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Abstract: Radiomics and genomics represent two of the most promising fields of cancer research, 

designed to improve the risk stratification and disease management of patients with prostate cancer 

(PCa). Radiomics involves a conversion of imaging derivate quantitative features using manual or 

automated algorithms, enhancing existing data through mathematical analysis. This could increase 

the clinical value in PCa management. To extract features from imaging methods such as magnetic 

resonance imaging (MRI), the empiric nature of the analysis using machine learning and artificial 

intelligence could help make the best clinical decisions. Genomics information can be explained or 

decoded by radiomics. The development of methodologies can create more-efficient predictive 

models and can better characterize the molecular features of PCa. Additionally, the identification 

of new imaging biomarkers can overcome the known heterogeneity of PCa, by non-invasive radio-

logical assessment of the whole specific organ. In the future, the validation of recent findings, in 

large, randomized cohorts of PCa patients, can establish the role of radiogenomics. Briefly, we 

aimed to review the current literature of highly quantitative and qualitative results from well-de-

signed studies for the diagnoses, treatment, and follow-up of prostate cancer, based on radiomics, 

genomics and radiogenomics research. 
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1. Introduction 

Prostate cancer (PCa) is the most frequently diagnosed cancer in Western Europe, the 

Americas, Australia, and the Central African continent, recognized as the second leading 

cause of death after lung cancer [1]. Only in the United States, 248,530 patients will be 

diagnosed with PCa in 2021, with a 5% increase compared to 2020 and 34,130 estimated 

deaths [2]. Based on the prostate-specific antigen (PSA) values at diagnosis, and the biopsy 

results and clinical stage, patients with PCa are stratified in risk categories and treated 

according to their disease prognosis [3]. Active surveillance (AS) is considered the gold 

standard treatment for patients with low-risk, indolent disease. Active treatment with rad-

ical prostatectomy (RP) or radiation therapy should be considered for patients with inter-

mediate-risk PCa. Finally, multimodal therapies, including active treatment to the pros-

tate and systemic therapies, may be necessary for patients harboring adverse high-risk 

diseases [4,5]. The main directions for all the studied cancers are those regarding the meth-

ods that guide the implementation of well-designed studies [6]. For this purpose, the im-

age biomarker standardization initiative (IBSI) (35) will possibly lead to a consensus and 

a standardization of radiomics features and image processing [7]. The TRIPOD (transpar-

ent reporting of a multivariable prediction model for individual prognosis or diagnosis) 

statement is intended for studies to validate multivariable prediction models [8]. All stud-

ies point to a conclusion that radiogenomics is a part of the desired current precision med-

icine. 

In the last years, the introduction of advanced imaging techniques, such as multipar-

ametric magnetic resonance of the prostate (mpMRI) and prostate-specific membrane an-

tigen positron emission tomography (PSMA-PET) scans, in addition to the availability of 

novel molecular markers, have shifted the paradigm of PCa screening, diagnosis, and 

treatment to a more individualized approach. According to the latest guidelines, every 

man at risk of PCa should undergo magnetic resonance of the prostate (MRI) prior to 

prostate biopsy [4,5]. If the MRI is positive, additional cores are taken from suspicious 

MRI lesions to improve prostate sampling. Additionally, MRI has been proven to provide 

higher staging accuracy compared to digital rectal examination (DRE), allowing a more 

conservative dissection in patients undergoing RP [9]. On the other hand, while Gleason 

grading and histological analysis are based on glandular architecture and the phenotypic 

appearance of PCa, novel techniques for the high-throughput sequencing of ribonucleic 

acid (RNA) and deoxyribonucleic acid (DNA) extracted from cancer cells helped to char-

acterize PCa at a genotypic level [10]. Being the latest studied in PCa genomics, the con-

cept of the heterogeneity of PCa, the intratumoral modifications, clonal and subclonal al-

terations, microheterogeneity, macroheterogeneity, the multifocal nature of PCa, and the 

inter-tumoral heterogeneity need to be matched between imaging and molecular pathol-

ogy, for establishing the clinical implications [11–13]. 

Therefore, radiomics and genomics represent two of the most promising fields of 

cancer research. With advanced computational methods, it is now possible to extract 

quantitative features from patients scans, and to analyze the high quantity of data coming 

from these novel diagnostic tools to ultimately improve the risk stratification and disease 

management of patients with PCa. The combination of these fields, namely, radioge-

nomics, founds its foundation on the correlation between advanced image texture analy-

sis, molecular characteristics, and patients’ outcomes. Radiogenomics have been studied 

in only a few cancers, such as glioblastoma [14–17], breast cancer [18–21], renal cancer [22–

24], and other common neoplasms, which are summarized in a review by Shui et al. [6]. 

In recent years, radiomics features have been linked to the molecular characteristics 

of cancer tissue, genomics, proteomics, and metabolomics. This new ongoing field of 
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research for PCa is an extension of radiomics, and its main focus is a tailored approach in 

the diagnosis of aggressive PCa [25], and the prediction of prognosis [26], progression 

[27], and treatment response [25]. The term radiogenomics may be correctly referred to in 

two different types of studies. Those who evaluate the correlation of the imaging quanti-

tative features and molecular characteristics of visible and non-visible cancer foci, and 

those who aimed to develop radiogenomic models to predict disease outcomes, combin-

ing complementary information coming from radiomics and genomics [28,29]. 

The aim of this review was to summarize the current evidence regarding radioge-

nomics and its application in patients with PCa, and to give an overview of the current 

evidence and future directions of radiogenomics. This will emphasize the role of the pre-

sent application of radiogenomics in clinical settings, with the need to better understand 

the combination between radiomics and genomics in PCa development, detection, treat-

ment, and follow-up of PCa patients, to better adapt the management of these patients. 

2. Results 

A total of 1066 research papers were identified. Fourteen duplicate files were re-

moved and 1052 abstracts were screened for eligibility. One hundred and twenty-five met 

the criteria for quantitative analysis using radiomics, radiogenomics, PCa, genomics, MRI, 

PET-CT as the keywords (Figure 1). After full-text examination, a total of 61 papers were 

ultimately included. 

 

Figure 1. Research flowchart for identification of related articles. 

2.1. Radiomics 

Radiomics is the extraction of the quantitative image analysis of textures and features 

(region size, shape or location, histogram of volume intensity, texture analysis, transform 

analysis, fractal analysis) [30], provided by imaging tools (e.g., mpMRI) that focus on the 

improvement of the analysis of large datasets through semi-automatic or automatic soft-

ware [31,32], with the aim of pinpointing the localization of the PCa and assessing its ag-

gressiveness [33,34]. These models were already studied in a variety of cancers [35–39]. 

The recent rise in artificial intelligence (AI) and machine learning (ML) algorithms has 
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introduced new classifications for PCa, regarding the differentiation of favorable from 

unfavorable disease [40,41]; the quantitative assessment of information predicting the tu-

mor Gleason score [31,32,42–44] and biochemical recurrence (BCR)-free survival [45]; the 

identification of tumors through mpMRI [43,46]; the development of new detection fea-

tures, such as advanced zoomed diffusion-weighted imaging (DWI) and conventional 

full-field-of-view DWI [47]; texture analysis of prostate MRI in the prostate imaging re-

porting and data system (PIRADS) for PI-RADS 3 score lesions [48]; the creation of frame-

works for automated PCa localization and detection [49]; and, finally, the management of 

radiotherapy treatment and toxicity [50–56], and the prediction of BCR [57–65]. Addition-

ally, radiomics and AI algorithms will help to limit the discrepancies between different 

readers [66]. Indeed, mpMRI of the prostate, which has gained popularity as the most 

reliable imaging technique for PCa diagnosis and treatment, provides qualitative and 

quantitative parameters. The qualitative aspect is linked to the ability of an expert radiol-

ogist to provide an accurate scoring for the lesion images in the prostate tissue [26]. Quan-

titative measurements, such as tumor size, prostate volumes, and radiomics features are 

computed directly from the image [67] and could be considered reader-independent. A 

summary of specific medical expressions is accessible in Table 1. 

Table 1. Short definitions for specific medical terms. 

Terminology Short Definition 

Radiomics 
Quantitative approach to medical imaging, enhancing exist-

ing data through mathematical analysis [68]. 

Genomics 

Study of whole genomes, including elements from genetics. 

Genomics uses a combination of recombinant DNA, DNA 

sequencing methods, and bioinformatics to sequence, as-

semble, and analyze the structure and function of genomes 

[69–71]. 

Radiogenomics 

Genomics information that can be explained or decoded by 

radiomics and to develop methodology to create more-effi-

cient predictive models [72]. 

DNA = deoxyribonucleic acid. 

Despite the reported advantages, challenges remain in deeply identifying the prog-

nostic and predictive factors for individual patients, developing markers to tailor the di-

agnosis and treatment of low-risk and high-risk PCa patients. 

2.2. Radiomics in Prostate Cancer Management 

Although it is beyond the purpose of this review to focus on the radiomics technical 

terms, we have briefly provided a reminder of them because they represents the starting 

point in this research field. Articles that studied radiomics in PCa are just briefly reminded 

and not analyzed in detail, and we had them incorporated in a table, along with their 

clinical outcomes and results. In PCa, the use of radiomics aids prostate volume selection 

and segmentation [30,40,46,73–76], PCa screening [28,77,78], detection and classification 

[29,77,79–81], in addition to its role in risk stratification [61,76,82,83], treatment 

[59,75,78,84–86], and prognosis. One of the first studies that analyzed the imaging features 

for PCA was performed by Khalvati et al. [87], with the goal of creating a radiomics-based 

auto detection method utilizing an mpMRI feature model that combined computed high 

b-value DWI (diffusion-weighted imaging) and correlated diffusion imaging, which was 

then evaluated through a support vector machine (SVM) classifier. The study reported 

good results in terms of sensitivity (95% CI 0.76–0.91), specificity (0.86 95% CI 0.82–0.91), 

and area under the curve (AUC) (0.90 95% CI 0.88–0.93). mpMRI-based radiomic features 

need, however, to still be largely tested, in order to assess the robustness and reproduci-

bility of methods and workflow; therefore, a proper standardization of MRI image 
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acquisition across institutions should be encouraged as an initial step. [75]. Similarly, more 

data are required from clinical trials to accurately distinguish cancerous versus benign 

lesions, to assess the robustness of radiomics-based predictive models, and to standardize 

features as the automatic segmentation of gross tumor volume [50,88–90]. In the detection 

of clinically significant PCa, the combination of radiological and clinical radiomic models 

was, indeed, among the best methods to predict clinically significant PCa in patients with 

a PIRADS score of three or more. The development of different models in an automatic 

fashion, using ML and AI techniques, and the construction of nomograms [91] could fur-

ther improve the radiomic potential on this issue. The currently existing data are promis-

ing, with radiomics outperforming PIRADS v2 in the detection of high-grade versus low-

grade PCa, although some limitations remain regarding the standardization of data, and 

further studies are required to confirm the performance of radiomics compared to con-

ventional radiological analysis [92]. Moreover, radiomics models are useful in the detec-

tion of prostate extracapsular extension (ECE), and allows predictive models to be build 

for the pretreatment detection of ECE, focusing on a combined model of clinical, conven-

tional radiology and radiomics [93–95]. 

In Table 2, we incorporated the details of the current research on the potential of 

radiomics to detect PCa, differentiating between aggressive and indolent disease, and 

ECE, reporting clinical outcomes of interest, accuracy, and imaging modality. 

Table 2. Clinical results of radiomics studies. 

Author Clinical Outcomes 
Type of Image 

Acquisition  
Results 

Radiomics in diagnosis and detection of prostate cancer 

Zhang et al. [29] 
Upgrading Gleason score from biopsy to 

RP 
MRI 

AUC: combined clinical and radi-

omics model 0.910, clinical model 

0.646, radiomics model 0.868 

Dulhanty et al. [80] Detection of PCa MRI 

Zone-discovery radiomics model 

(AUC 0.86) > clinical heuristics 

model (AUC 0.79) 

Bagher- 

Ebadian et al. [79] 

Detection of dominant 

intraprostatic lesions and normal tissue 
MRI 

Comparison between conventional 

model and artificial neural network 

model, AUC model (0.94 and 0.95, 

respectively) 

Qi et al. [77] 

Detection of PCa through radiomics in 

prostate cancer patients with PSA range 4–

10 ng/mL 

MRI 

Combined model (radiomics signa-

ture and clinical radiological risk 

factors) AUC 0.933, p < 0.05 

Chen et al. [81] 
Diagnosis of intermediate-/high-grade 

(GS ≥ 7) tumors 
MRI 

Radiomics-based model > PIRADS 

v2 model in PCa detection vs. no 

PCa (AUC 0.999). Validation in dif-

ferentiating high-grade from low-

grade PCa (AUC 0.777) 

Khalvati et al. [87] Detection of PCa MRI 

Specificity used as performance 

evaluation criteria can maximize the 

results for AUC (0.90), which leads 

to balanced results for sensitivity 

and specificity; 0.84 and 0.86, re-

spectively 

Hu et al. [47] Detection of PCa MRI 

Mixed model better compared with 

mp-MRI signatures and clinically 

independent risk factors alone 
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(AUC 0.81, 0.93, and 0.94 in training 

sets, and 0.74, 0.92, and 0.93 in vali-

dation sets, respectively) 

Brunese et al. [96] Gleason score prediction MRI 

Gleason score prediction equal to 

0.98473, 0.96667, 0.98780 and 0.97561 

for, respectively, Gleason score 3 + 

3, Gleason score 3 + 4, Gleason score 

4 + 3 and Gleason score 4 + 4 predic-

tion 

Radiomics and detection of clinically significant prostate cancer 

Wang et al. [97] 

Detection of clinically significant 

PCa Gleason score ≥ 7 (3 + 4). Lesions de-

fined as volume > 0.5 cm3 on histopathol-

ogy. 

mp-MRI 

PCa vs. normal PZ + TZ 

Combined: 0.978 (0.947–0.993) 

PCa vs. normal PZ 

Combined: 0.983 (0.960–0.995) 

PCa vs. normal TZ 

Combined: 0.968 (0.940–0.985) 

Kwon et al. [98] 
Detection of clinically significant 

PCa Gleason score ≥ 7 (3 + 4) 
MRI 

AUC 0.82 (random forests), 0.76 

(CART), and 0.76 (adaptive LASSO) 

Parra et al. [99] 
Detection of clinically significant 

PCa Gleason score ≥ 7 (3 + 4) 
mpMRI 

The trained models had an AUC of 

0.82 and an AUC of 0.82 on valida-

tion cohort 

Penzias et al. [100] 
Detection of high-grade 

PCa 
MRI 

Gabor texture features identified as 

most predictive of Gleason grade on 

MRI (AUC of 0.69) 

Cuocolo et al. [40] 
Detection of clinically significant 

PCa Gleason score ≥ 7 (3 + 4) 
MRI 

Multivariable analysis of T2W and 

ADC-derived SAVR: AUC 0.78 

Giambelluca et al. 

[48] 

Presence of clinically significant PCa 

Gleason score ≥ 7 (3 + 4) in PIRADS 3 im-

ages 

MRI 

AUC of 0.769 and 0.817 on T2w or 

0.749 and 0.744 on ADC maps im-

ages 

Analysis was performed using the 

GLM regression. To strengthen the 

reliability of the results and avoid 

over-fitting, 10-fold cross-validation 

was performed 

Min X et al. [101] 
Detection of clinically significant 

PCa Gleason score ≥ 7 (3 + 4) 
mpMRI 

Logistic regression modeling 

yielded AUC 0.872 in the training 

cohort and 0.823 in the test cohort 

Brancato et al. [102] 

Gleason Score ≥  6 in PIRADS 3 images 

and in peripheral PIRADS 3 upgraded to 

PIRADS 4 images 

MRI 

PIRADS 3 images: sensitivity, speci-

ficity and accuracy (0.8, 0.51, 0.71, 

respectively) with AUC  =  0.76. For 

upgraded PIRADS 4: AUC—0.89, 

sensitivity—0.87, specificity—0.62 

and accuracy—0.82 

Hou et al. [103] 

Detection of clinically significant PCa 

Gleason score ≥ 7 (3 + 4)in PIRADS 3 le-

sions 

mpMRI 

AUC model one is 0.89 and higher 

than that of model two with AUC of 

0.87 (p = 0.003) 

Zhang et al. [104] 

Differentiation between clinically signifi-

cant PCa Gleason score ≥ 7 (3 + 4) from in-

significant prostate cancer 

MRI 

Combination AUC of 0.95 (training 

group), 0.93 (internal validation 

group), and 0.84 (external validation 

group). p < 0.001 
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Gong et al. [105] 
Detection of clinically significant 

PCa Gleason score ≥ 7 (3 + 4) 
MRI 

Combined clinical and radiomics 

model (T2w/DWI) yielded an AUC 

of 0.788 

Woźnicki et al. [76] 
Prediction of clinically significant 

PCa Gleason score ≥ 7 (3 + 4) 
mpMRI 

The model combining radiomics, PI-

RADS, PSA density and DRE 

showed a significantly better perfor-

mance compared to ADC for clini-

cally significant prostate cancer pre-

diction (AUC = 0.571, p = 0.022) 

Bernatz et al. [106] 

Discriminating clinically significant PCa 

Gleason score ≥ 7 (3 + 4) versus indolent 

disease 

mpMRI 

Three classification models were 

trained and a subset of shape fea-

tures improved the diagnostic accu-

racy of the clinical assessment cate-

gories (maximum increase in diag-

nostic accuracy ΔAUC = +0.05, p < 

0.001) 

Gugliandolo et al. 

[43] 

Predictive of Gleason score, PIRADS v2 

score, and risk class 
mpMRi 

Gleason score, PIRADS v2 score, 

and risk class; AUC 0.74 to 0.94  

Krauss et al. [73] 

PSA level in patients with low suspicion 

for clinically significant PCa Gleason score 

≥ 7 (3 + 4). 

MRI 

Five radiomic features were signifi-

cantly correlated with PSA level (r: 

0.53–0.69, p < 0.05). The regression 

model significantly improves the ex-

planatory value for PSA level (p < 

0.05) 

Song et al. [91] 

Differentiate clinical significant PCa 

Gleason score ≥ 7 (3 + 4) from indolent dis-

ease 

mpMRI 

AUC on training, validation, and 

test dataset achieved results of 

0.838, 0.814, and 0.824, respectively 

Castillo et al. [92] 
Differentiate high-grade versus low-grade 

lesions 
mpMRI 

The three single-center models ob-

tained a mean AUC of 0.75, outper-

forming expert radiologist 

Li et al. [107] 
Prediction of clinically PCa Gleason score 

≥ 7 (3 + 4) 

Biparametric 

mpMRI 

Both the radiomics model (AUC: 

0.98) and the clinical–radiomics 

combined model (AUC: 0.98) 

achieved greater predictive efficacy 

than the clinical model (AUC: 0.79) 

Li, Q et al.  
Detection of clinically significant PCa 

Gleason score ≥ 7 (3 + 4) 
MRI 

Built a linear classifier model on 

these semantic traits and related 

to pathological outcome to 

identify clinically significant 

tumors. The discriminatory ability 

of the predictors was tested 

using cross-validation method 

randomly repeated and 

ensemble values were reported 

Bonekamp et al. [108] 

Compare radiomics and mean ADC for 

characterization of prostate lesions 

(Gleason grade group ≥ 2) 

MRI 

Comparison of the area under the 

AUC for the mean ADC (AUCglobal = 

0.84; AUCzone-specific ≤ 0.87) vs. the 

RML (AUCglobal = 0.88, p = 0.176; 

AUCzone-specific ≤ 0.89, p ≥ 0.493) 
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Bleker et al. [109] 
Identification of clinically significant pe-

ripheral zone PCa Gleason score ≥ 7 (3 + 4) 
mpMRI 

Combined model T2w and DWI im-

ages through an auto fixed VOI with 

AUC 0.870 (95% CI 0.980–0.754) 

Radiomics and detection of ECE 

Losnegård et al. [110] 

Prediction of extraprostatic extension in 

non-favorable intermediate- and high-risk 

prostate cancer patients 

mpMRI 

Best AUC for extraprostatic exten-

sion prediction models used in com-

bination (MSKCC + radiology + ra-

diomics) 0.80 

Ma et al. [94] Identification of PCa ECE mpMRI 

AUC of 0.902 and 0.883 in the train-

ing and validation cohort, respec-

tively. Outperforming the radiolo-

gists results (AUC range 0.600–

0.697), (75.00% vs. 46.88–50.00%, all 

p < 0.05), respectively 

Ma et al. [93] Identification of PCa ECE mpMRI 

AUC of 0.906 and 0.821 for the train-

ing and validation datasets, respec-

tively 

Cysouw et al. [111] 

Prediction of lymphovascular invasion 

nodal or distant metastasis and Gleason 

score 

(18F)DCFPyL 

PET 

Lymphovascular invasion (AUC 

0.86 ± 0.15, p < 0.01), nodal or distant 

metastasis (AUC 0.86 ± 0.14, p < 

0.01), Gleason score (0.81 ± 0.16, p < 

0.01), and ECE (0.76 ± 0.12, p < 0.01) 

ADC = apparent diffusion coefficient; AUC = area under the curve; DNA = deoxyribonucleic acid; DRE = 

digital rectal examination; DWI = diffusion-weighted imaging; ECE = extracapsular extension; GLM = general-

ized linear model regression; LASSO = least absolute shrinkage and selection operator; mpMRI = multiparametric 

magnetic resonance imaging; PIRADS v2 = prostate imaging reporting and data system version 2; PSA = pros-

tate-specific antigen; PZ = peripheral zone; SAVR = surface area-to-volume ratio; T2w = T2-weighted; TZ = 

transitional zone; VOI = volume of interest. 

2.3. Genomics and Molecular Tumor Characterization 

Genomics and molecular characterization permit the detection and characterization 

of PCa, improving diagnostic and prognostic accuracy. The requirement of tissue samples 

through biopsy, however, limits the clinical application in everyday care [112]. Another 

limitation of tissue sampling is related to the presence of tumor heterogeneity. From a 

clinical, morphological, and molecular point of view, PCa is indeed a highly heterogene-

ous disease. The tissue obtained via prostate biopsy could therefore lead to a biased as-

sessment of the samples, missing out relevant scorings and gradings of cancer [27]. The 

known multifocality of prostate cancer suggests the involvement of multiple genes with 

different clonal origins. Multiple foci in the prostate gland could, therefore, harbor differ-

ent cancers. Genetic profiling of PCa aims to correlate those changes in different genes 

expression, with oncological outcomes, in order to achieve an improved understanding 

of different clonal origins, and to improve diagnostic and therapeutic processes [11,113]. 

Genomic biomarkers, validated as independent predictors of oncological outcomes, 

are currently being used more and more in clinical practice, in the process of decision 

making of PCa patients [114]. The following four available genomic biomarkers are ap-

proved and available: Oncotype Dx test® [115], Prolaris test® [116–119], and Decipher test® 

[120–123]. Another investigated tissue biomarker, the mutated tumor suppression gene 

phosphatase and tensin homolog (PTEN) was assessed in prostate cancer radiogenomics 

[124], along with whole-exome DNA (deoxyribonucleic acid) sequencing data [125]. 
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2.3.1. Genomic Risk and Molecular Imaging in Prostate Cancer 

mpMRI has been validated as a radiologic technique used for PCa detection, targeted 

biopsy, and for better surveillance and staging of the disease [126]. AS, for low-risk PCa, 

is offered with the intent of reducing treatment-related events, but 30% of patients [127,4] 

are upstaged with the help of mpMRI-targeted biopsies [128]. Still, 10 to 20% of clinically 

significant PCa’s are not visible by mpMRI [129]. The pathological, molecular, and micro-

environmental hallmarks are poorly understood in PCa [130]. Aggressive PCa seems to 

have genomic alterations [131], and these molecular expressions, along with mpMRI phe-

notypes, are likely to have a prognostic significance [132]. Parry et al. [133] used low-pass 

whole-genome, exome, methylation, and transcriptome profiling of patient tissue cores 

from the same glands, along with circulating free and germline DNA from patients serum, 

in order to analyze the genomic, epigenomic, and transcriptomic images that are visible, 

or not, on mpMRI in PCa clinically localized disease. From the analyzed cores, 27% (six 

tumors) were not visible on mpMRI, and three (50%) cores that were harvested from non-

visible tumors on mpMRI had one or more genetic alterations spotted in metastatic cas-

tration-resistant PCa [134,135]. Radtke et al. [136] aimed to fuse the mpMRI imaging with 

a multi-dimensional map of biopsies and genomic features, to compare the genomic sig-

nals from the biopsy site, and from surrounding and other benign spots in the same pros-

tatic gland in patients with RP. A strong association was observed between PI-RADSv2 

and the Decipher test®, and the genomic Gleason grade classifier score, and the combina-

tion between targeted fusion biopsy and genomics showed a very good correlation with 

RP and genomics [137]. These studies are summarized in Table 3 and discussed below. 

Table 3. Compilations of studies on the association of imaging and genomics. 

Biomarker Description Test Source Analysis  Study Results 

Prostate cancer anti-

gen 3 

Prostate-spe-

cific mRNA 

quantifica-

tion 

Prostate bi-

opsy 

Negative prior 

biopsy 

De Luca et al. 

[138] 

Significant association between 

PCA3 score and PI-RADS grade 

groups 3, 4, and 5 (p = 0.006) 

   
Two negative 

prostate biopsies 

Alkasab et al. 

[139] 

PCA3 not statistically correlated 

with PCa diagnosis (p = 0.128) and 

PCA3 associated with high-grade 

PCa at final pathology (p = 0.0435) 

   No prior biopsy 
Fernstermaker et 

al. [140] 

PCA3 associated with MRI suspi-

cion score of 2 and 3 (p = 0.004), not 

4 and 5 (p = 0.340) 

   
Negative prior 

biopsy 
Perlis et al. [141] 

Normal PCA3 score gave a negative 

predictive value of 100% (p < 

0.0001) 

Decipher test® 

22 RNA 

markers for 

prognosis 

and predic-

tion of me-

tastasis 

RP or pros-

tate biopsy 

Low and inter-

mediate PCa 

Martin et al. 

[142] 

Decipher® biopsy genomic test was 

associated with Gleason grade 

group and it was independent of 

PIRADSv2 score 

   

Defining the fa-

vorable interme-

diate-risk pros-

tate cancer 

Falagario et al. 

[143] 

Unfavorable intermediate-risk cate-

gory (p < 0.001) and Decipher® test 

(p = 0.012) were statistically signifi-

cant predictors of adverse pathol-

ogy; mpMRI did not maintain sta-

tistical significance (p = 0.059) 
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Prediction of 

BCR 

Jambor et al. 

[144] 

Decipher® genomic score and 

mpMRI could not improve predic-

tive performance of biochemical re-

currence compared with the indi-

vidual use of these features 

   

mpMRI could 

predict aggres-

sive prostate 

cancer features 

Beksac et al. 

[145]  

Association of Decipher® score was 

significantly with lesion size (p = 

0.03), PIRADS score (p = 0.02) and 

extraprostatic extension (p = 0.01) 

   

Correlation be-

tween MRI phe-

notypes of PCa 

as defined by PI-

RADS v2 and 

Decipher 

Purysko et al. 

[146] 

MRI-visible lesions had higher De-

cipher® scores than MRI-invisible 

lesions (p < 0.0001); some lesions 

classified as intermediate/high risk 

by Decipher® are invisible on MRI 

   

BCR and ad-

verse pathology 

prediction 

Li et al. [45] 

New imaging-based nomogram; 

AUC (0.71, 95% CI 0.62–0.81) better 

than Decipher® AUC (0.66, 95% CI 

0.56–0.77) and prostate cancer risk 

assessment (CAPRA) score AUC 

(0.69, 95% CI 0.59–0.79) 

Oncotype Dx test® 

5 reference 

genes and 12 

cancer genes 

generating a 

genomic 

prostate 

score (GPS) 

Prostate bi-

opsy 

Association be-

tween mpMRI 

and Oncotype 

Dx test®GPS 

Leapman et al. 

[147] 

GPS differences among MRI catego-

ries for patients with Gleason pat-

tern 3 + 4 (p = 0.010), not in Gleason 

pattern 3 + 3 

   

GPS to predict 

adverse pathol-

ogy 

Salmasi et al. 

[148] 

GPS is a significant predictor for 

adverse pathology (p < 0.001) 

ConfirmMDx® 

Alterations 

in DNA 

methylation 

Prior nega-

tive biopsies 

mpMRI PIRADS 

score lesions af-

ter Con-

firmMDx® sam-

pling  

Artenstein et al. 

[149] 

Negative ConfirmMDx® test is in 

accordance with negative MRI re-

sults (71.4%). ConfirmMDx® sam-

pling may be useful as a fusion-tar-

geted biopsy rather than systematic 

biopsy  

Prolaris test® 
46-mRNA 

genomic test 

Prostate bi-

opsy 

Associations be-

tween MRI and 

the expression 

levels of cell cy-

cle genes 

Wibmer et al. 

[150] 

In the RP subgroup, ECE on MRI (p 

≤ 0.001–0.001) and cycle genes risk 

scores (p = 0.049) were significantly 

associated with Gleason score 4 + 3 

or higher, ECE and lymph node 

metastases 

AUC = area under the curve; BCR = biochemical recurrence; DNA = deoxyribonucleic acid; ECE = extracapsu-

lar extension; GPS = genomic prostate score; mpMRI = multiparametric magnetic resonance imaging; mRNA 

= micro ribonucleic acid; PCA3 = prostate cancer antigen 3; PIRADS v2 = prostate imaging reporting and data 

system version 2; RP = radical prostatectomy. 

Prostate Cancer Antigen 3 (PCA3) 

PCA 3 is an mRNA expression analysis of patients who are suspicious of having PCa, 

with a negative prior biopsy, from the post-DRE urine sample [151]. Researchers aimed 
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to evaluate the combination between MRI and PCA3 in different settings. De Luca et al. 

[138] determined, in 282 patients with a negative prior biopsy, the association of PCA3 

score, PI-RADS grade, and Gleason score, undergoing MRI/TRUS fusion-targeted biopsy, 

finding a statistically significant association between PCA3 score and PIRADS grade 

groups 3, 4, and 5 (p = 0.006). Alkasab et al. [139] looked at the potential of combined PCA3 

and mpMRI, in PCa patients with two negative biopsies. The results were limited, with a 

positive PCA3 associated with high-grade PCa at the final pathology (p = 0.0435), but not 

with an overall PCa diagnosis (p = 0.128) and a positive PCA3 associated with high-grade 

PCa at the final pathology (p = 0.0435). The combination of PCA3 and mpMRI in 187 pa-

tients with no prior prostate biopsy, published by Fernstermaker et al. [140], found that 

PCA3 is associated with an MRI suspicion score of two and three (p = 0.004), but not four 

and five (p = 0.340), with roughly no significant addition in cancer diagnoses. Perlis et al. 

[141] analyzed a cohort of 470 men with mpMRI and PCA3, and identified that the PI-

RADS score and PCA3 score were independently associated with clinically significant 

PCa on a second biopsy. Clinically significant PCa on the biopsy was not identified in 

patients with negative mpMRI and a normal PCA3 score, with a negative predictive value 

of 100% (p < 0.0001). 

Decipher Test® 

Decipher® is a clinical–genomic risk grouping system, consisting of the analysis of 22 

RNA markers that were originally obtained from radical prostatectomy samples and, 

lately, from prostate biopsy, to predict mortality and metastasis [123]. Martin et al. [142] 

explored the association between PIRADS v2 score, histological grade, and Decipher® 

score in biopsy samples from low- and intermediate-risk PCa patients, finding an associ-

ation between the Decipher® biopsy genomic test and Gleason grade group, inde-

pendently from the PIRADS v2 score. In a larger trial, by Falagario et al. [143], Decipher® 

test and mpMRI were analyzed, in order to better define a favorable intermediate-risk PCa 

in a cohort of 509 patients, reporting multivariable analysis, unfavorable intermediate risk 

category (p < 0.001), and Decipher test® (p = 0.012) as statistically significant predictors of 

adverse pathology, while mpMRI did not achieve statistical significance (p = 0.059). Simi-

larly, Jambor et al. [144] explored the use of a routine clinical prostate mpMRI and Deci-

pher® genomic classifier score to predict biochemical recurrence in 91 patients who un-

derwent radical prostatectomy (of which 48 developed biochemical recurrence), conclud-

ing the absence of improvement in the predictive performance of both tests combined, 

compared to individual utilization. Beksac et al. [145] retrospectively analyzed the associ-

ation of Decipher® score, which was significantly correlated with lesion size (p = 0.03), 

PIRADS score (p = 0.02), and extraprostatic extension (p = 0.01), reporting, in addition, 

increased activity of the PI3K-AKT-mTOR, WNT-b, and E2F signaling pathways in PI-

RADS 5 lesions, and of estrogen and inflammation/stress (NFkB and UV response) path-

ways in PIRADS 4 lesions. Moreover, in research by Purysko et al., it was found that MRI-

visible lesions had higher Decipher® scores than MRI-invisible lesions (p < 0.0001), but 

some lesions were still classified as intermediate/high risk by Decipher® and were not 

identifiable by mpMRI. This suggests that Decipher® added on to MRI will probably not 

lead to significantly more detections of cancer. Conversely, despite technical advance-

ments in prostate imaging, such as MRI, not appearing to be superior to Decipher® testing 

in the prediction of adverse pathology, recently, Li et al. [45] proposed a new imaging-

based nomogram to predict biochemical recurrence and adverse pathology, reporting 

promising results with an AUC (0.71, 95% CI 0.62–0.81) higher than Decipher® AUC (0.66, 

95% CI 0.56–0.77) and prostate cancer risk assessment (CAPRA) score AUC (0.69, 95% CI 

0.59–0.79). 
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Oncotype Dx Test® 

The Oncotype Dx test® prostate cancer assay includes 5 reference genes and 12 cancer 

genes, and it was validated using predefined acceptance criteria [152], to predict PCa ag-

gressiveness [115]. Leapman et al. [147] aimed to evaluate the association between mpMRI 

findings and a biopsy-based RT-PCR assay comprised of a 17- gene (Oncotype Dx test®) 

genomic prostate score, among men with clinically favorable PCa, following the initial 

diagnosis. The results show that genomic prostate score differences were reported among 

MRI categories for patients with the Gleason pattern 3 + 4 (p = 0.010), but not for the 

Gleason pattern 3 + 3, while no differences were reported among androgen signaling or 

proliferation genes. Salmasi et al. [148] investigated the ability of the genomic prostate 

score to predict adverse pathology in 134 patients undergoing MRI-guided prostate bi-

opsy, resulting in the multivariate analysis that confirmed that the genomic prostate score 

is a significant predictor for adverse pathology (p < 0.001). 

ConfirmMDx® 

ConfirmMDx® is a tissue-based gene assay that screens for epigenetic modifications 

identified in a prostate tissue sample. Alterations in DNA methylation in tumor suppres-

sor genes (GSTP1, GASSF1, and APC) are identified by this assay, with the aim to stratify 

the risk of men with prior negative biopsies [153,154]. An original research by Artenstein 

et al. [149], using mpMRI PIRADS score lesions after ConfirmMDx® sampling, indicates 

that a negative ConfirmMDx® test was somehow in accordance with negative MRI results 

(71.4%). In addition, PIRADS 5 lesions were identified in the anterior base of the prostate, 

confirming the usefulness of ConfirmMDx® sampling in a fusion-targeted biopsy setting. 

Prolaris Test® 

Prolaris test® is a 46-mRNA genomic test that analyzes prostate biopsy tissue [155]. It 

generates a risk score that has been associated with BCR, metastasis, and cancer-specific 

survival in PCa patients [156]. To date, one significant study has been published, from 

Wibmer et al. [150], which has studied the associations between MRI and the expression 

levels of cell cycle genes. In the prostatectomy subgroup, ECE on MRI (p ≤ 0.001–0.001) 

and cycle genes risk scores (p = 0.049) were significantly associated with the Gleason score 

4 + 3 or higher, ECE, and lymph node metastases. 

The available data on combining genomics and imaging show that PCA3 and MRI 

features are limited, and with little evidence on the actual comparative research between 

genomic risk tests and MRI. The results point out the fact that there is a real potential in 

combining PCA3 and MRI scores. The Decipher genomic score is good at predicting the 

Gleason grade group and adverse pathology [157], but the combination with mpMRI 

could not improve the predictive performance of BCR; a wide and overlapping distribu-

tion of GPS results were observed across PIRADS scores in some studies, and only one 

study showed an association with PIRADS score. For ConfirmMDx® test and Con-

firmMDx®, only two studies showed that in the RP subgroup, some MRI features and 

cycle genes risk scores were associated with clinically significant PCa, and ECE and lymph 

node metastases, and that a negative ConfirmMDx® test is in accordance with negative 

MRI results, respectively. Most of the studies are of retrospective design, but to determine 

the potential ability of combining genomics with imaging, in improving PCa diagnosis, 

there is a need for well-designed randomized controlled trials. 

2.3.2. Radiogenomics in Prostate Cancer Management 

In PCa research, several papers focused on the differential expression of genomic 

markers in MRI-visible and -invisible lesions. One of the first experiences with radioge-

nomics was reported by McCann et al., who performed a retrospective analysis of 30 pa-

tients with proven PCa at biopsy and MRI performed prior to RP [124]. The aim was to 

investigate associations between the quantitative imaging features of multiparametric 
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MRI and the PTEN expression of PCa. They found a correlation between Gleason score 

and PTEN expression (r = −0.30, p = 0.04), and between kep and PTEN expression (r = −0.35, 

p = 0.02). 

Stoyanova et al. [158] reported quantitative mpMRI features and gene expression in 

biopsy tissue. The authors introduced the concept of habitat, which is a combination of 

images from multiple modalities, compiling pieces of orthogonal information. In radioge-

nomic analysis, genes were significantly associated with radiomic features (p < 0.05). This 

was the first study that correlated radiogenomic parameters with prostate cancer in men 

with MRI-guided biopsy. 

In another work by Renard-Penna et al. [119], prognostic biomarkers were identified 

through radiogenomics, with a Gleason score > 3 associated with a longer median tumor 

diameter and a lower ADC (both p < 0.0001). The authors also found an association be-

tween Prolaris® cell cycle progression score, Gleason score (r = 0.199, p = 0.04), and PIRADS 

score (r = 0.26, p = 0.007). This paper states that mpMRI is able to predict low- and high-

risk Gleason scores in the tumor, and suggests that the management of the early stages 

prostate cancer could strongly benefit, by performing MRI-targeted biopsy coupled with 

molecular analysis. 

Jamshidi et al. [125] performed a research study where a multi-region spatial map 

was created with mpMRI images and histopathology of the prostate gland, after RP com-

bined with whole-exosome DNA sequencing, performed on the regions of interest. No 

statistically significant linear correlation was identified between individual mutations and 

mpMRI imaging parameters or PIRADS scores (p = 0.3). This article is one of the few that 

have performed MRI and whole-exome sequencing. It shows a continuum of mutations 

across regions that were found, via histologic analysis, to be high grade and normal. 

Houlahan et al. [130] identified small nucleolar RNAs that were significantly more 

likely to have elevated abundance in visible tumors (odds ratio (OR) 4.4; FDR = 0.002; 

Fisher’s exact test). Two small nucleolar RNAs (snoRNAs) that were identified (SNORA37 

and SNORA12) were prognostic; a high abundance was associated with early BCR in an 

independent intermediate-risk PCa cohort (hazard ratio (HR) 2.00 and 2.00; p = 0.053 and 

0.051). Another interesting finding was that a snoRNA signature accurately predicted PI-

RADS v2 score of 5 for PCa tumors, with 76% accuracy. Noncoding transcripts were asso-

ciated with mpMRI visibility. The authors introduced a new term, nimbosus, character-

ized by the combination of pathological, molecular, and micro-environmental events, in-

cluding intraductal carcinoma and cribriform architecture, genomic instability, SCHLAP1 

expression, and hypoxia. The signature of snoRNAs associated with nimbosus hallmarks 

seems to have the potential to differentiate visible from non-visible tumors. This paper 

observed that MRI findings are associated with the biological features of aggressive pros-

tate cancer. 

Li P et al. [159] also investigated the visibility of tumors on MRI and their biology, 

and identified four genes (PHYHD1, CENPF, ALDH2, GDF15) that predict MRI visibility 

(AUC: 0.86) and progression-free survival (in the following two external datasets: 

GSE21034 and GSE40272 genes). The four genes define two groups with significantly dif-

ferent BCR-free survival (HR = 2.53 (1.55–4.11), p < 0.001, and HR = 1.3 (1.04–1.63) p = 0.021, 

respectively), concluding that MRI visibility was associated with the genetic features that 

were linked to poor prognosis. This article looked at the genes involved in PCa prognosis 

and metastasis, indicating that MRI visibility has prognostic significance and is linked to 

poor prognosis. 

Eineluoto et al. [160] determined the association between PTEN and ETS-related gene 

(ERG), with visible and invisible PCa lesions on MRI. A retrospective analysis of 346 

patients with pre-RP MRI, PTEN and ERG tissue microarray staining, was performed. 

Patients with MRI-invisible lesions had less PTEN loss and ERG-positive expression 

compared with patients with MRI-visible lesions (17.2% vs. 43.3%, p = 0.006; 8.6% vs. 

20.0%, p = 0.125). This study shows that PTEN loss, BCR, and non-organ-confined disease 

were more often encountered with MRI-visible lesions. 
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Hectors et al. [161] retrospectively analyzed a cohort of 64 patients to evaluate the 

predictors of the final pathology Gleason score. Several MRI radiomics features, based on 

both T2w and DWI sequences, were found to be significantly associated with the 

pathological Gleason score, prognostic gene expression signatures, including Decipher®, 

and 698 PCa-related gene expression levels. Machine learning was used to develop a 

model to predict a Gleason score of 8 or greater, with a fair performance (AUC 0.72), and 

excellent performance to predict a Decipher® score of 0.6 or greater (AUC 0.84). This study 

found 14 MRI imaging radiomics features correlated with Gleason score. 

Li L et al. [162] evaluated radiomic feature-derived MRI T2w and ADC maps of the 

prostate, to distinguish different Decipher® risk groups (low, intermediate, and high). 

Their model outperformed the prediction using PIRADS v2 (AUC = 0.67), but showed 

comparable performance with the Gleason grade group (AUC = 0.80), and the best 

discriminating radiomic features were correlated with gland morphology and gland 

packing on corresponding histopathology (R = 0.43, p < 0.05). Sun et al. [163] studied full 

transcriptome genetic profiles that were obtained using next-generation sequencing and 

texture features (obtained from T2w images and parametric maps from functional 

mpMRI). Immunohistochemistry identified only a weak association between mpMRI 

features and hypoxia gene expression (p < 0.05). This study proposed a model comprised 

of radiomic features derived from T2 and ADC images, to distinguish different Decipher 

risk groups, and it outperformed the risk prediction of PIRADS v2. 

Fischer et al. [27] studied a radiogenomic model including clinical, imaging, and 

genomic (gene and miRNA expression) datasets for 298 PCa patients. Four biomarkers 

(Alanyl membrane aminopeptidase, microRNA-mir-217, mir-592, mir-6715b) were found 

to be able to differentiate between the T2c and T3b PCa stages, which were highly 

correlated (average r = ±0.75) with aggressiveness on related radiomics imaging features. 

This research proposed a model that found that a radiogenomic approach using four 

biomarkers can improve the prediction accuracy for disease stage and the characterization 

of PCa aggressiveness. 

Wibmer et al. [150] analyzed, retrospectively, the association of cell cycle risk score 

(Prolaris® test) and PIRADS v2 score, ECE, and quantitative metrics. Patients with ECE on 

their MRI had a significantly higher mean cell cycle risk score (reader 1: 3.9 vs. 3.2, p = 

0.015; reader 2: 3.6 vs. 3.2, p = 0.045). This paper found that the radiomic phenotypes of 

ECE on MRI indicate a more aggressive genotype of PCa. 

VanderWeele et al. [164] investigated the risk of aggressive PCa prior to 

prostatectomy, using a radiomic model to assess the immunohistochemical analysis of 

cells expressing PTEN, obtaining two perfusion imaging contrast uptake parameters that 

mathematically correlated with PTEN expression (r = 0.25, p < 0.1 and r = 0.43, p < 0.01), 

and T2w unevenness also showed some correlation tendency (r = −0.25, p < 0.1). This 

preliminary article suggests that a fast contrast uptake of cancer on DCE-MR imaging and 

a T2w imaging feature are potentially associated with prostate cancer PTEN expression. 

Switlyk et al. [165] investigated PTEN expression in PCa patients. Forty-three 

patients who underwent pre RP MRI were included. Based on bead arrays (p = 0.006) and 

real-time quantitative polymerase chain reaction (RT-qPCR) (p = 0.03) data, a significantly 

lower ADC, derived from DWI, was found in tumors with low PTEN expression. ADC 

was negatively correlated with Gleason score (p = 0.001) and tumor size (p = 0.023). This 

article found that in aggressive PCa, due to PTEN loss, ADC derived from DWI may be 

useful in detecting these patients. 

The summary articles with the molecules studied and imaging performed, and the 

methodology and results, are available in Table 4. 
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Table 4. Overview of radiogenomic literature on prostate cancer. 

Reference 
Molecule 

Studied 

Imaging 

Performed 
Results Approach Method 

McCann et al. 

[124] 
PTEN MRI 

Perfusion imaging 

contrast uptake, 

T2-weighted 

signal-intensity 

skewness 

Classical Radiomic 

Stoyanova et 

al. [158] 

General gene 

expression 
MRI 

Radiomic 

signatures 
Classical Radiomic 

Renard-Penna 

et al. [119] 

RNA 

expression 

signature 

derived from 

cell cycle 

proliferation 

genes 

(Prolaris®) 

mpMRI 

Correlation with 

Gleason score (r = 

0.199, p = 0.04) and 

PIRADS sum score 

(r = 0.26, p = 0.007) 

Classical Radiomic 

Jamshidi et al. 

[125] 

Whole-

exosome DNA 

sequencing 

mpMRI 

No statistically 

significant linear 

correlation 

between 

individual 

mutations and 

mpMRI imaging 

parameters or 

PIRADS scores (p 

= 0.3) 

Classical Radiomic 

Houlahan et 

al. [130] 

Small 

nucleolar 

RNAs 

mpMRI 

Elevated snoRNA 

abundance may be 

a novel hallmark 

of nimbotic 

tumors (AUC: 

0.87; 95%CI: 0.75–

0.99) 

Classical Radiomic 

Li P et al. [159] 

Differentially 

expressed 

genes 

MRI 

MRI visibility 

(AUC: 0.86), 

progression-free 

survival HR = 2.53 

(1.55–4.11), p < 

0.001 BCR-free 

survival HR = 1.3 

(1.04–1.63), p = 

0.021 

Classical Radiomic 

Eineluoto et 

al. [160] 

PTEN and 

ERG 
MRI 

MRI-invisible 

lesions had less 

PTEN loss and 

ERG-positive 

expression 

compared with 

Classical Radiomic 
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patients with MRI-

visible lesions 

(17.2% vs. 43.3%, p 

= 0.006; 8.6% vs. 

20.0%, p = 0.125) 

Hectors et al. 

[161] 

40 gene 

expression 

signatures 

plus 

Decipher® 

MRI 

Prediction of 

Gleason score of 8 

or greater (AUC 

0.72) and 

prediction of a 

Decipher® score of 

0.6 or greater 

(AUC 0.84). 

Classical Radiomic 

Li L et al. [162] Decipher® MRI 

Model 

outperformed the 

prediction using 

PIRADS v2 (AUC 

= 0.67), and 

comparable 

performance with 

Gleason grade 

group (AUC = 

0.80) 

Classical Radiomic 

Sun et al. [163] 

Full 

transcriptome 

genetic 

profiles 

mpMRI 

Weak association 

of mpMRI features 

and hypoxia gene 

expression (p < 

0.05). 

Classical Radiomic 

Fischer et al. 

[27] 

Gene and 

miRNA 

expression 

(Alanyl 

membrane 

aminopeptida

se, microRNA-

mir-217, mir-

592, mir-

6715b) 

mpMRI 

T2c and T3b 

prostate cancer 

stages being 

highly correlated 

with 

aggressiveness on 

related imaging 

features (average r 

= ± 0.75) 

Classical Radiomic 

Wibmer et al. 

[150] 
Prolaris® test MRI 

ECE on MRI had 

significantly 

higher mean cell 

cycle risk score 

(reader 1: 3.9 vs. 

3.2, p = 0.015; 

reader 2: 3.6 vs. 

3.2, p = 0.045) 

Classical Radiomic 

Vander-Weele 

et al. [164] 
PTEN mpMRI 

Imaging uptake 

parameters 

showing 

mathematical 

correlation with 

Classical Radiomic 
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PTEN expression 

(r = 0.25, p < 0.1 

and r = 0.43, p < 

0.01), and T2w 

unevenness also 

showed some 

correlation 

tendency (r = 

−0.25, p < 0.1) 

Switlyk et al. 

[165] 
PTEN MRI 

ADC was 

negatively 

correlated with 

Gleason score (p = 

0.001) and tumor 

size (p = 0.023) 

Classical Radiomic 

ADC = apparent diffusion coefficient; AUC = area under the curve; DNA = deoxyribonucleic acid; 

ECE = extracapsular extension; ERG = ETS-related gene; mpMRI = multiparametric magnetic 

resonance imaging; miRNA = micro ribonucleic acid; PIRADS = prostate imaging reporting and data 

system; PTEN = phosphatase and tensin homolog; T2w = T2-weighted. 

3. Discussion 

Radiogenomics has been thoroughly studied in prostate cancer, with investigations 

between quantitative image features and single gene expression, which delivered 

promising results. In particular, regarding the characterization of PTEN expression, a 

weak, but significant, association has been reported between imaging features and the 

Gleason score of a peripheral zone PCa [124]. Similarly, a significantly lower ADC 

(negatively correlated with Gleason score and tumor size) was found for tumors with low 

PTEN expression, which was, in addition, negatively correlated with lymph node 

involvement [165]. Another study showed that imaging uptake parameters reported a 

mathematical correlation with PTEN expression (r = 0.25, p < 0.1 and r = 0.43, p < 0.01, and 

T2w unevenness also showed some correlation tendency (r = −0.25, p < 0.1) [164]. Other 

studies also correlated radiomic features with Gleason score and PIRADS sum score [119]. 

The development of genome sequencing studies looked at the genomic profile, with the 

help of radiomics, in order to investigate broader aspects of the genomics potential, while 

earlier research studied a small number of patients and a small number of genes [158]. 

Radiogenomic models can determine the gene expression profiles from biopsy samples. 

In early studies, one gene was selected to be studied [166]. Lately, genomic research 

showed that gene expression is not influenced much by sampling tumor heterogeneity 

[167]. Retrospective articles that classified gene expression in low- or high-risk scores, 

using the Decipher® genetic risk profile, could predict a Gleason score of 8 or greater (AUC 

0.72) and a Decipher® score of 0.6 or greater (AUC 0.84), and had comparable performance 

with the Gleason grade group (AUC = 0.80), but these are modest results. Some of the 

results of radiomic studies can distinguish the genomic signatures associated with high-

risk disease [130] and hypoxia gene expression [34]. A study reported that quantitative 

mpMRI features and gene expression in biopsy tissue and in radiogenomic analysis genes 

were significantly associated with radiomic features [158], while the other identified 

biomarkers were able to differentiate between the T2c and T3b prostate cancer stages [27]. 

Some retrospective radiogenomic research identified those visible mpMRI lesions, and the 

genes that can predict visibility, and allows the identification of high risk patients of 

harboring aggressive disease [130,159,160]. Research being performed on the association 

between prostate MRI and tissue-based gene expression shows that genomic testing can 

reveal more about the disease biological processes [168–170]. These two possibilities can 

enhance the pace of monitoring the patients, especially in active surveillance, which can 
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indicate those at greater risk of harboring aggressive disease, and could potentially be 

more strictly followed after diagnoses. Finally, the combination of MRI and the genomic 

test could raise the health-care systems burden [171]. At this point, radiogenomics is an 

emerging field that studies the correlation between image phenotypes and genomics 

inside a tumor. The translation from clinical studies into clinical practice is still a 

challenge, because matching data from imaging and whole-genome sequencing is very 

complex. The different imaging techniques and machines used to provide imaging data 

make it difficult to allow standardized results. The low number of patients included in the 

radiogenomic research also limits the validity of the results. Some limitations of this 

review have to be addressed. Only a few databases and online search engines were used 

to retrieve relevant data. The search for the above topic was performed manually, by two 

independent researchers. Scrutinizing more databases and registries, using a software 

search, may have provided more relevant data for the subject. 

Current Challenges/Limitations and Future Perspectives 

Radiogenomics holds great promise, but it is a new area of research, which means 

that it is, therefore, facing several limitations [172]. In the last 5 years, only a few studies 

have been published on radiogenomics in PCa, and, up to date, no application in the 

clinical setting has been properly established. Even in this case, this is due to several 

limitations associated with radiogenomic analysis [173]. 

Radiomic flow is a complex process, and every aspect of the image acquisition, such 

as defining and contouring the regions of interests, and choosing the best features to be 

extracted and the proper statistics to be applied, remains challenging. Lately, explainable 

AI (XAI), using DNNs (deep neural networks), may help radiomics in classification and 

prediction in the clinical setting [174,175], and a controllable and explainable probabilistic 

radiomics framework was proposed, through which a 3D CNN feature is extracted upon 

the lesion region only and is used to approximate the ambiguity distribution over human 

experts [176]. These new features will have to be further validated. The heterogeneity that 

limits the standardization of the results obtained, and applying it for every scenario, leads 

to a domain shift, which represents the difference between the training data distribution 

and the distribution of where a model is employed [175]. Currently, there are methods 

that try to solve the problem of domain shift by using domain adaptation and fine-tuning 

methods [177,178]. A significant time is required for experienced radiologists to obtain a 

proper manual delineation, and the inter-observer variability in reading and segmenting 

regions of interest represent the major drawback. Similarly, the different protocols 

designed to improve the specificity and sensitivity of radiomic features performed in the 

studies evaluated, without appropriate standardization, could further limit the results 

obtained [179,180]. The utilization of different acquisition protocols, scanners, and 

radiomic studies represent another risk, which could compromise the results and 

predictive performances, due to the presence of random errors/noise occurring in 

excessively complex models (such as having too many parameters or forcing a linear 

model for non-linear data). To further complicate the research, gene expression and 

signaling pathways [181] are intrinsically and extremely complex. Matching the data from 

whole-genome sequencing with imaging data is difficult, due to the large amount of data 

and features, and due to the differences in patient characteristics and imaging protocols. 

The small patient cohort and retrospective nature of radiogenomic studies represent 

another limit to the standardization of the protocols [179]. However, despite those 

difficulties, radiogenomics is trying to overcome the known heterogeneity of PCa with a 

non-invasively radiological assessment of the whole specific organ [26]. 

The future of radiogenomics could be its integration into everyday clinical practice, 

if larger prospective, multicenter studies and protocol standardization of the imaging 

features extracted will be performed, permitting the validation of the potential of this 

technique in the identification of relevant imaging biomarkers. The possibility to access 

large public databases of imaging and genome data will further ease this process [182,183]. 
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The International Cancer Genome Consortium (ICGC), for example, provides the 

information of genomic, transcriptomic and epigenomic abnormalities, and somatic 

mutations in prostate cancer [184–187]. Some patients from these genome databases have 

both radiomic and genomic data [83,188]. Lately, the AI and big public databases with 

genomics and imaging features could be used to develop CAT, to ease the translation of 

results into clinical practice and to aid in the clinical decision. This also comes with a 

number of drawbacks, as follows: a lack of standardization, and imaging and reporting 

protocols that differ significantly among institutions. The process of contouring the 

regions of interest is mainly performed in a manual/classic fashion, and the user inter-

variability is unfortunately still high. Automatic and semi-automatic computer designed 

software has been proposed to overcome these pitfalls [189]. All the present studies 

utilized conventional radiomic features [27,165] and, in the future, adding deep learning 

techniques may improve the results. By implementing models to label the region of 

interest, using deep learning methods, with the help of clinicians to establish the ground 

truth, would probably improve the performance of large-scale datasets from genomic and 

imaging databases [190–193]. A summary of the advantages and limitations of 

radiogenomics is listed in Table 5. 

Table 5. Advantages and limitations of radiogenomics compared to actual management of PCa risk stratification. 

Radiogenomics Advantages Limitations 

 

Could provide accurate imaging 

biomarkers, substituting for genetic testing 

with lower cost [179] 

Lack of prospective studies [6] 

 

AI and deep learning using big public 

databases with genomics and imaging 

features will be used to develop computer-

aided tools for clinical practice translation 

[27] 

Image acquisition for defining and contouring 

the regions of interests need expert radiologists 

[26] 

 

Automatic and semi-automatic computer 

designed software used to reduce 

drawbacks (lack of standardization, 

imaging and reporting protocols which 

differ significantly among institutions) 

[189] 

Significant time used for proper manual 

delineation [179] 

 

Radiomics/radiogenomics biomarkers may 

predict 

risk and outcomes and may be used to 

personalize treatment options [179] 

High inter-observer variability in reading and 

segmenting regions of interest [180] 

 

Insights into the tumor genome requires 

biopsies, 

an invasive procedure that may increase 

patient morbidity. Radiogenomics can 

predict tumor genomic alterations [26] 

Lack of repeatability and reproducibility—no 

standardization—different acquisition 

protocols, scanners and radiomic studies 

[194,195] 

 

Availability of whole-tumor information 

with a 

radiomics-based approach that can 

provide 

predictive and prognostic data [196] 

Matching the data from whole-genome 

sequencing with imaging data is difficult due to 

different patient characteristics and imaging 

protocols [179] 

4. Material and Methods 
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A literature search was performed in June 2021 using PubMed, Google Scholar, and 

Web of Science. A free text strategy was deemed to be most suitable for the following 

purpose: “Radiomics and PCa and Genomics and Radiogenomics and MRI”. We focused 

on papers published in the last five years. After literature search and duplicates removal, 

the abstract of each study was assessed to evaluate the eligibility. Finally full texts of 

selected articles were retrieved and screened. Additional papers were included by 

reference lists if deemed appropriate. In this literature review we had included the 

radiomics data grouped in a summary table in order to emphasize the early importance 

of this research, radiogenomics data (MRI and PET-CT), including data from leading 

studies later than five years, genomic tests, commercially available and novel genetic and 

transcriptomic [197] and metabolomic [198] biomarkers studied in conjunction with 

imaging. 

5. Conclusions 

We had identified a lot of blank space in the radiogenomics literature, when it comes 

to research in prostate cancer. No prospective randomized control trials were published. 

At this moment, we do not have any utility or validity for the use of radiogenomics in 

clinical practice. Many gaps remain to be filled, probably some of them by using models 

that consist of clinical, radiomic, and genomic biomarkers, combined or alone, to improve 

predictive capacities. The rise in AI in medicine, especially deep learning techniques, 

could address those limitations and permit the clinical implementation of radiogenomics. 
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Abbreviations 

AAN Artificial neural network 

ADC Apparent diffusion coefficient 

AI Artificial intelligence 

BCR Biochemical recurrence 

CCP Cell cycle progression 

CT Computed tomography 

DCE Dynamic contrast-enhanced 

DSC Dynamic susceptibility contrast 

DNA Deoxyribonucleic acid 

DRE Digital rectal examination 

DNN Deep neural network 

DWI Diffusion-weighted imaging 

ECE Extracapsular extension 

f-DWI Full-field-of-view 

z-DWI Zoomed diffusion-weighted imaging 

LASSO Least absolute shrinkage and selection operator 

ML Machine learning 

MRI Magnetic resonance imaging 
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mpMRI mpMRI 

PCa Prostate cancer 

PIRADS Prostate imaging reporting and data system 

PSA Prostate-specific antigen 

PSMA PET-CT Prostate-specific membrane antigen positron emission computed tomography 

PTEN Phosphatase and tensin homolog 

RF Random forest 

RNA Ribonucleic acid 

ROI Region of interest 

RP Radical prostatectomy 

SAVR Surface area-to-volume ratio 

SVM Support vector machine 

T2w T2-weighted 

TCGA The Cancer Genome Atlas 

TCIA The Cancer Imaging Archive 

TRUS Transrectal ultrasonography 

VOI Volume of interest 
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