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Scattering through a natural porous formation (by far the most ubiquitous example of
disordered medium) represents a formidable tool to identify effective flow and trans-
port properties. In particular, we are interested here in the scattering of a passive
scalar as determined by a steady velocity field which is generated by a line of singular-
ity. The velocity undergoes erratic spatial variations, and concurrently the evolution
of the scattering is conveniently described within a stochastic framework that regards
the conductivity of the hosting medium as a stationary, Gaussian, random field. Un-
like the similar problem in uniform (in the mean) flow-fields, the problem at stake
results much more complex. Central to the present study is the fluctuation of the
driving field, that is computed in closed (analytical) form as a large time limit of the
same quantity in the unsteady state flow regime. The structure of the second-order
moment X,,, quantifying the scattering along the radial direction, is explained by the
rapid change of the distance along which the velocities of two fluid particles become
uncorrelated. Moreover, two approximate, analytical expressions are shown to be
quite accurate in reproducing full simulations of X,,.. Finally, the same problem is
encountered in other fields, belonging both to classical and to quantum physics. As

such, our results lend themselves to being used within a context much wider than

that exploited in the present study.
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INTRODUCTION AND PROBLEM FORMULATION

Scattering processes generated by source (typically well) type flows represent one of the
most powerful tool to estimate flow and transport parameters of aquifers (Rubin, 2003). In
reservoir engineering, quantitative interpretation of scattering in radial-type flows entails
designing well completion, packer setting, and coring section. Moreover, in the search of oil
and gas, the study of scattering is used as a tool for isopach mapping, as well as conver-
gence mapping. The ultimate aim is to obtaining reservoir engineering data of equal (if not
greater) reliability than those secured by core testing. This is particularly relevant in highly
permeable reservoir formations (Tarek, 2018). In the theory of composites, the study of
scattering of tracer particles in fluid-saturated porous media is relevant for chromatography,
and catalysis (Milton, 2002).

In the present study, we are interested into scattering as generated by an injecting line-

source embedded in a porous formation (FIG. 1). The medium is, as a rule in natural

T3 T2

2 L) T,  x, = (71,72)

Sttty
|

FIG. 1. Sketch of scattering in the vertical (a)-view) and planar (b)-view) section, as generated by
a (red) line of singularity. Continuous (black) line represents the current particle front X, whereas
the dashed line refers to the mean front (X). Moreover, X’ = X — (X)) and w are the particle

trajectory fluctuation and the velocity field, respectively.

formations, disordered (i.e. heterogeneous) with the conductivity K, in particular, changing
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erratically in the space by orders of magnitude. Such variability affects tremendously scat-
tering, as demonstrated both theoretically (Koplik, Redner, and Hinch, 1994; Le Borgne,
Dentz, and Carrera, 2008) and experimentally (Kurowski et al., 1994). The approach to
account for these variations, and to model the associated uncertainty, is to regard the log-
conductivity In K (x) as a stationary, Gaussian, random field. As a a consequence, the
dependent flow and transport variables become stochastic, and we wish to characterize scat-

tering by means of the first and second-order spatial moments:
(X(®) =R(t), (X ()X (1) = Xinn(t) m,n=1,2,3 (1)

(hereafter () shall denote the ensemble average operator). Before proceeding further, it is
worth reminding that (1) is valid under the ergodic condition, the requirement that allows
replacing spatial averages with their statistical ensembles. For the problem at stake, ergod-
icity is met provided that the length ¢, of the line is much larger than the vertical integral
scale I, of In K (Dagan, 1989). Since £,, ~ O (1= 10m) and I, ~ O (1072 = 1m), ergodicity
is fulfilled in most of the real situations.

Thus, central for the study of scattering are the mean R and the fluctuation X' = X — R
of the trajectory X = X (¢) of a fluid particle (FIG. 1). Unlike scattering driven by mean
uniform flows (an exhaustive overview can be found in Dagan, 1989), here computing the
fluctuation X’ is an extremely complex problem (see, e.g. Tartakovsky, Tartakovsky, and
Meakin, 2008), due to the strong coupling of the velocity field V' with the spatial variability
of K. A simplification is achieved (for details, see Indelman and Rubin, 1996) by dealing
with a medium characterized by 0% < 1 (weakly heterogeneous formation), which leads to
the following system of equations:

R=U(R), R(0)=R,, 2
X' -VU -X'=u(R), X' (0)=(0,0,0),
being U = (V) and u =V — U the mean and the fluctuation of the velocity, respectively.
In order to compute the latter, we start from the governing flow equation:
VK @) VH @] = 5 K 00.09)d(), I H@ =0 ()
(Severino and Cuomo, 2020), where the specific energy (head) H = H (x) is related to the

velocity V' via the constitutive model V' = — (K/n) VH (x). The porosity n, in line with the

3
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experimental data (see, e.g. Rubin, 2003), is regarded as a given constant, whereas () is the
specific (per unit length) strength. We cast the mathematical problem (3) in dimensionless
form by introducing the scaled coordinate x/¢., where the characteristic length-scale will
be chosen later on. Hence, introduction of the normalized fluctuation Y = In (K/Kg)
(Kg = exp (In K) is the geometric mean) transforms eq. (3) (for simplicity we keep the

former notations) as follows:

~V2H (z) = Q(x,) + VY (z) - VH (z), Q= (4)

K)e.’
where we have accounted for K (0,0, x3) 6 (z,) = K (x) 6 (z,). Solving eq. (4) is a formidable
and quite complex task, with no exact solution. As a matter of fact, one has to sort
with approximate methods. In the present paper we adopt a strategy which ultimately
leads to simple (analytical) results. More precisely, we expand the head into asymptotic

series H = HO + HO 4+ .. of Y with H™ = O (Y™"), and substitute into (4) to get the

governing equations for the leading-order term H©® and the fluctuation H®
—V2HO = Qé(x,) = HO (z,) = —22 Iz, —V?HY (z)=V,H" (z,)-V,Y (z), (5)
™

being V, = (%, 0%2) the gradient in the horizontal plane. Once the second of (5) is

solved, the mean U = (V (x,)) and the fluctuation u of the velocity field are obtained upon

expansion of the constitutive model, i.e.

2L w@-v@y@- () Ve, o)

2mnx,

Ul(x,) =

Hence, the mean R and the fluctuation X’ of the trajectory are computed by carrying out
the quadrature in (2) with zero initial condition, i.e.
Qt\"? , /R u(x,, 0,0)
R(t)=|— , X' (R)=U(R de, —+—+ 7
0=(2)". (m)=v @) [ as, " )
(we have switched to R as independent variable, and taken £./K¢ as characteristic time
scale). Moreover, since we are concerned with radial scattering, we have set x3 = 0. The

second-order moment X, writes as:

X, (R) = (X'2) = / / da’. da” U;’" () U2 () a3 (8)

It is worth noting that the covariance w,, (¢}, /) = (u (2]) u (2!)) does not depend upon the

anomaly 6, due to the axial symmetry of the mean flow, and it is obtained straightforwardly

from the second of (6), the final result being:
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Ko\® o
o () =03l = ) U ) () + (52) S0 (0 @) 1O (@) -
Kg 5} 0
5 10 ) o 7 @) HO ) 4 U ) o (HO )Y @) )

Thus, central for the present study is the fluctuation H® that is derived as:

_ _ Y (&) 0GY (Z,)
HY (x) = / = (x — 2 =1,2 1
@)= Q [asGy (@—a) T L (m=12  (0)
(Fiori, Indelman, and Dagan, 1998), where
1 |lnz2  d=2
Gr=— (11)

T Arw _
)

is the d-dimensional steady Green function. Moreover, x, and & represent the position in R?
and R3, respectively. It is convenient to write the head’s fluctuation (10) as HY (z) =
Q/ 2n)* [ dkY (k) exp (—sk - ®) H (k) with

H(k) =~ [ dwesp (~sk-2) G5 (@ %G? (I — 7)), (12)

where the fluctuation Y has been written by means of its spectral (Fourier transform)

representation Y, i.e.

Y(z) = / (i Y (k) exp (—jz - k). (13)

27T)3/2
As it will be clearer later on, the analytical evaluation of the integral (12) enables one to ex-
press the head-covariance (H" (z) H" (y)) (and concurrently the velocity covariance u,,)
by means of only two quadratures, that are easily carried out once the shape of the spectrum
is specified. Besides the tremendous reduction of the computational burden (Fiori, Indel-
man, and Dagan, 1998, expressed the same covariances via six quadratures), the analytical
expression of H = H (k) is also instrumental in the identification of the hydraulic properties
from transport data (inverse problem). Finally, the same integral is found in other branches
of the physics. In fact, in quantum mechanics it serves to infer the structure as well as
the charge-density of particles (Martin and Shaw, 2019), whereas in electrodynamics the
same integral is encountered when one aims at computing the electric field generated by a
localized /distributed density of charges (Jackson, 2007). As a consequence, its evaluation

finds application within a spectrum much wider than that exploited in the present study.
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The remainder of the paper is organized as follows: we compute explicitly the inte-
gral (12). Then, we discuss the structure and the behavior of the flow variables related to it,
before moving to the modelling of scattering through disordered (randomly heterogeneous)

media. Finally, we end up with concluding remarks.

ANALYTICAL COMPUTATION OF H

A direct computation of (12) does not seem achievable, unless one deals with particular
structures of heterogeneity (Severino, 2011). For this reason we follow in the sequel a different
avenue. More precisely, we start from the unsteady state version of the same flow problem,
ie.

exp (—Y) %G — V3G - VY -VG =6(x,) (1), G (xz,0)=0, (14)

¢
and compute the integral (10) as tlim / dr G (x, 1), by virtue of the superposition prin-
ciple, being GV = GO (x,t) the first order approximation of (14). In particular, for a
homogeneous medium (Y = 0) one recovers from (14) the equation of the d-dimensional un-

~U% oxp [~ ||/ (4t)]. In order to compute G,

steady Green function, i.e. Gg(x,t) = (4nt)
we procede like before. Thus, we expand G in the asymptotic series G = GO + GO 4 .
with G = O (Y™). Then, substitution into (14) and retaining the first order term provide

the equation for the fluctuation G, i.e.
9 a0 _vrat _ v 9 qo © 0 =
@G - VG =Y§G + VY - VG"Y, GY = Gs. (15)

To solve eq. (15), we apply Laplace transform over the time and Fourier transform (13) over

the space. The final result, after employing integration by parts, reads as:

mw = — M tT T exp(— - T T T7)Gs (|l — x|, t —T) —
G (1) /(%)m [ o [aem-n >~[6< )6 (1) Gs (fo — al,t - 7)
82,,LG3 (|l —z|,t—7) 827’LG2(E‘7-77—)} :jkm/d(’;%)gz)/o dT/dieXp(—]k-i)x
G3(‘J)—€i|7t—7')%02(fzﬁ7') (m=1,2). (16)

We now compute the inner (spatial) quadratures appearing into the last of (16), i.e.

6
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/ /daz exp(—yk-&)Gs (e — x|, t —7) gGg(i’T,T) = —%(?Xp (—gksxs) x
Tew |-

/

ki (t—7)] /dwrexp( 1k @) Gy (| — &p|, t — 7) Ky - By Go(Ty, 7) =

0
(87r)’1 exp (—jksxs) (1355/0 = exp [fkg (t— T)] Go (p,t —T) aal(a) , (17)
where we have set
I () = /da‘cT exp (—azl) exp (wq - &), (18)
. t 1 . .
being w, = bz, — ak,, a = ———— and b = —————. The evaluation of Z («) is
4t —71)7 2(t—r1

straightforward. By skipping the algebraic details, it yields Z (o) = (7/a) exp [wq - wa/ (4a)].

As a consequence, eq. (16) writes as:

dkY (k)

G<1>(w,t):_%02 (a:r,t)/ o

exp (—ksxs) / dr ' (7) exp {J— Tk — @) Ky |

(19)
with T'(t) = (x, - k. — 2)tk?) exp (—k3t). We are now in position to calculate the fluctua-
tion K (z,t) = /Ot dr G (z, 7) that, after changing the order of integration and performing

one quadrature, becomes:

5 [dkY (k t ,
R (x,t) = ~%r (271_)3(/2) exp (—gksxs) exp (—jz, - k) ; d7r'T (') exp (—kZ2 7') x
tdr” Wy g [dkY (k) t )
/T, 2 OXP (747_”) =5 W exp (—jksxs) exp (—jx, - k,,)/o drexp (—k*7)
wr\ et k.
x B(1) [exp (—@)LZT, wp = a2+ 4gt (gtk, — ) - k., B(t) = o (z, — 25tk,). (20)

As anticipated, we now focus on the large time behavior of (20). Toward this aim, we
preliminarily note that, for ¢ > 1, the dominant contribution in the integrand of (20) (that
is achieved upon asymptotic expansion, and by retaining the leading order term) is such

that:

2
B(r) ~ 2]—7, exp (—%) ~ exp <—j—;) . (21)

Hence, by replacing the functions 3(7) and exp [—w,/(4¢)] with the approximations (21)

leads to:
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FIG. 2. Dependence of the function H = H (k) upon the nondimensional distance k, x, and polar

angles

Y (x,t) = —

0 = arccos [k, - @, /(k x,)]. Other values: |ks| = 3k, and |k3| = k.

g [dkY (k)

¢
Py W exp (—yksxs) [exp (=g, - k:r)/0 dr B (7) exp (—k27' - &)

f/Othﬁ(T) exp (*kiT* ﬁ)] ~ 1 /Mexp(ﬂksxs) |:6XP(]$r‘kr) X

ld 2 Ld 2
/ il exp (—k27' — ﬁ) - [ = exp (—k}f’r — a:_r>
0o T T 0o T 4t

Fir

E (271_)3/2

+O(t). (22)

wally, by taking the limit ¢ — oo in the last of (22) one has:

HY(z) = lim hV(x,t) = / dkY (k) exp (—jksxs) [exp (—yzx, - k) Ko(z,k) — Ko (| k3])],

where K,, is the n-order modified Bessel function of the first kind. The comparison of (23

t—o0 (2ﬂ)5/2 (23

)
)

with (12) suggests that:

H (k) = (2m) " [Ko(|Kklz,) — exp (—k, - ;) Ko(|ksla)] - (24)

For illustration purposes, the function (24) is depicted in FIG. 2 versus the dimensionless

variable k,z,, a few values of the polar angle 6 = arccos [k, - @, /(k, z,)] and two values of |k3].

The quantity lim H = (27) " In (|ks|/|k|) is instrumental in the engineering applications,
zr—0

in order to let the head’s fluctuation meet a Dirichlet boundary condition at the source

8
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(regularization). At the other extreme of large distances, the function (24) vanishes with
exponential decay. In what follows, we proceed with analyzing second-order moments of the
flow variables that, for weakly heterogeneous media, result of the same order of magnitude

of the Y- variance o2 = (Y?).

DISCUSSION

We wish to derive and discuss some statistical parameters that quantify the uncertainty
in the spatial distribution of the specific energy H and the velocity V. Starting with the
cross-covariance Cy g (z,y) = (Y () HY (y)), it results from (23) as:

Cyu(z,y) dk py (k)
_ [t

Qo2 =5 OxXD (9€sks) [exp (9, - kr) Ko(yrk) — exp (g2, - k) Ko(yr |ks])]
oy 2 )
(25)
(¢ = x — y), where we have made use of the stationarity of Y, i.e.
<}~/ (ki)Y (k2)> = (21)* 03 0 (K + k2) v (k) . (26)

Likewise, the head covariance Cy(z,y) = (H® () HV (y)) is obtained by multiplying (23)
applied at two points & # y, and subsequently taking the ensemble average. The final result

is:

Cul@.y) _ / Ak Dy (B) e (sks) [exp (— g8 - ko) Kol k) Ko(urk) + Kol ks Koy ks))

(Qoy)* (2m)"/?
—exp (—yz, - k) Koz k) Ko (yr|ks]) — exp gy, - k) Ko(yrk)Ko(z, |ks])] . (27)

It is seen that the covariances (25) and (27) are stationary along the vertical coordinate (i.e.
they depend only upon the lag &; = x3—1s3), since the mean value H© (z,.) = Q G5° (2,.) does
not depend upon the elevation. Moreover, based on the existing data-sets (an exhaustive
overview can be found in Rubin, 2003), we regard the autocorrelation of Y as axial symmet-
ric, and therefore the spectrum py (k) = py (k;, k3) is an even function of k, and k3. Hence,
by adopting cylindrical coordinates in wave-number space, i.e. k = (k,cos0,k,sinf, ks),

and carrying out the quadrature over the polar angle lead to:

Ol =2 [ [ e k) s €oks) LS Kofurk) — Tk Kofurks)
Y
(29)
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FIG. 3. Dependence of the scaled cross-variance oy /(Qo?) and variance 0% /(Qoy)? upon the di-
mensionless distance x,./I from the source, and several values of the anisotropy ratio A (exponential

spectrum of py).

Cgfyy / / ak: djz Fo By (K bis) cos (Exks) [o (6:k,) Ko(ok) Koy, k)

+ Ko(fﬁrk3)K0(yrk3) —Jo (iﬂr r) KO(xrk)KO(yrk3) —Jo (yrkr) Ko(yrk)Ko(fﬁrkS)] (29)

(J,, is the n-order Bessel function of the first kind). Two parameters are of particular interest,
namely the cross, oy g (7,) = Cypn(x, ), and the head, 0% (v,) = Cyx(x, x), variances which
are derived from (28)-(29) as follows:

”Yéfgy / / dk; (i’jg v (o, bs) [Ko (k) — Jo(wnkn)Ko(zoks)],  (30)

=2 / 4k d!j; oy Ky, k) (K3 ) + K3, ka) — 21 (2, ky) Ko, b)Ko ko))
(31)

To explore the physical insights of egs (30)-(31), we adopt an exponential model for the
spectrum, i.e. py (ky, ks) = (8/7)* A (1 4 k2 + A%k2)~*, where the anisotropy ratio A €]0, 1]
is defined as the ratio between the vertical, i.e. [,, and horizontal, i.e. I, integral scales
of Y. In addition, the wave numbers (k,, k3) have been made dimensionless by replacing
k; — Ik; (with ¢, = I). In FIG. 3 the cross-variance (30) is depicted as a function of the

scaled variable /I and a few values of A. It is a monotonic increasing function of z, that

10
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FIG. 4. Contour-plot of the head (red dashed lines) and stream function (blue continuous lines)
as affected by a circular (green) inclusion of conductivity K implanted into a matrix of effective
conductivity Keg. On the top, pictures refer to an inclusion close to the source with contrast
ratio K = K/Keg smaller and larger than one. Below, pictures pertain to the analogous situation,

but for an inclusion lying away from the source.

starts from the value at the source, i.e.

2Qo3 [ [ . ks A arcsin V1 — A2
Oy H (0) = W/O /0 dk‘Tdkg ]fr Py (kr7 kg) In E = —QU%%ﬁ, (32)

and it vanishes after four horizontal integral scales. In particular, the near field (32) is valid
also for a Gaussian spectrum: py (k,, ks) = (2/7)*% Xexp (—k2 /7 — A2k3 /7).

In order to explain the behavior of the cross-variance oy, we can focus on the flow’s

11
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pattern as deformed by a single inclusion of conductivity K (Severino, 2019) embedded into a
matrix of effective conductivity Kep (being oy evaluated as average of the product between
the fluctuations HY and Y over many of such realizations). Thus, in the FIG. 4 we have
depicted a circular (green) inclusion near and far from the source for two largely different
values of the contrast ratio k = K/Keg. In particular, due to the mass conservation, the
streamlines circumvent the inclusion for £ < 1 and they are attracted by it for k > 1. As a
consequence, in the near and far field the head surrounding the inclusion results higher /lower
than the mean head (corresponding to x = 1) for k < 1 and x > 1, respectively. Thus,
for k < 1 (calling for Y < 0) the fluctuation H® is larger than the mean, and viceversa.
Hence, the product Y (x,) H® (x,) (and concurrently the ensemble average oy ) results
lesser than zero, in any case. The limit zliinoo oy (z,) = 0 is explained by recalling that
the head’s fluctuation tends to zero away fl"om the source (see (23)). Finally, the reduction
of oyy (for given x,) with increasing A has a straightforward kinematical reasoning: an
anisotropic medium can be sought as made up by inclusions elongated in the horizontal
direction (resembling the medium’s structure A = I,/I < 1). Thus, for a fluid particle it is
easier to circumvent a low conducting inclusion by moving vertically rather than laterally.
This causes a deviation from the mean lesser than that which one would observe within a
medium of isotropic (A = 1) heterogeneity’s structure.

By the same token, one can analyze the scaled variance 0%/ (Qoy)?. Thus, at large z,
the head is quite small, since the flow there behaves as a homogeneous one (Abramovich
and Indelman, 1995), which decays like z'. To the contrary, in the region close to the
source the mean head H©® is highly uncertain, since most of the head buildup takes place
within a tiny annulus surrounding the source (Severino, Leveque, and Toraldo, 2019). The
dependence of 0% upon the anisotropy ratio A (at any given distance) is explained by the
same argument as before.

The variance 02 (x,) = u,, (¥, z,) of the velocity is obtained from (9) as:

2 2 172 Kg Kg : 2 d 1)
o, (x,) =0y U ($T)+27U(;L'T)UYET (x,)+ ) ok (z,), ET:a HY (x), (33)

Ly

where we have set oy, = (YE,) and 0%, = (E?). By differentiation of (23), the latter are
given by:

2Qa3
(27T)3/2

oy, (1) = / / Ak, s Ky py (ks Ks) [ olt b VK (1 ks) — KK (,8)] - (34)
0 0

12
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op, () = ((22:;/)2 /0 h /O h dk, dks b, py (kp, k) {2 (KK (k)] + 2 (kK (2,k3)]" —
UCTK() (Irk)]z — 2k3K1 (.’L‘ﬂ%) [krjl (CC,«]CT) + 2]@1]0 (l’rk,«) K1 (.’L‘T]C) + k,«Jl (CC,«]{ZT) KO (l‘rk)} }

(35)

The scaled coefficient of variation CV, /oy = 0,/ (Uoy) is depicted (for both exponential
and Gaussian py) in the FIG. 5. It is seen that in the near (i.e. z, < I) and far (ie.
x, > I) field, one has o, ~ oyU. Indeed, close to the source the flow can be homogenized
by the harmonic (constant) conductivity (Indelman, 1996), whereas far from the source it
behaves like a mean uniform one of effective conductivity. As a consequence, in these two
regimes the uncertainty in the velocity field resembles precisely the reduction of the mean
velocity U with the distance. In the intermediate regime, for z, < I the cross-variance (that
is negative) is mostly influential, and concurrently CV, reduces, whereas for x, > I it rapidly
exhausts, with a still impact of the head-gradient’s variance 01257_. This justifies the sudden
rise of CV,. As it will be clearer later on, these findings are of paramount importance when
analyzing the evolution of scattering. To conclude this section, we note that the Gaussian
shape of py produces a more persistent signal in the coefficient of variation of the velocity (in

agreement with Severino and Cuomo, 2020).

exponential — py Gaussian — py

0.8

08 T T 06 T T

T T
0.01 0.1 1 10 z./I 100 o001 0.1 1 10 /1 100

FIG. 5. Scaled coefficient of variation CV, /oy versus the normalized distance x,/I from the source,

and a few values of the anisotropy ratio A (exponential and Gaussian spectrum).
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SCATTERING ANALYSIS

We are now in position to analyze scattering of a passive scalar as determined by the
above discussed source-type flow. This goal is achieved by means of the second-order radial

moment (8) which, for convenience of discussion, is re-written on the base of (9) as:

Xor (R) =X (R) + X, (R) ) (36)
being
_ 2 2 " pY -L' l) _ i /R u?
X (R) =0y U ( / / da! da! )U(x”)_SRO du |2 — 3R+R py (u),
(37)
whereas
d:r da!! Ko\? o
2 G v 1) (7 1) [\ _
U / / U2 U2 I”) ( n ) c’?x;@x’,’ <H (xr)H (xr)>
KG 9 (1) (0 _ @ PN 1) (. " o @ 2
U (a2 0z (¥ () O () = 20 a) 50 (O (@)Y (o) | = 26 02 () x

d.TL' dl’” KG (’)QCH( ,r? r) 8CyH(xr7xT)
/ / U2 (1) U? () KT) Oz,.0x! —2U (=) ox!! ’ (38)

In particular, the last of (38) has been achieved by noting that (z],z!) is a pair of dummy
variables. Then, insertion into (38) of (28)—(29) (with & = 0) yields:

Xw _ R / du (2 8+ FZ) py (w) + g Y. (R), (39)

where we have set:

00 o] R R
X, = / / / / dkydk’gdldykrﬁy (k“kg}) y22 Z’zi\I/H (x7y) 7$\IJYH (l,y) 7
o Jo Jo Jo dy Ox

(40)
Uyn (z,y) = Jo (ke |z = y|) Ko(ky) — Jo(krx) Ko(ksy), k= /k} + k3, (41)
Uy (z,y) = Ko(kz) Uyp (z,y) + Ko(ksz) [Ko(ksy) — Jo (ky) Ko(ky)] . (42)

Hence, integration by parts in the domain [0, R] X [0, R] enables one to decompose the

integral (40) as X, = 42X, — 2R?X; + R*X;, with
X, (R) = / / dk, dks ky By (kysks) Uit (R, R), (43)
o Jo
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Xor (R)
(Loy)?
6
4
2
exponential — Jy Gaussian — py
07 T T T T 0% T T T T
0 2 4 6 8 R/ 10 0 2 4 6 8 R/I 10

FIG. 6. Scaled trajectory variance X,/ (Ioy)? as computed from (39) for several values of the
anisotropy ratio A (exponential and Gaussian spectrum py). Dot red and cyan lines refer to

eqs (46) and (47), respectively.

X3 (R) :/OOO/OOO/Ode,dkgdxk,ﬁy (ky ks) [@H (z, R)+%\IIYH (LR)—i—\I/H(Rw)],
(44)

0 o) R R B 1
Xi(R) = /O /0 /0 /0 dkrdkgdzdykrpwkr,ks)xy[%(ac,y)ﬁwm(x,y)}. (45)

The utility related to the decomposition in (36), and the subsequent developments, relies
on the fact that one can clearly distinguish the contribution (i.e. X.,,) due to the mean
radial flow from that (i.e. X,) associated to the fluctuation of the head-gradient. In the
FIG. 6 we have depicted the scaled moment X,/ (1 O'y)2 versus the non dimensional travel
distance R/I, and A = 0.1;0.3;0.5;0.7;1.0. It has been done for both exponential and
Gaussian spectrum. For comparison purposes, we have also depicted (red dot line) the

approximation X, ~ X.:

Ioy)? T2 2R3 —3R?2+6—6(R+1)exp (—R)] (exp)

—

X (R) ~

3mRE ) 8 6rR2 4 272 RPerf (g}{’) 4 (TR — 2) exp (—% R2) (Gauss)
(46)
which is valid for A < 1 (Indelman and Dagan, 1999), along with a newly derived approxi-
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mate (cyan dot line) expression of X,,, i.e.

(oy)? |7 [22R% = 2TR? 430 + 6 (2R — 5R — 5) exp (~ R)] (exp)
X, =~
2Tm R | 40 — 547 R? + 227 Riert <g1%) +4(117R? - 10) exp (% RZ) (Gauss)
(47)

(for details, see the APPENDIX).

As particles are injected through the source in the porous medium, the radial mo-
ment X, increases monotonically with R. At short distances, X, displays a nonlinear
dependence, whereas at large distances it grows linearly. These findings rely upon the de-
pendence of X, on the velocity covariance through eq. (8) that, in turn, is a measure
of the distance over which the velocities of two fluid particles are correlated. As a con-
sequence, for R < I two fluid particles have not covered a single integral scale I, and
concurrently they are highly correlated. As a consequence, scattering results enhanced by
the dominant impact of the velocity covariance u,,. Conversely, at large distances the

-1

advective velocity drops like x,*,

and the net, overall effect is still an increasing scat-
tering, but with a lesser gradient. In order to address such a behavior in a quantita-
tive manner, one can refer either to the approximate expression of Indelman and Da-
gan (1999), i.e. X, (R) ~ (02R/3) fORdu (2—=3u/R+u®/R*) py (u), or to eq. (A13),
ie. X, (R) ~ (62R/27) fOR du (22 — 27Tu/R + 5u®/R?) py (u). Thus, at small distances
it yields py ~ 1, and one recovers that X,, ~ R% Instead, at large R one has u/R = o (1),
and therefore X,, ~ R fooo du py (u) = R. The reduction of X,, with the small A-values is
explained similarly to the above discussion: for a solute particles it is easier to circumvent,
by taking a vertical step, a poorly conducting inclusion characterized by A < 1 as compared
with an inclusion of quasi isotropic (i.e. A =~ 1) heterogeneity’s structure. As a consequence,
the deviation from the mean is larger in the latter case, and this explains the increasing (for
given R) trajectory’s variance as A — 1. Finally, besides the clear agreement (see FIG. 6) in
the case of strongly heterogeneous formation (A < 1), the complete expression (39) of the
radial second-order moment was found in perfect overlapping with the numerical simula-
tions shown in the FIG. 4 of Indelman and Dagan (1999). Moreover, inspection from FIG. 6
suggests that the approximate expression (47) is found in a reasonable agreement with the
full simulation of X,, in the regime of pseudo-isotropic (A < 1) formations. To conclude,

equations (46)-(47) are straightforwardly extended to disordered media of axial symmet-
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ric heterogeneity’s structure by replacing R — R/v/cos? ¢ 4+ A=2sin? ¢, being ¢ the angle

between the mean trajectory and the plane of isotropy.

CONCLUDING REMARKS

Scattering processes generated by localized /distributed sources are a powerful tool which
finds application in numerous branches of applied sciences. In quantum physics, scattering is
used to infer the size as well as the distribution of the electrical charge of nuclei, whereas in
the electrodynamics it serves to compute dielectric properties. In the theory of composites
and in the reservoir engineering (the fields of main concern for the present study), it serves
to identify the effective (flow and transport) properties of disordered media.

We have focused on scattering of a passive scalar injected in a formation and advected by
a steady velocity, that in turn is generated by a line of singularity. Within a homogeneous
domain, the solute propagates by advection like a cylinder of radius R = R (t), whereas
scattering is due to the diffusion mechanism, solely (FIG. 1). In disordered media, scattering
is determined by the fluctuations of the advective velocity which are caused by the erratic,
spatial variability of the conductivity K. Within a stochastic framework, that regards the
log-conductivity In K as a stationary, Gaussian, random field, scattering is quantified by
means of the second-order radial moment which, by virtue of ergodicity, coincides with the
trajectory variance (8). After adopting a few simplifying assumptions (the most relevant of
which requires that the variance of In K is much smaller than one), it is shown that, central
for the study, is the computation of the integral (12). Despite its origin, it is recognized
that such a quantity is instrumental for many other problems arising in several branches of
classical as well as quantum physics, and therefore its study results of a much wider interest
than that strictly considered here. The analytical computation of (12) is achieved as large
time limit of the same problem in the unsteady state flow regime.

Unlike past studies on the same topic (see, e.g. Fiori, Indelman, and Dagan, 1998), here
covariances of the flow variables are expressed in terms of two quadratures solely, which are
easily carried out after specifying the shape of the spectrum (the Fourier transform of the
autocorrelation of Y'). Illustrations focus on the (cross)-variances of the specific energy and
the radial velocity, since they are usually of interest in the applications. It is seen that,

although the log-conductivity is a stationary random field, these variances are not since the
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mean flow is not uniform.

The trajectory variance X,, is computed and discussed for both exponential and Gaus-
sian spectrum, being these models generally adopted in the real world applications (Dagan,
1989). In particular, the transitional regime from the early to the large distances is much
more persistent than that pertaining to the approximation valid for formations with an
anisotropic ratio A much lesser than one (Indelman and Dagan, 1999). This approxima-
tion does not lend itself to investigate scattering when the formation is (pseudo)isotropic
(A < 1). In these cases, our results fill the gap (and, more generally, they cover the entire
range A € [0,1]). Finally, another point of novelty of the present study is that, similarly
to Indelman and Dagan (1999), we have obtained an approximate, simple (closed form)
solution (A13) that applies in the regime of (pseudo)isotropic heterogeneity.

To conclude, results achieved in the present study can be expanded along (at least) two
avenues: 1) by computing higher-order corrections to the various terms appearing into the
velocity covariance u,, (similarly to Abramovich and Indelman, 1995), or ii) by reformulat-
ing the entire problem in the context of the self-consistent approximation (in close analogy

to Dagan, Fiori, and Jankovi¢, 2003).
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APPENDIX: derivation of the approximate expression (47)

As a preparatory step, we re-write the last of (38) as:

// /i 0 0 / Q _

xm = (o )//d st (et L | Co (et~ L o )| =
" //2 0 aCH( /r7 'r) oo OHY (Ilr)

(@) [ [ masro s [P v,y P v

Then, the last double integral in (A1) is re-written as:

aCy (al,a") dHO ()
2 "2 H\Zys Ly, Z r) |~
/ Z, a ”/ d |: a / +QCYH(.’L‘7,IT)78 n ~

o [0°Ch (a2 LOHO () 0 Cyy (a1, 27)
_ - " /3 //2 H s Ly Y H Ty, Ty
/ / dy dooray oz’ [ O0x!? 2 ox!, oz, } (A2

where the second passage in (A2) has been achieved upon integration by parts and ne-
glecting the finite term due to its very fast (exponential) decay with R. In addition, the
term 22/3Cy g (., 2) %H ©) () (that also arises upon application of integration by parts)
has been dropped out, since, from the definition of two-dimensional Green function, one
has %H(O) (z,) = —Q0 (x,).

At this stage, we note that the governing equation (5) for the head’s fluctuation can be

written in approximate manner as follows:

92
- (VE * oa ) HO (2) ~ ~V2HY (2) = V, HO (2,) - V.Y (x). (A3)
3
The neglect of the second-order derivative % as compared with the laplacian V2 is au-
3

thorized by the fact that most of the flow develops radially, and therefore the dominant
variations of the head’s fluctuation occur in the horizontal plane. In order to provide a
quantitative reasoning, we recall that % ~ O (I,;?), whereas V2 ~ O (I7?). As a conse-
quence, the ratio of the two estimates behaves like (1,/I)* = A2. Since, the majority of the
natural formations are anisotropic (A < 1), we argue that the above approximation works
quite well (see also discussion in Indelman and Dagan, 1999). Hence, upon multiplication
of (A3) by the head’s fluctuation evaluated at y, # x,, and taking the ensemble average, it
leads to:

_v? C’H (x'rv yT) = vr H(O) (Tr) : vr CYH (3:7'7 yr) - (A4)
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Then, application of the chain rule of derivation %m = m 0 (m = 1,2) enables one to

0. x, Oxp
write (A4) as:

0? d 0
- ) = — g —_
ox? Cu (2, 9r) oz, (@) oz,

and the subsequent substitution into the last of (A2) permits to write X, as:

1 2n\* (" n.o13 //281{(0 ( ;)8QCYH(Ier)
A (R) =3 (ﬁ) / / ey dof ey e duow A9

CYYH (xrv yr) ) (A5)

By taking integration by parts in (A6) with respect to the variable 2!, it yields (with the

r

same reasoning as before):

aH(O) (I/) ) 02 C! ( / //)
// / 13 r YH (T, T,
w= (o) [ [ ety SIS [FOLD] )

Likewise, one can write:

82
62

2 0 gy,

Cyu (2, yr) = _Uyay

0
ayTpY (‘Tr - yr) ’ (Ag)

and therefore eq. (A7) reads as:

2o " (ol IQHO (2) 02 py (). — ) O HO (7
== (BQI;) / / o daf () a( : gaﬁ(’(%{:” : (‘31"’( L (a9

T

By noting that:

0 Q 2 d?
HO (2,) = — S —Yy) = ——— A10
oz, () 2rw, 0,0y, py (@ —yr) awz ¥ () w—n (A10)
eq. (A9) becomes:
// I I d

X, (R dx da” (2’ quz Y (u) (A11)

Hence, the computation of one quadrature leads to:

o? R u u? ot d?

X, _ Y p3 — 15— 10— — — | — A12
(r) =T [ du(@ 52+ 100 Rs) oy (u). (A12)

and the application (two times) of integration by parts provides (on the same grounds of

the above adopted approximation) the final result:

0% R u ud
Xor (R) = X (R) + X (R) ~ ZER | du (22 =27+ 57 ) py (u). (A13)
0

Finally, insertion into (A13) of exponential and Gaussian autocorrelation py leads to (47).
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