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A B S T R A C T   

This paper presents methodological investigations performed in research activities in the field of Multi- 
disciplinary Design and Optimization (MDO) for overall aircraft design in the EU funded research project 
AGILE (2015–2018). In the AGILE project a team of 19 industrial, research and academic partners from Europe, 
Canada and Russia are working together to develop the next generation of MDO environment that targets sig-
nificant reductions in aircraft development costs and time to market, leading to cheaper and greener aircraft. The 
paper introduces the AGILE project structure and describes the achievements of the 1st year that led to a 
reference distributed MDO system. A focus is then made on different novel optimization techniques studied 
during the 2nd year, all aiming at easing the optimization of complex workflows that are characterized by a high 
number of discipline interdependencies and a large number of design variables in the context of multi-level 
processes and multi-partner collaborative engineering projects. Three optimization strategies are introduced 
and validated for a conventional aircraft. First, a multi-objective technique based on Nash Games and Genetic 
Algorithm is used on a wing design problem. Then a zoom is made on the nacelle design where a surrogate-based 
optimizer is used to solve a mono-objective problem. Finally a robust approach is adopted to study the effects of 
uncertainty in parameters on the nacelle design process. These new capabilities have been integrated in the 
AGILE collaborative framework that in the future will be used to study and optimize novel unconventional 
aircraft configurations.   

1. Introduction 

OVER the past century, the aircraft design and development process 

has evolved from pioneering - one or few people building a simple and 
small aircraft in a shed - into a highly complex but well-established 
engineering process. Today, aircraft are highly advanced technological 
and competitive products that are developed by multidisciplinary teams 
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of experts. To keep up with the growing demand for more complex and 
innovative products in shorter time and in higher volumes, the aircraft 
industry digitizes rapidly. Innovative design approaches based on digital 
modeling, simulation and optimization technologies are more and more 
used to take major design decisions as early as possible in order to 
develop state-of-the-art aircraft quicker and more cost efficient. In 
addition, the exploration of unconventional aircraft configurations that 
might include disruptive technologies is a major challenge, and will not 
be achieved without the integration on system-level of physics-based 
simulation and optimization using the appropriate level of fidelity. 
With the large amount of computational power that is available today, 
there remains the challenge to master the complexity of the multidis-
ciplinary design workflow and all its corresponding variables. High- 
dimensional data sets resulting from various design competences need 
to be handled in an efficient way. 

Over the last three decades, there has been a growing interest in 
improving the efficiency of the aircraft design process through the use of 
multidisciplinary design and optimization (MDO) numerical tools and 

techniques. In the early 2000’s very successful MDO applications were 
made for a subset of disciplines, but it was at that time already 
acknowledged that the ultimate value of MDO would be in its ability to 
optimize the aircraft as a system [1]. Today the exploitation of the full 
potential of MDO for the design and optimization of a complete aircraft 
is still an open challenge mainly due to the technical and management 
issues encountered during the set up and the operations of such a 
complex optimization work flow. More recently a novel methodology 
that encapsulates both knowledge and skills was identified [2] to be able 
to manage the increasing design complexities. The normalization to-
wards “modeling knowledge” was mentioned [3] as the next required 
step for the evolution of complex aeronautical systems. One of the major 
obstacles in the current generation of MDO systems is the effort needed 
to set up complex collaborative frameworks, and between 60 and 80% of 
the project time is spend in this phase [4]. 

Since 2015 the EU funded Horizon 2020 AGILE project [5] is 
developing the next generation of aircraft Multidisciplinary Design and 
Optimization environment that focuses on reducing the set up time for 

Nomenclature 

ADOE Adaptive Design of Experiments 
AGILE Aircraft 3rd Generation MDO for Innovative Collaboration 

of Heterogeneous Teams of Experts 
BPR Bypass Ratio 
CFD Computational Fluid Dynamics 
CPACS Common Parametric Aircraft Configuration Schema 
DC Design Campaign 
DOE Design Of Experiments 
ED Engine Deck 
EGO Efficient Global Optimization 
FORM First Order Reliability Method 
FOSM First Order Second Moment 
GA Genetic Algorithm 
IT Information Technology 
MDA Multi-Disciplinary Analysis 
MDO Multidisciplinary Design Optimization 
MUSCL Monotonic Upwind Scheme for Conservation Laws 
MTOM Maximum Take-Off Mass 

NGA Nash Genetic Algorithm 
OBS On-Board-Systems 
pdf probability density function 
PIDO Process Integration and Design Optimization 
RANS Reynolds-Averaged Navier–Stokes 
RCE Remote Component Environment 
RSM Response Surface Model 
SEGOMOE Super Efficient Global Optimization based on Mixture Of 

Experts 
SM Surrogate Model 
SORM Second Order Reliability Method 
SOTA State Of The Art 
TLAR Top Level Aircraft Requirements 
TVD Total Variation Diminishing 
UQ Uncertainty Quantification 
SORM Second Order Reliability Method 
SOTA State Of The Art 
TLAR Top Level Aircraft Requirements 
TVD Total Variation Diminishing 
UQ Uncertainty Quantification  

Fig. 1. AGILE project structure.  
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multi-level and multi-partner collaborative workflows, with the aim to 
reduce the aircraft development time and costs. 

The paper is organized as follows. Section 2 provides an overview of 
the EU H2020 AGILE project and presents the state-of-the-art distributed 
MDO system that has been formulated in the first year of the project as 
well as the main investigations that were performed in the second year. 
Section 3 discusses improvements made to different optimization stra-
tegies aiming at handling the increased complexity of workflows char-
acterized by a large number of design variables and a high degree of 
multidisciplinary dependency. Section 4 describes the scenarios on 
which three optimization techniques are applied focusing on wing 
design and nacelle design activities and a detailed analysis of the results 
obtained for both problems is presented. 

2. AGILE overview 

AGILE [5] (Aircraft 3rd Generation MDO for Innovative Collabora-
tion of Heterogeneous Teams of Experts) is an EU funded H2020 project 
coordinated by the German Aerospace Center (DLR). The AGILE project 
is developing the next generation of aircraft Multidisciplinary Design 
and Optimization environment, which targets significant reductions in 
aircraft development costs and time to market, leading to cheaper and 
greener aircraft solutions [4]. The evolution of MDO environments can 
be classified in three generations, evolving from the “1st generation”, a 
monolithic environment still being used today (e.g. for dedicated 
high-fidelity applications), to the 3rd generation, consisting of a system 
of distributed competences across different organizations that might be 
located in different countries. The developed AGILE Paradigm [6] will 
enable the 3rd generation of multidisciplinary design and optimization 
through efficient collaboration among international multi-site aircraft 
design teams. The AGILE project is structured into three sequential 
phases, carrying out design campaigns with increasing levels of 
complexity, addressing different aircraft configurations and dedicated 
MDO techniques. The overall structure is shown in Fig. 1. 

In the 1st phase (Initialization), a reference aircraft configuration is 
optimized using state-of-the-art techniques. The reference MDO prob-
lem is then used to investigate and benchmark novel optimization 
techniques, first individually and later in smart combinations (MDO test 
bench). Finally, the most successful MDO strategies are applied to 
significantly different aircraft configurations (Novel Configurations). 
The three sequential work packages are embedded within two enabling 
layers. The first enabling layer (Collaboration techniques) targets the 
development of the technologies enabling distributed collaboration, 
comprising the processes of collaboration between the specialists 
involved, collaborative pre- and post-processing, visualization and the 
enhancement of the existing framework. The second enabling layer 
(Knowledge enabled technologies) provides the information technolo-
gies that support the management and the formalization of knowledge 
within an MDO process. The parallel activities are clustered in three 
phases (or periods) called Design Campaign (DC), each lasting one year. 
Each of the sequential design campaigns focuses on the solution of the 
use cases that are setup to develop specific collaborative and knowledge 
based technologies. These use cases progress from a conventional 
regional aircraft optimized using the state-of-the-art MDO to several 
novel configurations investigated with the 3rd MDO generation system. 

2.1. Design campaign 1 

The DC-1 is the first use case in the project that has been formulated 
and collaboratively solved by the AGILE team. This case consisted in the 
design and optimization of a large regional jet, with Entry Into Service 
(EIS) in 2020. Starting from the specification of the Top Level Aircraft 
Requirements (TLAR) provided by the aircraft manufacturer partner 
(Bombardier), an Overall Aircraft Design (OAD) task targeting concep-
tual and preliminary development design stages was implemented in 
DC-1. The initial TLAR, as well as the main architectural choices are 

summarized in Table 1. 
Fig. 2 shows a representation of the DC-1 distributed OAD process. 
The Figure indicates the domains of the specialists’ competences that 

have been integrated into the process, the location where such simula-
tion competences are hosted, and the specific partners providing such a 
competence within their IT networks. The corresponding collaborative 
MDO workflow is shown in Fig. 3. 

A design exploration method was “calling” the OAD process (here 
labelled as MDA) as a remote service, which integrated all the distrib-
uted disciplinary competences that in turn are called as remote services 
(deployed as disciplinary workflows) within the MDA process. All 
competences communicated via a CPACS10 model corresponding to the 
AGILE aircraft product model. They were deployed as disciplinary 
workflows and provided as remote services. Furthermore, the deployed 
“workflow of workflows” has been provided as “service of services” and 
coupled to a surrogate based optimization strategy, named SEGOMOE, 
developed by ONERA and ISAE-SUPAERO [7]. This approach was 
retained for the State-of-the-Art (SOTA) distributed MDO system as it 
combines the advantage of a MultiDisciplinary Feasible formulation (no 
modification of the MDA process, consistency of the design at each 
iteration of the optimization [8]) and of the use of surrogate models that 
permits to reduce the number of calls to the MDA. The optimization 
problem can be defined as follows: 
⎧

⎨

⎩

min Direct Operating Cost : DOC

w. r. t. 7 wing shape variables

s. t. 2.2 − CLmax < 0.
(1) 

Only a few iterations were made during DC-1, resulting in an 
improved configuration that was selected as the DC-2 reference aircraft 
[9]. 

2.2. Design campaign 2 

The DC-2 activities were based on the outcome of the DC-1 work, and 
were implemented during the second year of the project. The number of 
use cases was expanded to five parallel ones. For each use case, a novel 
MDO strategy (addressing a specific collaborative scenario) was inves-
tigated and assessed for the resolution of the design of the reference 
aircraft. Depending on the use case, classical MDO formulations (such as 
MDF, IDF [8] or Analytical Target Cascading [10]) or more adapted ones 
were used. The five use cases were:  

1. Use case focused on the improvement of MDO strategies with the 
development and integration of new design competences in terms of 
optimization algorithms and surrogates modeling. This use case and 
the results are presented in Refs. [11,12].  

2. The implementation of Uncertainty Quantification (UQ) methods 
and robust based design optimization in complex, variable fidelity 
optimization was the objective of the second use case [11].  

3. The development of a mixed-fidelity MDO strategy was tackled with 
the integration of high-fidelity design competences and its combi-
nation with Overall Aircraft Design (OAD) level. The process is 
presented in Ref. [13] and illustrated in Fig. 4. 

4. A multi-scale application is described in Ref. [14] aiming at inves-
tigating the improvement of involving an aircraft component 

Table 1 
Top level aircraft requirements.  

Description Value 
Range 3600 km 
Cruise Mach number 0.78 
Initial Climb altitude 11 000 m 
Number of passengers 90 pax 
Take-off field length 1500 m 
Approach speed 130 kts 
A/C configuration Low-wing, wing-mounted engines  

T. Lefebvre et al.                                                                                                                                                                                                                                



Progress in Aerospace Sciences 119 (2020) 100649

4

supplier (aircraft rudder) in the overall aircraft optimization process 
while keeping its specific framework. The coupled optimization 
problem is shown in Fig. 5.  

5. A large-scale system-of-systems application was studied, coupling 
Aircraft - Engine - On-board systems (OBS) - Emissions in a distrib-
uted framework approach with the involvement of disciplinary ser-
vices from different partners [15]. 
Based on best practices developed in DC-1, the overall AGILE 

framework was during DC-2 enhanced by knowledge-based technolo-
gies [16] and IT solutions [17], which contributed to an acceleration of 
the deployment of the complex MDO processes addressed by the DC-2 
use cases. 

Among the methodological improvements, most investigations were 
focused on the capabilities and differences among all the optimization 
approaches considered, all aiming at converging the process more 
rapidly to the best solutions. The following section will discuss the 

Fig. 2. AGILE Collaborative design process: individual competences are distributed multi-site, and hosted at the different partners’ networks.  

Fig. 3. AGILE DC-1 workflow. Partner 1 deploys a Design Of Experiment requesting as remote service the cross-organizational MDA workflow, deployed at Partner 2. 
The MDA is composed by disciplinary competences provided as remote services to Partner 2 by Partners 4 to N. 
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results of the research of three partners carried out during DC-2 in order 
to enhance the MDO capabilities of the AGILE process. 

3. Optimization methods 

3.1. Deterministic optimization algorithms 

In the field of aircraft design, optimization problems to be solved 

Fig. 4. DC-2 - Multi-level optimization formulation.  

Fig. 5. DC-2 - Rudder optimization.  
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might be challenging as they can combine a multi-modality, high- 
dimensional design space with conflicting constraints. In addition, in 
particular for multidisciplinary studies, gradient information of the 
disciplines is not always available to ease the optimization process. 
Therefore efficient gradient-based algorithms [18–20] cannot be 
selected because finite-differences or complex step methods require a 
too large number of evaluations to approximate the gradient for use in 
an optimization process. On the other hand, industrial-standard 
black-box optimizers as the global Genetic Algorithms (GAs) and 
Covariance Matrix Adaptation (CMA) require a large numbers of func-
tion evaluations and might become unusable for high-dimensional 
design spaces [20,21]. 

An alternative consists of using an Surrogate-Based Optimization 
(SBO) approach in which some inexpensive approximations of the 
objective and the constraints are build [22,23] and a good balance be-
tween global and local search is performed [24,25]. Such algorithm is 
considered here to perform a mono-objective constrained optimization. 

Extensions of SBO to multiple objectives are still under investigation 
in order to get an infill sampling criterion easy to evaluate [22,26,27]. 
One could generate Pareto-Fronts that involve the solution of the opti-
mization problem multiple times to assess a weighted sum of the indi-
vidual objectives. However, this method like the Normal-Boundary 
Intersection [28] or the multi-Objective Particle Swarm Optimization 
(mPSO) [29] would lead to an impractical number of analyses to be 
performed. Here we consider an alternative that consists of coupling the 
Nash game theory (N) to a typical genetic evolutionary algorithm (GA), 
that starting from specific design variables permits to reduce the number 
of analysis [30]. 

3.1.1. Mono objective optimization through the use of metamodels 
In order to handle constrained optimization problems with a large 

number of design variables, a surrogate based optimizer called SEGO-
MOE [31] for Super Efficient Global Optimization coupled with Mixture 
Of Experts has been developed by ONERA and ISAE-SUPAERO. This 
approach focuses on sequential enrichment using adaptive surrogate 
models and is based on four main pillars. The first one concerns the 
Efficient Global Optimization (EGO) approach [24]. In this approach the 
objective function is replaced by a Gaussian process (GP) (also known as 
Kriging [32,33]) defined initially from an initial design of experiments 
(DOE) of a few points. The EGO algorithm [24] iteratively adds points to 
the DOE to increase the accuracy of the GP in areas where the minimum 
is likely to be. The position of the added points is obtained by maxi-
mizing the expected improvement (EI) criterion using two key infor-
mation outputs from GP: the mean and the variance of the objective 
function, providing a trade-off between exploration and exploitation. 
The second pillar concerns the evolution of EGO to handle mixed con-
straints (equality and inequality) using the SuperEGO algorithm [25]. 
The third pillar concerns the large number of design variables with the 
introduction of KPLS and KPLS + K surrogate models [34,35], combi-
nations between the Partial Least Squares (PLS) method and the Kriging 
model in order to reduce the number of kriging hyper-parameters that 
are costly to determine. The coupling between SuperEGO and KPLS 
models has been discussed in Refs. [36] leading to the SEGOKPLS al-
gorithm. The last pillar concerns the introduction of Mixture of Experts 
surrogate models within SEGOKPLS. To better approximate a strongly 
non linear and/or discontinuous function (objective function or 
constraint), mixture of experts (MOE) models have been proposed in 
Ref. [37,38]. The idea is to build local approximations (experts) in 
subsets of the design space and to recombine them in a global surrogate 
model. Here the local experts are kriging based models (including KPLS 
and KPLS + K models) for the objective function and the key contribu-
tion is the adaptation of the EI criterion to these local experts. For the 
constraints approximation, no restriction is made for the approximation 
and all of the available surrogates (polynomial regression models, Radial 
Basis Function, Kriging, KPLS, KPLS + K …) can be used as local experts. 
In addition, different criteria are used for selecting infill sample points 

like the Watson and Barnes criterion (WB2, see Ref. [39]) to give slightly 
more merit to local search. Finally, the search of the optimum is carried 
out using different optimizers capable of considering non linear con-
straints based either on a derivative free optimizer (such as COBYLA 
-Constrained Optimization BY Linear Approximation-see Ref. [40]) or 
based on gradient method as SLSQP (for Sequential Least Squares Pro-
gramming [18]) using the Jacobian calculation of the mixture of experts 
(for the objective and the constraints functions). The resulting SEGO-
MOE algorithm has been validated on different aerodynamic use cases 
[7,31,41]. 

This algorithm was provided for the AGILE DC-1 (see Section 2) and 
was also used for DC-2. 

3.1.2. Multi objective optimization through the use of game theory 
One drawback of the approach presented in the preceding paragraph 

is that it can only be applied for single objective function (even though 
the extension of the EGO algorithm to multiple design objectives has 
been studied [22]). 

As the aircraft design optimization field can involve multiple and 
often conflicting objectives, a multi-objective optimization approach 
[42] that permits to consider many different parameters that could be a 
constraint or an objective function for a specific investigation. The 
design methodologies that allow to perform optimization studies during 
the aircraft preliminary design phase are already implemented in a 
software package, as shown in Ref. [43] and can also be built up using 
surrogate models [44–46]. 

The approach developed by the UniNa research group couples the 
Nash game theory (N) to a typical genetic evolutionary algorithm GA, 
reducing computational time and allowing a more realistic association 
among variables and objective functions [47]. A detailed description of 
NGA optimization used in the AGILE project is given in Ref. [12]. In the 
game theory approach, a multi-objective problem is considered as a 
game with n players, each one characterized by a pay-off. Each player 
wants to maximize his profit and will try to find an optimal game 
strategy. If each player has selected a strategy and no player can benefit 
from changing strategies while the other players keep theirs unchanged, 
then the current set of strategy choices and the corresponding payoffs 
constitute a Nash equilibrium; other feasible possibilities are either to 
merge the advantages of Nash game and Genetic Algorithms (Nash-GAs) 
strategy [30] or to use evolutionary optimization algorithms. In frame of 
AGILE DC-2, this multi-objective approach has been applied to the 
common test case (described in Section 4.1) in order to benchmark it 
against the mono-objective approach relying on a composite objective 
function. 

3.2. Robust optimization approach 

Standard optimization approaches rely on the implicit assumption 
that the underlying system is deterministic, i.e., that the knowledge 
associated with the design variables and with the system dynamics is not 
characterized by uncertainty. However, in real conditions randomness 
impacts the formulation of the design process in multiple ways. Typical 
examples of such random factors include (a) environmental and opera-
tive conditions that cannot be quantified a priori with a sufficient level of 
accuracy, (b) intrinsic fluctuations impacting the outcome of the 
manufacturing processes, (c) economical and financial trends. 

An effective way to model these uncertainties consists in adopting a 
probabilistic approach, according to which probability distributions are 
used to model the random nature of the stochastic variables involved in 
the design process. In the following, the input random variables are 
concatenated into the random vector X. Moreover it is assumed that this 
random vector is absolutely continuous and can thus be characterized by 
its probability density function (pdf), fX. Several approaches [48] can be 
adopted to address the following aspects of an uncertainty quantifica-
tion (UQ) study: 
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• Characterization of the uncertainty associated with the system out-
puts (e.g., uncertainty propagation, variance estimation);  

• Sensitivity analysis and quantification of the contributions of the 
input variables’ variance on the outputs variance;  

• Robustness and reliability design optimization, where objectives and 
constraints can be posed in terms of output variances and probabil-
ities of failure rather than deterministic equality or inequality 
constraints. 

Among the available numerical techniques, the current work con-
siders the Monte Carlo (MC) and the First Order Second Moment (FOSM) 
methods [48]. The MC method requires generating a number of random 
samples distributed according to the pdf fX of the random vector X used 
to model the input design variables. For each of these samples, a system 
evaluation is performed to obtain a collection of results that are used to 
approximate the target pdf of the outputs of interest. The FOSM method 
approximates the system dynamics with a first-order Taylor expansion 
evaluated at the mean value of the input variables. The main advantage 
of MC is that it provides an estimation of the entire pdf associated with 
the system outputs, enabling the possibility to infer the shape of the pdf 
and a set of key indicators like the quantile values or the probability of 
failure. All these quantities can be directly inferred from the collection of 
system evaluation results. On the other hand, MC typically requires a 
large number of system evaluations to obtain an accurate estimation of 
the quantities of interest, and the rate of convergence with respect to the 
size of the population, NMC, is typically low (the variance of the MC 
estimator is proportional to 1/ ̅̅̅̅̅̅̅̅̅NMC

√ ). The main advantage of FOSM 
resides in its computational efficiency, i.e., only a limited number of 
system evaluations is required to compute the variance of the target 
outputs. On the other hand, the accuracy of FOSM strongly deteriorates 
when the system dynamics is highly non-linear. The use of a probabi-
listic approach opens the road to the possibility of defining the design 
optimization problem not only in terms of deterministic quantities but 
also by considering robustness and/or reliability constraints. The 
robustness of the system is in this study assessed by analyzing the value 
of the standard deviation associated with the output quantities of in-
terest. In terms of reliability, both the First Order Reliability Method 
(FORM) and the Second Order Reliability Method (SORM) [48] are 
considered. A reliability problem is defined by the presence of one or 
more design constraints that can be expressed as g(X) ≤ 0 identifying a 
failure region Ωf in the design space. The probability of failure, pf , 
describing the probability for a design to fall within the failure region is 
defined as: 

pf =P[g(X)≤ 0] =
∫

Ωf

fX(x)dX . (2) 

Equation (2) is in general estimated numerically. Monte Carlo 
simulation is generally not affordable for the estimation of pf as this one 
is usually small (less than 10−3). To access this problem Hasofer and Lind 
[49] introduced the reliability index, β, which is the smallest distance in 
the standard normal space, between the mean values of the random 
variables and the limit state function (LSF) (i.e g(X) = 0 in the standard 
normal space). Numerically, β is computed by identifying the closest 
point on the LSF, named Most Probable Point (MPP), through a 
gradient-based optimization algorithm. Once the MPP and β have been 
identified, pf can be estimated by computing a first-order (FORM) 
approximation of the limit state surface centered at the MPP. It can be 
shown that the FORM approximation of pf reads, 
pf ≈ pFORM

f =Φ(−β)

where Φ is the cumulative distribution function of the standard normal 
probability distribution. The numerical cost of the FORM approximation 
is then only linked to the numerical resolution of the determination of β 

(gradient based optimization problem). The SORM approach consists in 
improving the FORM estimation of pf using a second order approxima-
tion of the LSF at the MPP. However this improvement involves higher 
computational costs. 

To deal with the complex, large scale and distributed design prob-
lems faced in the context of the AGILE project, a three-step approach is 
employed. First, a smart and efficient Adaptive Design of Experiments 
(ADOE) technique [50] is applied to the remote analyses tools in order to 
explore the design space under study. The results obtained during these 
DOE campaigns are then employed to build Response Surface Models 
(RSM) that accurately mimic the dynamics of the considered systems. 
Finally, different aspects related to uncertainty quantification are 
addressed by taking advantage of the use of these RSMs. 

4. Application to conventional aircraft 

One of the objectives of DC-2 was to investigate the capabilities of 
partner’s optimization approaches to converge more rapidly and more 
efficiently the complex workflows considered in the AGILE project, 
characterized by a high degree of discipline interdependencies and a 
large number of design variables. 

A typical application of these investigations is the MDA workflow 
defined and implemented during DC-1 activities, but taking into account 

Fig. 6. Wing design test case.  
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extensions towards multi-level and/or multi-component approaches. 

4.1. DC-1 derived scenario 

During DC-2 the objective is to apply these novel optimization 
techniques on the reference MDO problem that is based on the MDA of 
DC-1 and, assess their impact on the overall MDO problem. Among the 
different use cases considered in DC-2 two different improvements of the 
MDA are discussed here:  

• When considering the wing structural sizing competence, the DC-1 
design process was performed through a specific approach aiming 
at optimizing the internal structure of the wing under loads con-
straints, thus decoupled from the aerodynamic optimization. The 
introduction of a multi-objective optimization competence was 
investigated to improve the capabilities of the AGILE system. The use 
of the NGA optimization process was applied to the wing design and 
permitted to consider both aerodynamic (including low-speed per-
formance) and structural objectives in a single step (see Fig. 6).  

• During DC-1, the engine and nacelle competences were only 
considered as input parameters for the overall aircraft design pro-
cess. This consisted in using a pre-calculated engine performance 
map as well as using pre-computed engine and nacelle drag and 
weights. During DC-2, both engine and nacelle design competences 
were introduced to improve the capabilities of the AGILE framework. 
TsAGI provided the knowledge and competence to study the Nacelle 
impact using CFD, see Fig. 7. This permitted a stronger coupling 
between nacelle sizing and aircraft sizing taking into account the 
pylon design and the wing/pylon/nacelle interaction. Drawbacks of 
the implementation are that the nacelle shape optimization process 
might take as long as a week, and that the uncertainty of the oper-
ational conditions might degrade the performance of the optimized 
design around nominal cruise conditions. The use of ONERA and 
Noesis Solutions optimization competences were investigated to 
solve these issues. 

These two uses cases, built on the DC1 workflow, ensure that a 
common part is shared between the partners investigating the en-
hancements of the AGILE framework. In addition, these use cases are in 
line with the other use cases of DC-2, all increasing its complexity with 
extension to multi-fidelity, multi-level and multi-component 
considerations. 

4.2. Wing optimization 

This use case focuses on the optimization of the wing shape both 
from the structural and aerodynamic point of view. The improvement 
brought by the use of UniNa NGA optimizer will be evaluated in this 
section to assess the impact of a multi-objective optimization approach. 
As the target workflow is characterized by both a high degree of disci-
pline interdependency and a large number of design variables, one of the 
most straightforward solutions is the use of surrogate models. A surro-
gate model (SM) is an analytical formulation that replaces a complex 
model, or even a design analysis workflow, by means of data fitting. As a 
results a surrogate model requires only little computation time, which is 
in particular useful for capturing complex analysis methods and 
applying them multiple times as part of a global optimization process. 

In the MDA workflow of DC-1, more than 2000 connections were 
identified between design competences; to reduce the complexity of the 
problem while keeping as much as possible its similarity with respect to 
the aircraft design process, several modifications were made and four 
clusters were built using a selection of design competences (see Ref. [51] 
for a complete description): 

Aerodynamic Cluster This cluster gathers a morphing tool (that 
enables the modification of the full wing geometry from a set of design 
parameters) and aerodynamic performance computations including 
low-speed configurations. It takes as input the wing design parameters 
and provides lookup tables for aerodynamic coefficients, related to the 
specified wing design. 

On-board systems Cluster This cluster aims at providing the On 
Board systems performance in terms of weights and power, using the 
wing design parameters and other inputs such as the Fuel Weight and 
operational weights such as MTOM (Maximum Take-Off Mass). 

Structural sizing and Weight Cluster This cluster provides the 
weight breakdown of the entire aircraft using as inputs the wing design 
parameters, the fuel weight and the systems weight. It also contains the 
load and structural sizing competence that sizes the wing structure and 
computes its weight. 

Mission performance Cluster This cluster contains the Mission 
performance tool and uses as inputs the wing design parameters, the 
operational weights and the Aerodynamic look up tables to run the full 
mission and provides the fuel weight. 

Fig. 8 provides the enriched graph [17,52] of the four clusters. One 
can observe that each cluster contains design competences of different 
partners that will be called using the AGILE framework. 

The design competence clusters were then implemented as 

Fig. 7. Nacelle design test case.  
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collaborative service oriented workflows, and executed within Design of 
Experiments (DOE) studies in order to generate the databases for the 
clusters’ surrogate models. 

The multi-objective optimization approach used at UniNa is based on 
the NGA optimizer and was used for the abovementioned clusters’ sur-
rogate models. They were translated in executable blocks that could be 
easily queried, as examples the executable version of the Aerodynamic 
Cluster was used to evaluate the zero-lift drag coefficient and the 
maximum achievable lift coefficient, and the Structural sizing and 
Weight Cluster was employed to calculate the wing weight. 

4.2.1. Wing optimization problem 
The main objective of this use case is the wing optimization in terms 

of weight, zero-lift drag coefficient and maximum achievable lift coef-
ficient using the NGA algorithm and then comparing the results obtained 
to a classical Pareto front and single objective scalarization (GA). The 
TLAR of the aircraft are given in Table 1, and the resulting wing design 

from DC-1 is characterized by a reference area equal to 82.7 square 
meters and a sweep angle at the quarter of the chord equal to 30◦. 

The idea to apply NGA equilibrium solutions to the aircraft design 

and optimization leads to the chance to avoid a more arbitrary and less 
physically based variables association among the different objective 
functions, using, instead, a more engineering reliable variables assign-
ment based on well-known parameter association [12,47]. In the NGA 
optimization approach, variables “cards” can be assigned to “players” 

(objective functions) in a unique case, assigning in a static manner these 
variables, or in multiples combinations, choosing cases to be optimized 
(until to the maximum number of possible combinations). 

The DC-1 main wing parameters are summarized in Table 2 and the 
wing is shown in Fig. 9. A multi-objective optimization was performed 
involving five design variables: the taper ratio (λ), the maximum mean 
thickness percentage (t/c), the aspect ratio (AR), the leading edge sweep 
angle (ΛLE) and the wing area (Sw). The three objective functions 
(players) are the wing drag coefficient (computed according the Aero-
dynamic Cluster), the wing weight (computer according to the Struc-
tural sizing and Weight Cluster) and the wing maximum lift coefficient 
in clean configuration (computed again according the Aerodynamic 
Cluster), as shown in Fig. 8. During each loop the five design variables 
and the resulting objective functions change. 

Formally, the game can be written as shown in Eq. (3) where the first 
number represents the number of players involved, inside the curly 
brackets the upper and lower values of the five cards of the game (AR, t/ 
c, Sw(m2), ΛLE(deg), λ respectively) and finally the specific players (ob-
jectives). The 3 players could play with these 5 cards, with player 1 
optimizing the wing drag coefficient, player 2 optimizing the wing 
weight and player 3 optimizing the maximum lift coefficient in clean 
configuration.   

The design variables are assigned among the players in all possible 

Fig. 8. Graphs of the 4 retained clusters.  

Table 2 
Reference wing characteristics.   

b(m) Croot(m)  ΛLE(deg)  Taper Ratio t/c Sw(m2)  

Reference Wing 28.01 6.39 30 0.164 0.13 82.7 
CDw - Wing Weight 

@ CL = 0.49  
0.0254–4887 kg  

Γ = 〈3; {9 − 10.5}, {0.125 − 0.138}, {75 − 95}, {30 − 34}, {0.12 − 0.17};CDw,Ww,CLmaxw
〉 (3)   
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combinations, leading to n games among players. In this specific case, 
considering 5 design variables and 3 players, there are six way of 
assigning these variables:  

– [3, 1, 1], that means 3 parameters to Player 1, 1 to Player 2, 1 to 
Player 3  

– [1, 1, 3], that means 1 parameters to Player 1, 1 to Player 2, 3 to 
Player 3  

– [1, 3, 1], that means 1 parameters to Player 1, 3 to Player 2, 1 to 
Player 3  

– [2, 2, 1], that means 2 parameters to Player 1, 2 to Player 2, 1 to 
Player 3  

– [1, 2, 2], that means 1 parameters to Player 1, 2 to Player 2, 2 to 
Player 3  

– [2, 1, 2], that means 2 parameters to Player 1, 1 to Player 2, 2 to 
Player 3 

Each of these assignments leads to 10 possible combinations, and so 
60 games in total. 

The NGA optimization has been compared with a GA scalarization 
and a multi-objective GA (Pareto front). In the scalarization optimiza-
tion the GA algorithm was used and the objective function was simply 
defined as an average weighted function as shown in Eq. (4). 
Fobj =Fobj 1⋅kCDw⋅sCDw + Fobj 2⋅kw − Fobj 3⋅kCL (4)  

where: 
Fobj 1 =CDw (5)  

Fobj 2 =
Wwing

Wwing initial

(6)  

Fobj 3 =CLmaxw
(7)  

and.  

• kw is the weight which represents the importance of the wing weight 
in the optimization process.  

• kCD is the weight which represents the importance of the wing drag 
coefficient in the optimization process.  

• sCDw is the scale factor useful to keep the same order of magnitude 
between the objective functions. It was set equal to 10 to work with 
objective functions characterized by the same order of magnitude.  

• kCL is the weight which represents the importance of the wing 
maximum lift coefficient in the optimization process. 

The k weights take values within the range [0, 1] so that the sum of 
them is equal to 1. 

Fig. 9. Reference wing planform.  
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4.2.2. Results for multi objective optimization 
The NGA algorithm scans 60 possible solutions, selecting only those 

for which the values of the objective functions are simultaneously better 
than the reference’s wing weight and drag coefficient and greater than 
maximum lift coefficient. Between them the algorithm will select the 
wing characterized by the maximum lift coefficient. 

Fig. 10 shows the best solution in terms of wing planform compared 
with the reference wing planform (red line). 

Table 3 provides the comparison between the reference wing plan-
form, the best solution chosen at the end of the NGA optimization and 
the best solution obtained through GA scalarization. The latter solution 
was obtained by associating AR and ΛLE to Fobj 1, Sw and (t/c) to Fobj 2, λ 

to Fobj 3. As can be seen, the optimum solution simultaneously improves 
the drag coefficient (reduction of about 14 drag counts), the wing weight 
(reduction of about 40 kg) and increases the maximum achievable lift 
coefficient (increase with 0.12). Although the best solution obtained 
using the GA scalarization approach is similar to the one obtained using 
NGA, the solution obtained using the scalarization approach is largely 
dependent on the values of the k weigths and does not take into account 
the association among variables and objective functions. 

Fig. 11 shows a comparison of all the NGA points (60 games) with a 
typical Pareto frontier and scalarization optimization approach. One can 
see that the NGA points are characterized by a better spread compared to 
the GA scalarization points which are only located in a specific portion 
of the feasible area bounded by the Pareto front. It is useful to underline 
that Fig. 11 shows only a cutting plane of the multi-objective optimi-
zation among the three players/variables involved. 

This application showed that the Nash game theory coupled with a 
typical genetic evolutionary algorithm (NGA) is a viable approach to use 
in the optimization field since firstly it permits a more realistic associ-
ation among variables and objective functions and secondly it reduces 
the computational time. Moreover, the reduced distance between NGA 
solution points and the Pareto front demonstrates the reasonableness 
and the feasibility of the results obtained. Finally, a verification of the 
computational time between the Pareto front, a single game of the NGA, 
and the GA scalarization approach has been performed on a laptop 

Fig. 10. Wing planform (Game 35) three players’ optimization for reference wing (blue) and optimized wing (red). (For interpretation of the references to colour in 
this figure legend, the reader is referred to the Web version of this article.) 

Table 3 
Comparison between AGILE DC-1 wing and the best solution of NGA and GA 
applications with 3 players.   

AR ΛLE(deg)  b(m) λ t/c Sw(m2)  

Reference Wing 9.43 30 28.01 0.164 0.13 82.7 
CDw - Wing Weight - CLmaxw  

0.0254–4887 (kg) - 1.39 
Game 35 (NGA) 10.5 33.69 28.05 0.17 0.138 75 
CDw - Wing Weight - CLmaxw  

0.0240–4837 (kg) - 1.53 
GA best solution 10.5 33.69 28.05 0.17 0.138 75 
CDw - Wing Weight - CLmaxw  

0.0240–4837 (kg) - 1.53  
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equipped with a single CPU (2.0 GHz). The elapsed time for a single NGA 
solution point for the 3 players application is equal to 50 s, for a single 
scalarization GA solution point it equals 59 s, and for the Pareto front it 
is 76 s. The larger the number of variables or objective functions, the 
larger the computational time that can be saved using the NGA 
approach. 

These results show the benefits of introducing this new feature in the 
enhanced AGILE framework in order to apply it to multidisciplinary 
wing design optimization. This new capability will be used during 
Design Campaign 3 where the AGILE environment will be applied to 
different novel aircraft configurations. 

4.3. Nacelle optimization 

4.3.1. Nacelle optimization problem 
This use case focuses on improvements of the nacelle shape optimi-

zation process that were investigated during DC-2 in order to reduce 
both the overall optimization time and the robustness of the optimal 
design around nominal cruise conditions. The nacelle shape optimiza-
tion process focuses on the following two issues:  

• One of the objectives in optimizing the geometry of a turbofan nozzle 
is to reproduce the mass flow rate through the core (hot) and bypass 

(cold) nozzles specified in the engine technical specification. The 
standard practice when designing the nozzle is to fix the value of the 
cross-sectional area of the nozzle exit during optimization. The 
disadvantage of this approach is that the nozzle mass flow rate de-
pends on the entire geometry of the nacelle that is changing during 
the optimization, even for a fixed value of the exit section area. As a 
result the optimal shape of the nacelle does not necessarily fulfill the 
requirement in terms of operating conditions. For this reason one 
should add to the optimization process the constraint that the 
required mass flow rate is satisfied.  

• Although the aforementioned approach improves the nacelle design, 
only cruise conditions are considered whereas the nacelle design 
should also ensure acceptable behavior (in terms of engine intake 
flow conditions) in take-off configuration. This constraint can be 
taken into account by limiting the range of variation of the inlet 
geometrical parameters within known bounds — mainly by expert 
judgment — to ensure that they are in the region that satisfies the 
take-off configuration performance. However, improvements can be 
expected by considering both the cruise and take-off configurations 
in the same optimization problem. The second problem therefore 
considers the robust optimization of the inlet geometry shape taking 
into account the impact of four random input variables: ambient 
temperature and ambient pressure both evaluated at cruise and take- 

Fig. 11. Results comparison among the three optimization approaches (data referred to the equivalent wing); on the left (CLmaxw 
- CDw), on the right (CLmaxw 

- 
Ww/Ww ref). 

Fig. 12. Nacelle geometrical description.  
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off conditions. As a consequence, both engine and nacelle modules 
have to be considered in this approach. 

The deterministic optimization problem deals with the entire nacelle 
geometry. Following the parametric model described in Ref. [53] the 
input parameters of the problem are 17 geometrical parameters as 
illustrated in Fig. 12:  

• 7 variables concern the inlet geometry  
• 10 variables are concerned with the nozzle. 

The value of the effective thrust in cruise regime has been used as the 
objective function for the nacelle optimization. This value depends on 
the difference between the ideal and the real engine thrust obtained 
during the calculation: 

dPeff = 1 − Peff

Pid

(8)  

with.  

• Pid the ideal engine trust,  
• Peff = P − FX the effective engine thrust (thrust-minus-drag),  
• P the engine thrust determined with the use of the internal 

parameters,  
• FX the projection of the external drag force on the engine axis. 

To solve the problem of optimal nacelle design with the constraints 
of providing the required mass flow rates, it is necessary to change the 
formulation of the initial optimization problem [54]: the areas of the 
exit sections are no longer fixed, but varied among the 17 geometrical 
parameters mentioned above. There are two equality type constraints in 
the optimization problem: 
Gcore −Gtarget

core = 0 (9)  

Gbypass −G
target
bypass = 0 (10) 

These two equality constraints are transformed into two inequality 

constraints as follows: 
⃒

⃒

⃒

⃒

1− Gcore

Gtarget
core

⃒

⃒

⃒

⃒

< εcore (11)  

⃒

⃒

⃒

⃒

⃒

1−Gbypass

G
target
bypass

⃒

⃒

⃒

⃒

⃒

< εbypass (12)  

where the two thresholds εcore and εbypass are set equal to 10−2 and 
2.5 10−3 respectively based on the required accuracy. These constraints 
ensure that, within the required accuracy, the equality of core and 
bypass mass flow rates (Gcore and Gbypass) to the target values (see 
Fig. 13). The values of the thresholds are based on the requirements of 
aircraft engine manufacturers for the accuracy of determining the air 
flow for the nozzle design phase. For example, for the engines under 
consideration, the values 10−2 and 2.5 10−3 approximately correspond 
to the physical air flow of 100 g for the hot nozzle and 300 g for the cold 
one. The target values are determined by the engine regime parameters 
and are specified in the engine deck definition. After optimization, the 
nacelle geometry suitable for installation on the aircraft is obtained. All 
the necessary airflows values are computed by the nacelle design tool 
code developed by TsAGI described in Section 4.3.2. 

The nacelle shape optimization case presents two aspects that have 
been improved through the application of novel techniques that were 
made available by the AGILE partners:  

• a reduction of the number of function evaluations for the shape 
optimization process, compared to the original optimizer (EGO by 
DAKOTA [55]). For this the SEGOMOE approach [31] provided by 
ONERA and described in Section 3.1.1 was used and results obtained 
are presented in Section 4.3.3,  

• assessment of the performance of the optimal nacelle shape around 
nominal aerodynamic conditions. The uncertainty analyses approach 
available in the Optimus framework (see Section 3.2) was evaluated 
and the results are discussed in Section 4.3.4. 

Fig. 13. Core and bypass mass flow rates of the engine.  

Fig. 14. Nacelle CFD analysis tool chain.  
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4.3.2. Description of the design tools 

4.3.2.1. Nacelle hi-fi tool. The introduction of this design competence is 
based on the method of nacelle aerodynamic design and optimization 
described in Ref. [56,57]. It is a fully automated tool chain composed of 
four blocks: geometry builder, grid generator, CFD solver and 
post-processor (see Fig. 14). The output of the geometry builder block is 
an IGES file containing the geometrical model with specified values of 
input parameters (i.e. nacelle geometry variables). This file is then used 
to build the computational grid. CFD calculations are then carried out 
using the TsAGI in-house code Electronic Wind Tunnel (EWT-TsAGI 
[58]). The steady RANS equations are solved using a finite-volume nu-
merical solver that employs a second-order approximation in space for 
all variables and is based on the Godunov-type TVD scheme for the 
approximation of the convective fluxes (MUSCL). For the results 

presented here the Spalart-Allmaras turbulence model has been used. 
The calculations are performed on a multiblock structured grid with 
hexahedral cells. The axisymmetric grid used for this study has 
approximately 60 000 cells. The CFD calculations were made for cruise 
(M = 0.78, H = 11 km) and take-off (M = 0, H = 0 km) conditions. In 
the post-processing block the following parameters are extracted from 
the computed solution:  

• the effective thrust losses at cruise as a measure of aerodynamic 
efficiency;  

• the total pressure losses at the fan face at take-off as a measure of 
flow distortion. 

4.3.2.2. Engine tool. The engine simulation provides the engine pa-
rameters and engine performance map for different engine design cycle 

Fig. 15. Engine operating envelope spot points agreed for aircraft mission calculation.  

Fig. 16. Nacelle design analysis workflow.  
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parameters and size. A steady state engine performance is represented 
by an engine deck (ED). The ED provides the engine performance for the 
engine operating envelope. The ED can be presented in table format or as 
a computer program providing a limited number of required engine 
parameters. An Extended Engine Deck (EED) has been made to provide 
the engine parameters and performance maps of the different engines 
required by the AGILE partners. The technical specifications of the EED 
were agreed by the AGILE partners to fix adoptions and constraints for 
the engine simulations. To generate the EED, commercial software tools 
level 1 (L1) for engine modeling were used. A L1 entire engine simula-
tion tool corresponds to an engine simulation using 0-level simulation of 
engine components (compressors, turbines, combustor, etc.), i.e. “black 
boxes” without detailed (1D-3D) modeling. The commercial software 
GasTurb v12 [59,60] L1 was employed to evaluate the on-design and 
off-design engine parameters and to generate the performance map. The 
program scope has different degrees of simulation detail. The engine 
component maps can be presented in the engine tools in different ways 
from generalizations up to approximations of rig test data. Engine model 
technology constraints and design rules are used in engine cycle design, 
off-design simulation, engine overall geometry and mass assessments. 
Technology constraints and design rules were applied to generate an 
EED consistent with the specified engine technology level. The engine 
analysis module evaluation is based on the following inputs: operational 
assumptions, Entry into Service time, engine configuration, power off-
take/overboard bleed. The set of output variables delivered by the tool 
consists of: engine installation losses, engine flight envelope (see for 
example Fig. 15), intake pressure recovery description, thrust specifi-
cations and engine sizing, thrust reverser ability, engine technical de-
liveries, engine performance for different operating conditions, engine 
dimensions description, engine sizing rules and automatic handling of 

air bleed. 
In this study the engine performance characteristics for the target 

operating envelope are calculated according to a steady state engine 
performance simulation for an unmixed Geared Turbo Fan with high By- 
Pass Ratio. 

4.3.3. Results for deterministic optimization 
Two test problems are considered: nacelle design optimization of 

engines with BPR = 9 and BPR = 12. Both problems are solved in the 
same setting by two optimizers — EGO-DAKOTA (Sandia National 
Laboratories) [55] and SEGOMOE [31] described in Section 3.1.1. 

As for the wing design test case all processes are integrated into one 
analysis workflow with the help of the RCE framework (see Fig. 16). The 
aerodynamic analysis block includes geometry construction, meshing, 
CFD calculation and post-processing. 

4.3.3.1. Results for the BPR = 9 nacelle optimization. The convergence 
curves for the nacelle optimization of the engine with BPR = 9 are shown 
in Fig. 17. In Fig. 18 is presented the Mach distribution around the 

Fig. 17. Convergence History of EGO-DAKOTA and SEGOMOE, case BPR = 9. The red line is associated to the best found point with SEGOMOE, the blue line refers to 
the solution of EGO-DAKOTA. 

Fig. 18. Mach number distribution at the optimal design with EGO-DAKOTA (a), or SEGOMOE (b); case BPR = 9.  

Table 4 
Comparisons between EGO-DAKOTA and SEGOMOE in terms of function eval-
uations and objective value case; case BPR = 9.   

Size  
of the 

Number  
of function 

Core mass Bypass mass Objective 

initial DOE evaluations flow error, %  flow error, %  value 

EGO-DAKOTA 171 224 −0.21 −0.24 6.30 
SEGOMOE 30 215 +0.64 +0.15 5.59  
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optimal nacelles. 
The two optimal solutions of EGO-DAKOTA and SEGOMOE are 

compared in Table 4. The number of function evaluations to reach the 
optimal value of the objective function is the most common criterion to 
compare two optimization algorithms. Here we compare also the error 
with to respect the two inequality constraints (Eq. (11) and Eq. (12)) 
according to the two thresholds εcore and εbypass fixed at 1% and 0.25% 
respectively. Compared to DAKOTA, SEGOMOE converges to an optimal 
design not only with a lower objective value for which the two con-
straints are respected, but also involving a smaller number of function 
evaluations. 

4.3.3.2. Results for the BPR = 12 nacelle optimization. The convergence 
curves for the nacelle optimization of the engine with BPR = 12 are 
given in Fig. 19. 

The two optimal solutions of EGO-DAKOTA and SEGOMOE are 
compared in Table 5 in terms of number of function evaluations and in 
Fig. 20 in terms of Mach number distribution. The good performance of 
SEGOMOE is also demonstrated for this test case in terms of objective 
value, constraints respected and the number of function evaluations. 

The EGO-DAKOTA algorithm imposes an initial DOE of size equal to 
(d + 1)(d + 2)/2, with d the dimension of the design variables. So in this 
case (d = 17) a minimum of 171 points is required. A sequential 
enrichment process such as SEGOMOE would be preferred over an 
approach with a minimum number of points required (such as EGO- 
DAKOTA) if the objective is to minimize the number of function 
evaluations. 

Another aspect concerns the constraint handling for EGO-DAKOTA; 
Figs. 17 and 19 show that the best objective value when using EGO- 
DAKOTA (blue curve) is quite constant for both the test cases because 
the successive enrichment points proposed at each iteration do not 
respect the two constraints, and the best value is not updated. For 
instance, for the test case BPR = 12 over the 400 iterations (see Fig. 21), 
only ten points were in the feasible domain. 

These investigations demonstrate the interest of the optimization 
method provided by ONERA that has been implemented as a new 
capability in the enhanced AGILE framework. 

In conclusion the preliminary optimal design of the engine nacelle 
has been solved, the mass flow rate requirements are met with the 
required accuracy, and the outcome is an optimized inlet and nozzle 
geometry. Further improvements in the intake geometry can be carried 
out only when constraints on the level of flow distortion at the fan face 
are taken into account. This requires that it is necessary to consider at 
least a take-off condition characterized by the maximum air flow rate 
through the intake. Moreover, considering the possible uncertainties 
regarding operational conditions is of major interest. 

4.3.4. Results for robust design optimization 
The use case adopted to perform the robust optimization of the en-

gine nacelle is built starting from the results discussed in the previous 
section for the engine with BPR = 12. To cope with the complexity 

Fig. 19. Convergence History of EGO-DAKOTA and SEGOMOE, case BPR = 12. The red line is associated to the best found point with SEGOMOE, the blue line refers 
to the solution of EGO-DAKOTA. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Table 5 
Comparisons between EGO-DAKOTA and SEGOMOE in terms of function eval-
uations and objective value; case BPR = 12.   

Size  
of the 

Number  
of function 

Core mass, %  Bypass mass Objective 

initial DOE evaluations flow error, %  flow error, %  value 

EGO-DAKOTA 171 343 +0.04 −0.17 7.97 
SEGOMOE 30 227 +0.68 +0.04 7.36  

Fig. 20. Mach number distribution at the optimal design with EGO-DAKOTA (a), or SEGOMOE (b); case BPR = 12.  
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arising when uncertainty is considered, only 2 design variables are taken 
into account out of the 17 handled before. The remaining 15 variables 
are considered as static parameters and set to their optimal values found 
before. In this study, randomness will be associated with a set of ambient 
parameters (i.e., temperatures and pressures) characterizing the opera-
tional conditions of the engine. Two disciplinary modules (i.e., the en-
gine module provided by CIAM and the nacelle aerodynamic module 
provided by TsAGI, both described in Section 4.3.2) will be taken into 
account to better characterize the statistical dependence of the engine 
parameters and improve the technical soundness of the overall 
approach. 

4.3.4.1. Problem definition. A sketch representing the dependencies 
between the disciplines and the variables involved is shown in Fig. 22. 

The workflow described in Fig. 22 has been implemented in the 
process integration and design optimization platform Noesis Optimus 
[61,62]. The built-in capabilities of Optimus are also used to (a) run the 
machine-learning based ADOE [50] plan with the automatic submission 
of the CFD simulations to a supercomputer hosted at the TsAGI facilities, 
(b) build the required surrogate models and (c) run all the required 
uncertainty quantification analyses and reliability/robust optimization 
algorithms. The corresponding simulation workflow is displayed in 
Fig. 23. 

Table 6 lists the four random input variables considered in this use 

case, consisting off ambient temperature and ambient pressure evalu-
ated at cruise and take-off conditions. 

The input variables listed in Table 6 are associated with low and high 
boundaries defined as their reference values ± 3% respectively. Their 
probability density functions are of Gaussian type and are defined in 
such a way that the values corresponding to the mean ± 3 standard 
deviations are equal to the higher/lower bounds. A set of variables are 
calculated from the engine discipline and are used as inputs by the na-
celle aerodynamic discipline. These variables are considered as “inter-
mediate variables” and consist of engine core and bypass temperature 
and pressure evaluated at takeoff and cruise regimes, for a total of 8 
variables. As mentioned above, the number of variable geometrical 
parameters has been reduced to a minimum. The two parameters that 
the most influence the shape of the inlet duct (and thus the inlet flow 
distortion) are varied: (a) the leading edge curvature radius, Rcurv, and 
(b) the ratio of highlight diameter to throat diameter, K = dh/dt (see 
Fig. 24). The dimensionless lower and upper boundaries for Rcurv and K 
were defined as [0, 1]. 

The output variables are calculated by the nacelle aerodynamic 
discipline and consist of (a) the engine effective thrust loss evaluated at 
cruise regime, dPeff , and (b) the total pressure recovery ratio at engine 
intake section, δ. The latter is a feasibility variable evaluated at takeoff 
condition and associated with an upper constraint equal to 1. The var-
iable δ is used to indicate the appearance of flow separation at the engine 

Fig. 21. Convergence History and Iterative Process of EGO-DAKOTA and SEGOMOE, case BPR = 12. The red line is associated to the best found point with 
SEGOMOE, the blue line refers to the solution of EGO-DAKOTA and the black curve represents all the evaluations done during the EGO-DAKOTA optimization 
process. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 22. Graphical depiction of the use case workflow and of the dependencies between the involved variables.  
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intake section during takeoff conditions. 
The optimization problem has been set up by considering the value of 

dPeff as the objective to be minimized subject to the reliability constraint 
δ + 6σδ < 1. (13) 

The design variables are the geometrical parameters of the nacelle, 
Rcurv and K. 

4.3.4.2. Results analysis. First, an uncertainty quantification study was 

performed using the First Order Second Moment (FOSM) as well as the 
Monte Carlo (MC). The FOSM approach was coupled with a forward 
finite difference scheme to compute the required derivatives and 
therefore only 5 system evaluations (i.e., one plus the number of random 
variables) are needed to evaluate σδ at a given point of the design space. 
The MC-based approach requires a number of evaluations equal to NMC. 
The uncertainty associated with dPeff was always very small in magni-
tude (not shown) and was therefore considered negligible. Fig. 25 dis-
plays the contour plots of σδ as a function of Rcurv and K and shows that 
the FOSM- and MC-based results are in good agreement with each other. 
The largest discrepancies are observed for small values of K and values 
of Rcurv close to 0 and 1, where the values of σδ obtained by FOSM are 
overestimated by about 10% with respect to their MC counterparts. As 
expected, the MC-based results are affected by random noise and tend to 

Fig. 23. Optimus workflow used to integrate the two analysis tools and to automate the CFD analyses.  

Table 6 
Input variables considered in the use case and corresponding reference values.   

Variable name Description Reference value 
1 T0,takeoff  Ambient temperature at takeoff condition 288.15 K 
2 P0,takeoff  Ambient pressure at takeoff condition 98 960 Pa 
3 T0,cruise  Ambient temperature at cruise condition 243.07 K 
4 P0,ruise  Ambient pressure at cruise condition 33 685 Pa  

Fig. 24. Inlet geometrical parameters.  

Fig. 25. Variation of σδ with K and Rcurv evaluated with FOSM and MC for 
different values of NMC. The dashed line identifies the boundary of the feasible 
region (δ = 1). 
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converge to a smooth solution as NMC approaches the value of 10 000. 
The contour plots presented in Fig. 25 show that the areas located 

near the boundary of the feasibility region (i.e., where δ is close to 1) are 
associated with relatively large values of σδ whose magnitude is close to 
the values of δ itself. For this reason, the design optimization problem 
cannot be defined adopting a traditional deterministic approach where 
(a) the operating conditions are set equal to their reference values and 
(b) the constraint is defined by imposing the inequality δ < 1. An 
effective approach consists in introducing a constraint in order to 
enforce the system reliability within an appropriate confidence interval. 
Fig. 26 illustrates the behavior of the variable equal to δ+ 6σδ within the 
design space and the effect of adopting the reliability constraint defined 
by Eq. (13) on the position of the boundary of the feasible region. 
Clearly, the adoption of this constraint reduces the area of the feasibility 
region. 

A robust design optimization strategy has been defined in order to 
identify the most efficient design subject to the reliability constraint 
defined by Eq. (13). The optimal values of the design variables are found 
on the basis of a gradient-based algorithm and correspond to K = 0.72 
and Rcurv = 0.19. The histograms representing the pdfs of the estimated 
geometrical parameters and a summary of their key statistical charac-
teristics are shown in Fig. 27. 

A conclusive analysis is performed through the First Order Reliability 
Method (FORM) and Second Order Reliability Method (SORM) in order 
to compute the reliability index β, and the probability of failure pf , 
associated with the optimized design. The two approaches required an 
additional number of 146 and 156 system evaluations, respectively. The 
output values of the FORM analysis are given by β = 3.96 and pf =
3.8 10−5 while the estimates obtained through SORM are β = 4.44 and 
pf = 4.5⋅ 10−6. Regarding β, the two results are in good agreement with 
each other. The discrepancies observed for the estimated probability of 
failures can be attributed to the different levels of the approximation of 

the limit state function adopted by the two approaches. Given the 
relatively small number of additional system evaluations used by SORM 
compared to FORM (for this test case) it can be concluded that the 
second-order based approach should be preferred over the first-order 
one for the assessment of the target system reliability. 

5. Conclusion and future work 

During the first year of AGILE project (Design Campaign 1), a 
reference distributed MDO problem was selected and implemented, 
taking advantage of both the design competences and methodologies 
available in the AGILE consortium. During DC-1 this MDO process was 
successfully applied to the optimization of a large regional jet aircraft. In 
the second year of the project (Design Campaign 2), novel optimization 
techniques developed by the AGILE partners were investigated for 
different MDO problems, all based on the evolution of the MDA of 
Design Campaign 1. These techniques were selected for their expected 
capabilities to converge more rapidly and more efficiently for the 
distributed complex workflows characterized by a high degree of 
discipline interdependencies and a high number of design variables that 
are considered in the AGILE project. The results presented in this paper 
confirm that the selected optimization techniques were successful to 
handle the increasing complexity of the workflows. 

For the wing optimization process the innovative multi-optimization 
approach combining Nash Games and Genetic Algorithm was investi-
gated and demonstrated its capabilities to handle a three objectives 
problem aiming at increasing both the aerodynamic performance (at 
high speed and low-speed conditions) and structural objectives. For this 
case the optimal design using the assignment of the NGA variables to the 
players led to a reduction of more than 30% in terms of computational 
time compared to the Pareto front approach. 

The approaches selected for the nacelle design optimization problem 
were shown to be effective. The use of the SEGOMOE optimizer 
permitted to reach a better solution using less computational resources 
than a classical EGO approach. Moreover, the optimum is reached using 
a budget reduced by a factor 8. Considering the effect of random fluc-
tuations around operating conditions, Optimus’ UQ strategy allowed 
characterizing the uncertainty of the system outputs and successfully 
found an optimal design for the geometry of the engine nacelle subject to 
the target reliability constraint. The multiple techniques that were 
selected during DC-2 (including the optimization methods presented in 
the paper) have been implemented as new competences in the AGILE 
framework and are accessible by other partners for collaborative use 
cases. Some of these features, such as the SEGOMOE and Noesis’ robust 
optimization capabilities were already used in the System of System use 
case [15]. The smart combination of the MDO enhancements, knowl-
edge based technologies [63,64] and IT solutions provide a powerful 
approach for handling the challenges of the reduction of the aircraft 

Fig. 26. Contour plots showing the dependency of σ + 6σδ (left) and dPeff 
(right) on K and Rcurv. The dashed lines on the right plot denote the boundary of 
the feasible region obtained by setting δ = 1 (a) and σ + 6σδ = 1 (b). 

Fig. 27. Histograms of dPeff (left) and δ (right) obtained on the basis of a MC analysis with NMC = 10, 000 and by setting K and Rcurv to their optimal values.  
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development time at the early stages of the design process. In the frame 
of Design campaign 3, these developments will be used to seven novel 
configurations of aircraft. The main results of the different test cases are 
available in a dissemination package on the AGILE web portal [5]. 
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