write my reasoning in the problems
Participate in class discussion actively

Managing anxiety before a task or an exam
Don’t be discouraged by a bad mark

Focus on the main concepts
Solving problems alone 0.806

Solve simple problems and exercises correctly 0.725
Knowing how to apply simple formulas 0.676

Set up problems by yourself 0.561
Knowing how to read graphs and tables 0.554

Solve complicated problems correctly 0.554
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