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Abstract. We present a multi-purpose genetic algorithm, designed and
implemented with GPGPU / CUDA parallel computing technology. The
model was derived from a multi-core CPU serial implementation, named
GAME, already scientifically successfully tested and validated on astro-
physical massive data classification problems, through a web application
resource (DAMEWARE), specialized in data mining based on Machine
Learning paradigms. Since genetic algorithms are inherently parallel, the
GPGPU computing paradigm has provided an exploit of the internal
training features of the model, permitting a strong optimization in terms
of processing performances and scalability.

Keywords: genetic algorithms, GPU programming, data mining

1 Introduction

Computing has started to change how science is done, enabling new scientific
advances through enabling new kinds of experiments. They are also generating
new kinds of data of increasingly exponential complexity and volume. Achieving
the goal of being able to use, exploit and share most effectively these data is a
huge challenge. The harder problem for the future is heterogeneity, of platforms,
data and applications, rather than simply the scale of the deployed resources.
Current platforms require the scientists to overcome computing barriers between
them and the data [1].
The present paper concerns the design and development of a multi-purpose ge-
netic algorithm implemented with the GPGPU/CUDA parallel computing tech-
nology. The model comes out from the machine learning supervised paradigm,
dealing with both regression and classification scientific problems applied on
massive data sets. The model was derived from the original serial implemen-
tation, named GAME (Genetic Algorithm Model Experiment) deployed on the
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DAME [8] Program hybrid distributed infrastructure and made available through
the DAMEWARE [9] data mining (DM) web application. In such environment
the GAME model has been scientifically tested and validated on astrophysical
massive data sets problems with successful results [2]. As known, genetic al-
gorithms are derived from Darwin’s evolution law and are intrinsically parallel
in its learning evolution rule and processing data patterns. The parallel com-
puting paradigm can indeed provide an optimal exploit of the internal training
features of the model, permitting a strong optimization in terms of processing
performances.

2 Data Mining based on Machine Learning and parallel
computing

Let’s start from a real and fundamental assumption: we live in a contemporary
world submerged by a tsunami of data. Many kinds of data, tables, images,
graphs, observed, simulated, calculated by statistics or acquired by different
types of monitoring systems. The recent explosion of World Wide Web and
other high performance resources of Information and Communication Technol-
ogy (ICT) are rapidly contributing to the proliferation of such enormous informa-
tion repositories. Machine learning (ML) is a scientific discipline concerned with
the design and development of algorithms that allow computers to evolve behav-
iors based on empirical data. A learner can take advantage of examples (data)
to capture characteristics of interest of their unknown underlying probability
distribution. These data form the so called Knowledge Base (KB): a sufficiently
large set of examples to be used for training of the ML implementation, and to
test its performance. The DM methods, however, are also very useful to capture
the complexity of small data sets and, therefore, can be effectively used to tackle
problems of much smaller scale [2].
DM on Massive Data Sets (MDS) poses two important challenges for the compu-
tational infrastructure: asynchronous access and scalability. With synchronous
operations, all the entities in the chain of command (client, workflow engine,
broker, processing services) must remain up for the duration of the activity: if
any component stops, the context of the activity is lost.
Regarding scalability, whenever there is a large quantity of data, the more af-
fordable approach to making learning feasible relies in splitting the problem in
smaller parts (parallelization) sending them to different CPUs and finally com-
bine the results together. So far, the parallel computing technology chosen for
this purpose was the GPGPU.
GPGPU is an acronym standing for General Purpose Computing on Graphics
Processing Units. It was invented by Mark Harris in 2002, [3], by recognizing the
trend to employ GPU technology for not graphic applications. With such term
we mean all techniques able to develop algorithms extending computer graphics
but running on graphic chips. In general the graphic chips, due to their intrin-
sic nature of multi-core processors (many-core) and being based on hundreds of
floating-point specialized processing units, make many algorithms able to obtain



Genetic Algorithm Modeling with GPU Parallel Computing Technology 3

higher (one or two orders of magnitude) performances than usual CPUs (Cen-
tral Processing Units). They are also cheaper, due to the relatively low price of
graphic chip components.
The choice of graphic device manufacturers, like NVIDIA Corp., was the many-
core technology (usually many-core is intended for multi-core systems over 32
cores). The many-core paradigm is based on the growth of execution speed for
parallel applications. Began with tens of cores smaller than CPU ones, such kind
of architectures reached hundreds of core per chip in a few years. Since 2009 the
throughput peak ratio between GPU (many-core) and CPU (multi-core) was
about 10:1. Such a large difference has pushed many developers to shift more
compu-ting-expensive parts of their programs on the GPUs.

3 The GAME Model

An important category of supervised ML models and techniques, in some way
related with the Darwin’s evolution law, is known as evolutionary (or genetic)
algorithms, sometimes also defined as based on genetic programming [4]. The
slight conceptual difference between evolutionary and genetic algorithms is that
the formers are problem-dependent, while the latters are very generic.
GAME is a pure genetic algorithm specially designed to solve supervised op-
timizations problems related with regression and classification functionalities,
scalable to efficiently manage MDS and based on the usual genetic evolution
methods (crossover, genetic mutation, roulette/ranking, elitism). In order to
give a level of abstraction able to make simple to adapt the algorithm to the
specific problem, a family of polynomial developments was chosen for GAME
model. This methodology makes the algorithm itself easily expandable, but this
abstraction requires a set of parameters that allows fitting the algorithm to the
specific problem.
From an analytic point of view, a pattern, composed of N features contains an
amount of information correlated between the features corresponding to the tar-
get value. Usually in a real scientific problem that correlation is masked from the
noise (both intrinsic to the phenomenon, and due to the acquisition system); but
the unknown correlation function can ever be approximated with a polynomial
sequence, in which the degree and non-linearity of the chosen function determine
the approximation level. The generic function of a polynomial sequence is based
on these simple considerations:
Given a generic dataset with N features and a target t, pat a generic input pat-
tern of the dataset, pat = (f1, ..., fN , t) and g(x) a generic real function, the
representation of a generic feature fi of a generic pattern, with a polynomial
sequence of degree d is:

G(fi) ∼= a0 + a1g(fi) + ...+ adg
d(fi) (1)

Hence, the k-th pattern (patk) with N features may be represented by:
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Out(patk) ∼=
N∑
i=1

G(fi) ∼= a0 +
N∑
i=1

d∑
j=1

ajg
j(fi) (2)

Then target tk, concerning to pattern patk, can be used to evaluate the
approximation error of the input pattern to the expected value:

Ek = (tk −Out(patk))
2 (3)

If we generalize the expression (2) to an entire dataset, with NP number of
patterns (k = 1, ..., NP ), at the end of the forward phase (batch) of the GA, we
obtain NP expressions (2) which represent the polynomial approximation of the
dataset.
In order to evaluate the fitness of the patterns as extension of (3), the Mean
Square Error (MSE) or Root Mean Square Error (RMSE) may be used.
Then we define a GA with the following characteristics:

– The expression (2) is the fitness function;
– The array (a0, ..., aM ) defines M genes of the generic chromosome (initially

they are generated random and normalized between -1 and +1);
– All the chromosomes have the same size (constrain from a classic GA);
– The expression (3) gives the standard error to evaluate the fitness level of

the chromosomes;
– The population (genome) is composed by a number of chromosomes imposed

from the choice of the function g(x) of the polynomial sequence.

About the last item, this number is determined by the following expression:

NUMchromosomes = (B ·N) + 1 (4)

where N is the number of features of the patterns and B is a multiplicative
factor that depends from the g(x) function, which in the simplest case is just 1,
but can arise to 3 or 4 in more complex cases. The parameter B also influences
the dimension of each chromosome (number of genes):

NUMgenes = (B · d) + 1 (5)

where d is the degree of the polynomial. For example if we use the trigono-
metric polynomial expansion, given by the following expression (hereinafter poly-
trigo),

g(x) = a0 +

d∑
m=1

am cos(mx)+

d∑
m=1

bm sin(mx) (6)

in order to have 200 patterns composed by 11 features, the expression using
(2) with degree 3, will become:
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Out(patk=1...200) ∼=
11∑
i=1

G(fi) ∼= a0 +
11∑
i=1

3∑
j=1

aj cos(jfi)+
11∑
i=1

3∑
j=1

bj sin(jfi) (7)

In the last expression we have two groups of coefficients (sin and cosine), so
B will assume the value 2. Hence the generic genome (population at a generic
evolution stage), will be composed by 23 chromosomes, given by equation (4),
each one with 7 genes [a0, a1, a2, a3, b1, b2, b3], given by equation (5), with each
single gene (coefficient of the polynomial) in the range [−1,+1].
In the present project, the idea is to build a GA able to solve supervised crispy
classification and regression problems, typically related to an high-complexity
parameter space where the background analytic function is not known, except
for a limited number of couples of input-target values, representing valid solu-
tions to a physical category of phenomena. A typical case is to classify astronom-
ical objects based on some solution samples (the KB) or to predict new values
extracted by further observations. To accomplish such behavior we designed a
function (a polynomial expansion) to combine input patterns. The coefficients
of such polynomials are the chromosome genes. The goal is indeed to find the
best chromosome so that the related polynomial expansion is able to approx-
imate the right solutions to input pattern classification/regression. So far, the
fitness function for such representation consists of the training error, obtained as
absolute difference between the polynomial output and the target value for each
pattern. Due to the fact that we are interested to find the minimum value of the
error, the fitness is calculated as the complement of the error (i.e. 1-error) and
the problem is reduced to find the chromosome achieving the maximum value of
fitness.

4 The GPU-based GAME implementation

In all execution modes (use case), GAME exploits the polytrigo function (6),
consisting in a polynomial expansion in terms of sum of sins and cosines. Specif-
ically in the training use case, corresponding to the GA building and consolida-
tion phase, the polytrigo is used at each iteration as the transformation function
applied to each chromosome to obtain the output on the problem input dataset,
and indirectly also to evaluate the fitness of each chromosome. It is indeed one
of the critical aspects of the serial algorithm to be investigated during the par-
allelization design process.
Moreover, after having calculated the fitness function for all genetic population
chromosomes, this information must be back-propagated to evolve the genetic
population. This back and forth procedure must be replicated as many times as
it is the training iteration number or the learning error threshold, both decided
and imposed by the user at setup time of any experiment. The direct consequence
of the above issues is that the training use case takes much more execution time
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than the others (such as test and validation), and therefore is the one we are
going to optimize.
Main design aspect approaching the software architecture analysis for the GPU
is the partition of work: i.e. which work should be done on the CPU vs. the
GPU. We have identified the time consuming critical parts to be parallelized by
executing them on the GPU. They are the generation of random chromosomes
and the calculation of the fitness function of chromosomes. The key principle is
that we need to perform the same instruction simultaneously on as much data as
possible. By adding the number of chromosomes to be randomly generated in the
initial population as well as during each generation, the total number of involved
elements is never extremely large but it may occur with a high frequency. This
is because also during the population evolution loop a variable number of chro-
mosomes are randomly generated to replace older individuals. To overcome this
problem we may generate a large number of chromosomes randomly una tan-
tum, by using them whenever required. On the contrary, the evaluation of fitness
functions involves all the input data, which is assumed to be massive datasets, so
it already has an intrinsic data-parallelism. Since CUDA programming involves
code running concurrently on a host with one or more CPUs and one or more
CUDA-enabled GPU, it is important to keep in mind that the differences be-
tween these two architectures may affect application performance to use CUDA
effectively. The function polytrigo takes about three-quarters of the total execu-
tion time of the application, while the total including child functions amounts to
about 7/8 of total time execution. This indeed has been our first candidate for
parallelization. In order to give a practical example, for the interested reader, we
report the source code portions related to the different implementation of the
polytrigo function, of the serial and parallelized cases.

C++ serial code for polytrigo function (equation 6):

for (int i = 0; i < num_features; i++) {

for (int j = 1; j <= poly_degree; j++) {

ret += v[j] * cos(j * input[i]) + v[j + poly_degree] *

* sin(j * input[i]); } }

CUDA C (Thrust) parallelized code for polytrigo function (equation 6):

struct sinFunctor { __host__ __device__

double operator()(tuple <double, double> t) {

return sin(get < 0 > (t) * get < 1 > (t)); }};

struct cosFunctor { __host__ __device__

double operator()(tuple <double, double> t) {

return cos(get < 0 > (t) * get < 1 > (t)); }};

thrust::transform(thrust::make_zip_iterator(

thrust::make_tuple(j.begin(), input.begin())),

thrust::make_zip_iterator(
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thrust::make_tuple(j.end(), input.end())),

ret.begin(), sinFunctor(), cosFunctor());

Noting that, while the vector v[] is continuously evolving, input[] (i.e. the el-
ements of the input dataset) are being used in calculation of ret at each iteration
but they are never altered. We rewrite the function by calculating in advance the
sums of sins and cosines, storing the results in two vectors and then use them
in the function polyTrigo() at each iteration. This brings huge benefits because
we calculate trigonometric functions, which are those time consuming, only once
instead of at every iteration and exploit the parallelism on large amount of data
because it assumes that we have large input datasets.
From the time complexity point of view, by assuming to have as many GPU
cores as population chromosomes, the above CUDA C code portion would take
constant time, instead of polynomial time required by the corresponding C++
serial code.

5 The Experiment

In terms of experiments, the two CPU versions of GAME, the original and an op-
timized version of the serial algorithm (hereinafter serial and Opt respectively),
together with the final version for GPU (hereinafter ELGA), have been com-
pared basically by measuring their performance in terms of execution speed, by
also performing an intrinsic evaluation of the overall scientific performances. The
optimized algorithm is the serial version adapted by modifying the code portions
which are candidate to be parallelized in the final GPU release.
Initially, the tests have been organized by distinguishing between classification
and regression functional modes. By analyzing early trials, however, it resulted
that the performance growth was virtually achieved in both cases. So far, we
limit here the discussion details to a classification experiment, done in the as-
trophysical context.
The scientific problem used here as a test bed for data mining application of
the GAME model is the search (classification) of Globular Cluster (GC) pop-
ulations in external galaxies [2]. This topic is of interest to many astrophysical
fields: from cosmology, to the evolution of stellar systems, to the formation and
evolution of binary systems.
The dataset used in this experiment consists in wide field HST observations of
the giant elliptical NGC1399 in the Fornax cluster, [5]. The subsample of sources
used to build our Base of Knowledge, to train the GAME model is composed by
2100 sources with all photometric and morphological information, [2]. Finally,
our classification dataset consisted of 2100 patterns, each composed by 11 fea-
tures (including the two targets, corresponding to the classes GC and not GC
used during the supervised training phase).
The performance was evaluated on several hardware platforms. We compared our
production GPU code with a CPU implementation of the same algorithm. The
benchmarks were run on a 2.0 GHz Intel Core i7 2630QM quad core CPU run-
ning 64-bit Windows 7 Home Premium SP1. The CPU code was compiled using
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the Microsoft C/C++ Optimizing Compiler version 16.00 and GPU benchmarks
were performed using the NVIDIA CUDA programming toolkit version 4.1 run-
ning on several generations of NVIDIA GPUs GeForce GT540M. As execution
parameters were chosen combinations of:

– Max number of iterations: 1000, 2000, 4000, 10000, 20000 and 40000;
– Order (max degree) of polynomial expansion: 1, 2, 4 and 8;

The other parameters remain unchanged for all tests:

– error function (fitness): MSE with threshold = 0.001;
– Selection criterion: RANKING and ROULETTE;
– Crossover probability rate 0.9 and mutation probability rate 0.2;
– Elitism chromosomes at each evolution: 2.

For the scope of the present experiment, we have preliminarily verified the
perfect correspondence between CPU- and GPU-based implementations in terms
of classification performances. In fact, the scientific results for the CPU-based
algorithm have been already evaluated and documented in a recent paper [2],
where the CPU version of GAME were also compared with other ML models,
provided by our team.
Referring to the best results as described in [2], for the serial code version we
obtained the following percentages on a dataset consisting of 2100 patterns each
composed by 7 column features:

– Classification accuracy = 86.4%;
– Completeness = 78.9%;
– Contamination = 13.9%;

In both optimized serial and parallelized version, we obtained, as expected,
the same values, slightly varying in terms of least significant digit, trivially mo-
tivated by the intrinsic randomness of the genetic algorithms.
Here we investigated the analysis of performances in terms of execution speed. By
using the defined metrics we compared the three versions of GAME implemen-
tation, under the same setup conditions. As expected, while the two CPU-based
versions, serial and Opt, appear comparable, there is a quite shocking difference
with the GPU-based version ELGA. The diagram of Fig. 1 reports the direct
comparisons among the three GAME versions, by setting a relatively high de-
gree of the polynomial expansion which represents the evaluation function for
chromosomes.

We performed also other tests, by varying the polynomial degree. The trends
show that the execution time increases always in a linear way with the number of
iterations, once fixed the polynomial degree. This is what we expected because
the algorithm repeats the same operations at each iteration. The GPU-based
version speed is always at least one order of magnitude less than the other two
implementations. We remark also that the classification performances of the
GAME model increases by growing the polynomial degree, starting to reach
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Fig. 1. Comparison among the GAME implementations with the polynomial degree =
8.

Fig. 2. Speedup comparison among GAME CPU implementations against the GPU
version.
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good results from a value equal to 4. Exactly when the difference between CPU
and GPU versions starts to be 2 orders of magnitude.

In the diagram of Fig. 2, the GPU version is compared against the CPU
implementations. As shown, the speedup increases proportionally with the in-
creasing of the polynomial degree. The diagram shows that for the average speed
in a range of iterations from 1000 to 40000, the ELGA algorithm exploits the
data parallelism as much data are simultaneously processed. As previously men-
tioned, an increase of maximum degree in the polynomial expansion leads to an
increase in the number of genes and consequently to a larger population matrix.
The GPU algorithm outperforms the CPU performance by a factor ranging from
8x to 200x in the not optimized (serial) case and in a range from 6x to 125x in
the optimized case (Opt), enabling an intensive and highly scalable use of the
algorithm that were previously impossible to be achieved with a CPU.

6 Conclusions

We investigated the state of the art computing technologies, by choosing the one
best suited to deal with a wide range of real physical problems. A multi-purpose
genetic algorithm (GA) implemented with GPGPU/CUDA parallel comput-
ing technology has been designed and developed. The model comes from the
paradigm of supervised machine learning, addressing both the problems of clas-
sification and regression applied on massive data sets.
The model was derived from a serial implementation named GAME, deployed on
the DAME Program, [6] and [7], hybrid distributed infrastructure and already
scientifically tested and validated on astrophysics massive data sets problems
with successful results. Since GAs are inherently parallel, the parallel computing
paradigm has provided an exploit of the internal training features of the model,
permitting a strong optimization in terms of processing performances. We de-
scribed our effort to adapt our genetic algorithm for general purpose on GPU.
We discussed the efficiency and computational costs of various components in-
volved that are present in the algorithm. Several benchmark results were shown.
The use of CUDA translates into a 75x average speedup, by successfully elimi-
nating the largest bottleneck in the multi-core CPU code. Although a speedup
of up to 200x over a modern CPU is impressive, it ignores the larger picture
of use a Genetic Algorithm as a whole. In any real-world the dataset can be
very large (those we have previously called Massive Data Sets) and this requires
greater attention to GPU memory management, in terms of scheduling and data
transfers host-to-device and vice versa. Moreover, the identical results for clas-
sification functional cases demonstrate the consistency of the implementation
for the three different computing architectures, enhancing the scalability of the
proposed GAME model when approaching massive data sets problems.
Finally, the very encouraging results suggest to investigate further optimiza-
tions, like: (i) moving the formation of the population matrix and its evolution
in place on the GPU. This approach has the potential to significantly reduce
the number of operations in the core computation, but at the cost of higher
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memory usage; (ii) exploring more improvements by mixing Thrust and CUDA
C code, that should allow a modest speedup justifying development efforts at a
lower level; (iii) use of new features now available on NVIDIA Fermi architec-
ture, such as faster atomics and more robust thread synchronization and multi
GPUs capability.

Acknowledgments. The experiment has been done by means a M.Sc. degree
in Informatics Engineering arisen from a Collaboration among several Italian
academic institutions. The hardware resources have been provided by Dept. of
Computing Engineering and Systems and S.Co.P.E. GRID Project infrastruc-
ture of the University Federico II of Naples. The data mining model has been
designed and developed by DAME Program Collaboration. MB wishes to thank
the financial support of PRIN-INAF 2010, ”Architecture and Tomography of
Galaxy Clusters”. This work has been partially funded by LINCE project of the
F.A.R.O. programme jointly financed by the Compagnia di San Paolo and by
the Polo delle Scienze e delle Tecnologie of the University of Napoli ”Federico II”
and it has been carried out also thanks to a hardware donation in the context
of the NVIDIA Academic Partnership program. The authors also wish to thank
the financial support of Project F.A.R.O. III Tornata, from University Federico
II of Naples.

References

1. Fabbiano, G., Calzetti, D., Carilli, C., Djorgovski, S. G.: Recommendations of the
VAO Science Council. E-print arXiv:1006.2168v1 [astro-ph.IM] (2010)

2. Brescia, M., Cavuoti, S., Paolillo, M., Longo, G., Puzia, T.: The Detection of Glob-
ular Clusters in Galaxies as a data mining problem. MNRAS MN-11-2315-MJ.R1
(2012)

3. Harris, M.J.: Real-Time Cloud Simulation and Rendering. University of North Car-
olina Technical Report TR03-040 (2003)

4. Mitchell, M.: An Introduction to Genetic Algorithms. The MIT Press, Cambridge
MA (1998)

5. Paolillo, M., Puzia, T. H., Goudfrooij, P., Zepf, S. E., Maccarone, T. J., Kundu,
A., Fabbiano, G., Angelini, L.: Probing the GC-LMXB Connection in NGC 1399:
A Wide-field Study with the Hubble Space Telescope and Chandra. ApJ, 736, 90
(2011)

6. Brescia, M., Longo, G., Djorgovski, G. S., Cavuoti, S., D’Abrusco, R., Donalek,
C., et al.: DAME: A Web Oriented Infrastructure for Scientific Data Mining &
Exploration. E-print arXiv:1010.4843v2 [astro-ph.IM] (2010)

7. Brescia, M., Cavuoti, S., Djorgovski, G.S., Donalek, C., Longo, G., Paolillo, M.:
Extracting knowledge from massive astronomical data sets. Astrostatistics and data
mining in large astronomical databases, L.M. Barrosaro et al. eds, Springer Series
on Astrostatistics, 15 pages. E-print arXiv:1109.2840v1 (2011)

8. DAME Program official website, http://dame.dsf.unina.it
9. DAMEWARE Web Application entry page, http://dame.dsf.unina.it/beta_

info.html


