
Module Checking of Pushdown Multi-agent Systems

Laura Bozzelli , Aniello Murano , Adriano Peron
University of Napoli “Federico II”

lr.bozzelli@gmail.com, nello.murano@gmail.com, adrperon@unina.it

Abstract

In this paper, we investigate the module-checking problem of
pushdown multi-agent systems (PMS) against ATL and ATL∗

specifications. We establish that for ATL, module checking of
PMS is 2EXPTIME-complete, which is the same complexity
as pushdown module-checking for CTL. On the other hand,
we show that ATL∗ module-checking of PMS turns out to be
4EXPTIME-complete, hence exponentially harder than both
CTL∗ pushdown module-checking and ATL∗ model-checking
of PMS. Our result for ATL∗ provides a rare example of a
natural decision problem that is elementary yet but with a
complexity that is higher than triply exponential-time.

1 Introduction
Model checking is a well-established formal-method tech-
nique to automatically check for global correctness of sys-
tems (Clarke and Emerson 1981; Queille and Sifakis 1981).
Early use of model checking mainly considered finite-state
closed systems, modelled as labelled state-transition graphs
(Kripke structures) equipped with some internal degree of
nondeterminism, and specifications given in terms of stan-
dard temporal logics such as the linear-time temporal logic
LTL (Pnueli 1977) and the branching-time temporal logics
CTL and CTL∗ (Emerson and Halpern 1986).

In the last two decades, model-checking techniques have
been extended to the analysis of reactive and distributed
component-based systems, where the behavior of a compo-
nent depends on assumptions on its environment (the other
components). One of the first approaches to model check
finite-state open systems is module checking (Kupferman
and Vardi 1996), a framework for handling the interaction be-
tween a system and an external unpredictable environment. In
this setting, the states of the Kripke structure are partitioned
into those controlled by the system and those controlled by
the environment. The latter ones intrinsically carry an addi-
tional source of nondeterminism describing the possibility
that the computation, from these states, can continue with any
subset of its possible successor states. This means that while
in model checking, we have only one computation tree repre-
senting the possible evolution of the system, in module check-
ing we have an infinite number of trees to handle, one for
each possible behavior of the environment. Deciding whether
a system satisfies a property amounts to check that all such
trees satisfy the property. This makes module checking harder

to deal with. Classically, module checking has been inves-
tigated with respect to CTL and CTL∗ specifications. More
recent approaches to the verification of multi-component
finite-state systems (multi-agent systems) are based on the
game paradigm: the system is modeled by a multi-player
finite-state concurrent game, where at each step, the next
state is determined by considering the “intersection” between
the choices made simultaneously and independently by all
the players. In this setting, properties are specified in logics
for strategic reasoning such as the alternating-time tempo-
ral logics ATL and ATL∗ (Alur, Henzinger, and Kupferman
2002), well-known extensions of CTL and CTL∗, respec-
tively, which allow to express cooperation and competition
among agents in order to achieve certain goals.

For a long time, there has been a common believe that
module checking of CTL/CTL∗ is a special case of model
checking of ATL/ATL∗. The belief has been recently refuted
in (Jamroga and Murano 2014). There, it was proved that
module checking includes two features inherently absent
in the semantics of ATL/ATL∗, namely irrevocability and
nondeterminism of strategies. On the other hand, temporal
logics like CTL and CTL∗ do not accommodate strategic
reasoning. These facts have motivated the extension of mod-
ule checking to a finite-state multi-agent setting for han-
dling specifications in ATL∗ (Jamroga and Murano 2015;
Bozzelli and Murano 2017), which turns out to be more ex-
pressive than both CTL∗ module checking and ATL∗ model
checking (Jamroga and Murano 2014; 2015).
Verification of pushdown systems. An active field of re-
search is model checking of pushdown systems. These rep-
resent an infinite-state formalism suitable to capture the
control flow of procedure calls and returns in programs.
Model checking of (closed) pushdown systems against stan-
dard regular temporal logics (such as LTL, CTL, CTL∗,
and the modal µ-calculus) is decidable and it has been in-
tensively studied in recent years leading to efficient veri-
fication algorithms and tools (see e.g. (Walukiewicz 1996;
Bouajjani, Esparza, and Maler 1997; Ball and Rajamani 2000;
Aminof, Kupferman, and Murano 2012; Aminof, Mogavero,
and Murano 2014)). The verification of open pushdown sys-
tems in a two-player turn-based setting has been investi-
gated in many works (see e.g. (Löding, Madhusudan, and
Serre 2004; Hague and Ong 2009)). Open pushdown sys-
tems along with the module-checking paradigm have been

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

162

considered in (Bozzelli, Murano, and Peron 2010). As in the
case of finite-state systems, for the logic CTL (resp., CTL∗),
pushdown module-checking is singly exponentially harder
than pushdown model-checking, being precisely 2EXPTIME-
complete (resp., 3EXPTIME-complete), although with the
same program complexity as pushdown model-checking
(that is EXPTIME-complete). Pushdown module-checking
has been investigated under several restrictions (Aminof
et al. 2013; Bozzelli 2011; Murano, Napoli, and Parente
2008), including the imperfect-information setting case,
where the latter variant is in general undecidable (Aminof
et al. 2013). More recently in (Murano and Perelli 2015;
Chen, Song, and Wu 2016), the verification of open push-
down systems has been extended to a concurrent game setting
(pushdown multi-agent systems) by considering specifications
in ATL∗ and the alternating-time modal µ-calculus.
Our contribution. In this paper, we extend the module-
checking framework to the verification of multi-agent push-
down systems (PMS) by addressing the module-checking
problem of PMS against ATL and ATL∗ specifications. We
establish that ATL module-checking for PMS has the same
complexity as pushdown module-checking for CTL, that is
2EXPTIME-complete. On the other hand, we show that ATL∗
module-checking of PMS has a very high complexity: it turns
out to be exponentially harder than ATL∗ model-checking
of PMS and pushdown module-checking for CTL∗, being,
precisely, 4EXPTIME-complete with an EXPTIME-complete
complexity for a fixed-size formula. The upper bounds are
obtained by an automata-theoretic approach. The matching
lower bound for ATL∗ is shown by a technically non-trivial
reduction from the word problem for 3EXPSPACE-bounded
alternating Turing Machines. Our result for ATL∗ provides
a rare example of a natural decision problem that is ele-
mentary yet but with a complexity that is higher than triply
exponential-time. To the best of our knowledge, the unique
known characterization of the class 4EXPTIME concerns
validity of CTL∗ on alternating automata with bounded co-
operative concurrency (Harel, Rosner, and Vardi 1990). Full
proofs can be found in (Bozzelli, Murano, and Peron 2020).

2 Preliminaries
We fix the following notations. Let AP be a finite nonempty
set of atomic propositions, Ag be a finite nonempty set of
agents, and Ac be a finite nonempty set of actions that can be
made by agents. For a set A ⊆ Ag of agents, an A-decision
dA is an element in AcA assigning to each agent a ∈ A
an action dA(a). For A,A′ ⊆ Ag with A ∩ A′ = ∅, an
A-decision dA and A′-decision dA′ , dA ∪ dA′ denotes the
(A∪A′)-decision defined in the obvious way. Let Dc = AcAg

be the set of full decisions of all the agents in Ag.
Let N be the set of natural numbers. For an infinite word

w over an alphabet Σ and i ≥ 0, w(i) denotes the (i+ 1)th

letter of w and w≥i the suffix of w given by w(i)w(i+ 1)
For a finite word w over Σ, |w| denotes the length of w.

Given a set Υ of directions, an (infinite) Υ-tree T is a
prefix closed subset of Υ∗ such that for all ν ∈ T , ν · γ ∈ T
for some γ ∈ Υ. Elements of T are called nodes and ε is the
root of T . For ν ∈ T , a child of ν in T is a node of the form

ν · γ for some γ ∈ Υ. An (infinite) path of T is an infinite
sequence π of nodes such that π(i+ 1) is a child in T of π(i)
for all i ≥ 0. For an alphabet Σ, a Σ-labeled Υ-tree is a pair
〈T, Lab〉 consisting of a Υ-tree and a labelling Lab : T 7→ Σ
assigning to each node in T a symbol in Σ. We extend the
labeling Lab to paths π in the obvious way, i.e. Lab(π) is
the infinite word over Σ given by Lab(π(0))Lab(π(1))
The labeled tree 〈T, Lab〉 is complete if T = Υ∗. Given
k ∈ N \ {0}, a k-ary tree is a {1, . . . , k}-tree.

Concurrent game structures (CGS) CGS (Alur, Hen-
zinger, and Kupferman 2002) extend Kripke structures to
a setting with multiple agents. They can be viewed as multi-
player games in which players perform concurrent actions,
chosen strategically as a function of the history of the game.

Definition 2.1 (CGS). A CGS (over AP , Ag, and Ac) is a
tuple G = 〈S, s0, Lab, τ〉, where S is a countable set of states,
s0 ∈ S is the initial state, Lab : S 7→ 2AP maps each state to
a set of atomic propositions, and τ : S× Dc 7→ S ∪ {a} is a
transition function that maps a state and a full decision either
to a state or to the special symbol a (a is for ‘undefined’) such
that for all states s, there exists d ∈ Dc so that τ(s, d) 6= a.
Given a set A ⊆ Ag of agents, an A-decision dA, and a state
s, we say that dA is available at state s if there exists an
(Ag \A)-decision dAg\A such that τ(s, dA ∪ dAg\A) ∈ S.

For a state s and an agent a, state s is controlled by a
if there is a unique (Ag \ {a})-decision available at state
s. Agent a is passive in s if there is a unique {a}-decision
available at state s. A multi-agent turn-based game is a CGS
where each state is controlled by an agent.

Note that in modelling independent agents, usually one
assume that at each state s, each agent a has a set Aca,s ⊆ Ac
of actions which are enabled at state s. This is reflected in the
transition function τ by requiring that the set of full decisions
d such that τ(s, d) 6= a corresponds to (Aca,s)a∈Ag. We now
recall the notion of strategy in a CGS G = 〈S, s0, Lab, τ〉. A
play is an infinite sequence of states s1s2 . . . such that for all
i ≥ 1, si+1 is a successor of si, i.e. si+1 = τ(si, d) for some
full decision d. A track (or history) ν is a nonempty prefix
of some play. Given a set A ⊆ Ag of agents, a strategy for
A is a mapping fA assigning to each track ν (representing
the history the agents saw so far) an A-decision available
at the last state, denoted lst(ν), of ν. The outcome function
out(s, fA) for a state s and the strategy fA returns the set of
all the plays starting at state s that can occur when agents A
execute strategy fA from state s on. Formally, out(s, fA) is
the set of plays π = s1s2 . . . such that s1 = s and for all i ≥
1, there is d ∈ AcAg\A so that si+1 = τ(si, fA(s1 . . . si)∪d).

Definition 2.2. For a set Υ of directions, a Concurrent Game
Υ-Tree (Υ-CGT) is a CGS 〈T, ε, Lab, τ〉, where 〈T, Lab〉
is a 2AP -labeled Υ-tree, and for each node x ∈ T , the
successors of x correspond to the children of x in T . Ev-
ery CGS G = 〈S, s0, Lab, τ〉 induces a S-CGT Unw(G)
obtained by unwinding G from the initial state. Formally,
Unw(G) = 〈T, ε, Lab′, τ ′〉, where ν ∈ T iff s0 · ν is a track
of G, and for all ν ∈ T and d ∈ Dc, Lab′(ν) = Lab(lst(ν))
and τ ′(ν, d) = ν · τ(lst(ν), d), where lst(ε) = s0.

Pushdown multi-agent systems (PMS) PMS, introduced

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

163

in (Murano and Perelli 2015), generalize standard pushdown
systems to a concurrent multi-player setting.
Definition 2.3. A PMS (over AP , Ag, and Ac) is a tuple
S = 〈Q,Γ ∪ {γ0}, q0, Lab,∆〉, where Q is a finite set of
(control) states, Γ ∪ {γ0} is a finite stack alphabet (γ0 is the
special stack bottom symbol), q0 ∈ Q is the initial state, Lab :
Q 7→ 2AP maps each state to a set of atomic propositions,
and ∆ : Q × (Γ ∪ {γ0}) × Dc 7→ (Q × Γ∗) ∪ {a} is a
transition function (a is for ‘undefined’) s.t. for all (q, γ) ∈
Q× (Γ ∪ {γ0}), there is d ∈ Dc so that ∆(q, γ, d) 6= a.

The size |∆| of the transition function ∆ is given by
|∆| =

∑
(q′,β)∈∆(q,γ,d) |β|. A configuration of the PMS

S is a pair (q, β) where q is a (control) state and β ∈ Γ∗ · γ0

is a stack content. Intuitively, when the PMS S is in state
q, the stack top symbol is γ and the agents take a full deci-
sion d available at the current configuration, i.e. such that
∆(q, γ, d) = (q′, β) for some (q′, β) ∈ Q × Γ∗, then S
moves to the configuration with state q′ and stack content
obtained by removing γ and pushing β (if γ = γ0 then γ is
not removed). Formally, the PMS S induces the infinite-state
CGS G(S) = 〈S, s0, Lab′, τ〉, where S is the set of configu-
rations of S, s0 = (q0, γ0) (initially, the stack contains just
the bottom symbol γ0), Lab′((q, β)) = Lab(q) for each con-
figuration (q, β), and the transition function τ is defined as
follows for all ((q, γ · β), d) ∈ S×Dc, where γ ∈ Γ ∪ {γ0}:
• either ∆(q, γ, d) = a and τ((q, γ · β), d) = a,
• or γ ∈ Γ, ∆(q, γ, d) = (q′, β′), and τ((q, γ · β), d) =

(q′, β′ · β),
• or γ = γ0 (hence, β = ε), ∆(q, γ, d) = (q′, β′), and
τ((q, γ · β), d) = (q′, β′ · γ0).

2.1 The Logics ATL∗ and ATL
We recall the alternating-temporal logics ATL∗ and ATL pro-
posed by Alur et al. (Alur, Henzinger, and Kupferman 2002)
as extensions of the standard branching-time temporal logics
CTL∗ and CTL (Emerson and Halpern 1986), where the path
quantifiers are replaced by more general parameterized quan-
tifiers which allow for reasoning about the strategic capability
of groups of agents. For the given sets AP and Ag of atomic
propositions and agents, ATL∗ formulas ϕ are defined as:

ϕ ::= true | p | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ | 〈〈A〉〉ϕ

where p ∈ AP , A ⊆ Ag, X and U are the standard “next”
and “until” temporal modalities, and 〈〈A〉〉 is the “existen-
tial strategic quantifier” parameterized by a set of agents.
Formula 〈〈A〉〉ϕ expresses that the group of agents A has a
collective strategy to enforce property ϕ. We use some short-
hand: Fϕ := trueUϕ (“eventually”) and Gϕ := ¬F¬ϕ
(“always”). A state formula is a formula where each tempo-
ral modality is in the scope of a strategic quantifier. A basic
formula is a state formula of the form 〈〈A〉〉ϕ. The logic ATL
is the fragment of ATL∗ where each temporal modality is im-
mediately preceded by a strategic quantifier. Note that CTL∗
(resp., CTL) corresponds to the fragment of ATL∗ (resp.,
ATL), where only the strategic modalities 〈〈Ag〉〉 and 〈〈∅〉〉
(equivalent to the existential and universal path quantifiers E
and A, respectively) are allowed.

Given a CGS G with labeling Lab and a play π of G, the
satisfaction relation G, π |= ϕ for ATL∗ is defined as follows
(Boolean connectives are treated as usual):

G, π |= p ⇔ p ∈ Lab(π(0))
G, π |= Xϕ ⇔ G, π≥1 |= ϕ
G, π |= ϕ1 Uϕ2 ⇔ there is j ≥ 0 : G, π≥j |= ϕ2 and

G, π≥k |= ϕ1 for all 0 ≤ k < j
G, π |= 〈〈A〉〉ϕ ⇔ for some strategy fA for A,

G, π′ |= ϕ for all π′ ∈ out(π(0), fA)

For a state s of G, G, s |= ϕ if there is a play π starting from
s such that G, π |= ϕ. Note that if ϕ is a state formula, then
for all plays π and π′ from s, G, π |= ϕ iff G, π′ |= ϕ. G
is a model of ϕ, denoted G |= ϕ, if for the initial state s0,
G, s0 |= ϕ. Note that G |= ϕ iff Unw(G) |= ϕ.

2.2 ATL∗ and ATL Pushdown Module-checking
In this section, we first recall the ATL∗ module-checking
framework which turns out to be more expressive than both
CTL∗ module-checking and ATL∗ model-checking (Jamroga
and Murano 2014; 2015). Then, we generalize this setting to
pushdown multi-agent systems.

In the multi-agent module-checking setting, one consider
CGS with a distinguished agent (the environment).
Definition 2.4 (Open CGS). An open CGS is a CGS
G = 〈S, s0, Lab, τ〉 containing a special agent called “the
environment” (env ∈ Ag). Moreover, for every state s, either
s is controlled by the environment (environment state) or the
environment is passive in s (system state).

For an open CGS G = 〈S, s0, Lab, τ〉, the set of envi-
ronment strategy trees of G, denoted exec(G), is the set of
S-CGT obtained from Unw(G) by possibly pruning some en-
vironment transitions. Formally, exec(G) is the set of S-CGT
T = 〈T, ε, Lab′, τ ′〉 such that T is a prefix closed subset
of the set of Unw(G)-nodes and for all ν ∈ T and d ∈ Dc,
Lab′(ν) = Lab(lst(ν)), and τ ′(ν, d) = ν · τ(lst(ν), d) if
ν · τ(lst(ν), d) ∈ T , and τ ′(ν, d) = a otherwise, where
lst(ε) = s0. Moreover, for all ν ∈ T , the following holds:
• if lst(ν) is a system state, then for each successor s of

lst(ν) in G, ν · s ∈ T ;
• if lst(ν) is an environment state, then there is a nonempty

subset {s1, . . . , sn} of the set of lst(ν)-successors such
that the set of children of ν in T is {ν · s1, . . . , ν · sn}.
Intuitively, when G is in a system state s, then all the transi-

tions from s are enabled. When G is instead in an environment
state, the set of enabled transitions from s depend on the cur-
rent environment. Since the behavior of the environment is
nondeterministic, we have to consider all the possible subsets
of the set of s-successors. The only constraint, since we con-
sider environments that cannot block the system, is that not
all the transitions from s can be disabled. For an open CGS
G and an ATL∗ formula ϕ, G reactively satisfies ϕ, denoted
G |=r ϕ, if for all strategy trees T ∈ exec(G), T |= ϕ. Note
that G |=r ϕ implies G |= ϕ (since Unw(G) ∈ exec(G)), but
the converse in general does not hold.
ATL∗ and ATL Pushdown Module-checking. An open
PMS is a PMS S such that the induced CGS G(S) is open.

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

164

choice

reqb reqwblack white

milk

reqb
rej

reqw
rej

b+
, push(γ)

b−,
pop(γ)

b

w
+ , push(γ)w− , pop(γ)
w

pour pou
rpour

ign

ign
ign

b−, pop(γ0) w−, pop(γ0)

Figure 1: Multi-agent pushdown coffee machine Scof

Note that for an open PMS, the property of a configuration
of being an environment or system configuration depends
only on the control state and the symbol on the top of the
stack. The pushdown module-checking problem against ATL
(resp., ATL∗) is checking for a given open PMS S and an ATL
formula (resp., ATL∗ state formula) ϕ whether G(S) |=r ϕ.
Example 2.5. Consider a coffee machine that allows cus-
tomers (representing the environment) to choose between the
following actions: (i) ordering and paying a black or white
coffee (actions b or w), (ii) like the actions in the previous
point but, additionally, paying a “suspended” coffee for the
benefit of any customer unknown (actions b+ or w+), and
(iii) asking for a gifted (black or white) coffee (actions b− or
w−). The coffee machine is modeled by a turn-based open
PMS Scof with three agents: the environment, the brewer br
whose function is to pour coffee into the cup (action pour),
and the milk provider who can add milk (action milk). The
two system agents can be faulty and ignore the request from
the environment (action ign). The stack is exploited for keep-
ing track of the number of suspended coffee: a request for a
gifted coffee can be accepted only if the stack is not empty.
After the completion of a request, the machine waits for
further selections. The PMS Scof is represented as a graph
in Figure 1 where each node (control state) is labeled by
the propositions holding at it: the state labeled by choice
is controlled by the environment, the states labeled by reqb
or reqw are controlled by the brewer br, while the state la-
beled by milk is controlled by the milk provider. The notation
push(γ) denotes a push stack operation (pushing the sym-
bol γ 6= γ0), while pop(γ) (resp., pop(γ0)) denotes a pop
operation onto a non-empty (resp., empty) stack.

In module checking, we can condition the property to
be achieved on the behaviour of the environment. For in-
stance, users who never order white coffee and whose re-
quest is never rejected can be served by the brewer alone:
G(Scof) |=r AG(¬reqw∧¬rej)→ 〈〈br〉〉F black. In model
checking, the same formula does not express any interest-
ing property since G(Scof) 6|= AG(¬reqw ∧ ¬rej). Like-
wise G(Scof) |= AG¬reqw → 〈〈br〉〉F black, whereas mod-
ule checking gives a different and more intuitive answer:
G(Scof) 6|=r AG¬reqw → 〈〈br〉〉F black (there are environ-
ments where requests for a gifted coffee are always rejected).

3 Decision Procedures
In this section, we provide an automata-theoretic framework
for solving the pushdown module-checking problem against

ATL and ATL∗ which is based on the use of alternating au-
tomata for CGS (ACG) (Schewe and Finkbeiner 2006) and
nondeterministic pushdown tree automata (NPTA) (Kupfer-
man, Piterman, and Vardi 2002). For the given open PMS
S and ATL formula (resp., ATL∗ state formula) ϕ, by ex-
ploiting known results, we first build in linear-time (resp.,
double exponential time) a parity ACG A¬ϕ accepting the
set of CGT which satisfy ¬ϕ. Then, as a main result, we
show how to construct a parity NPTA P accepting suitable
encodings of the strategy trees of G(S) accepted by A¬ϕ.
Hence, G(S) |=r ϕ iff the language accepted by P is empty.

In the following, we first recall the frameworks of NPTA
and ACG, and known translations of ATL∗ and ATL formu-
las into equivalent parity ACG. Then, in Subsection 3.1, by
exploiting parity NPTA, we show that given an open PMS S
and a parity ACG A, checking that no strategy tree of G(S)
is accepted by A can be done in time double exponential in
the size of A and singly exponential in the size of S .
Nondeterministic Pushdown Tree Automata (NPTA). We
describe parity NPTA over labeled complete k-ary trees for a
given k ≥ 1, which are tuplesP = 〈Σ, Q,Γ∪{γ0}, q0, ρ,Ω〉,
where Σ is a finite input alphabet, Q, Γ ∪ {γ0}, and q0 are
defined as for PMS, ρ : Q×Σ× (Γ∪ {γ0})→ 2(Q×Γ∗)k is
a transition function, and Ω : Q 7→ N is a parity acceptance
condition over Q assigning to each state a color. The index of
P is the number of colors in Ω, i.e., the cardinality of Ω(Q).
A run of the NPTA P on a Σ-labeled complete k-ary tree
〈T, Lab〉 (with T = {1, . . . , k}∗) is a (Q × Γ∗.γ0)-labeled
tree r = 〈T, Labr〉 such that Labr(ε) = (q0, γ0) (initially,
the stack is empty) and for each x ∈ T with Labr(x) =
(q, γ · β), there is 〈(q1, β1), . . . , (qk, βk)〉 ∈ ρ(q, Lab(x), γ)
such that for all 1 ≤ i ≤ k, Labr(x · i) = (qi, βi · β) if
γ 6= γ0, and Labr(x · i) = (qi, βi · γ0) otherwise (note that
in this case β = ε). The run r = 〈T, Labr〉 is accepting if for
all infinite paths π starting from the root, the highest color
Ω(q) of the states q appearing infinitely often along Labr(π)
is even. The language L(P) accepted by P consists of the
Σ-labeled complete k-ary trees 〈T, Lab〉 such that there is an
accepting run of P over 〈T, Lab〉.

For complexity analysis, we consider two parameters:
the size |ρ| of ρ given by

∑
〈(q1,β1),...,(qk,βk)〉∈ρ(q,σ,γ) |β1|+

. . . + |βk| and the smaller parameter ||ρ|| given by ||ρ|| =∑
β∈ρ0

|β| where ρ0 is the set of words β ∈ Γ∗.γ0 occurring
in ρ. The following result has been established in (Kupfer-
man, Piterman, and Vardi 2002) (see also (Bozzelli, Murano,
and Peron 2010)).

Proposition 3.1. (Kupferman, Piterman, and Vardi 2002;
Bozzelli, Murano, and Peron 2010) The emptiness problem
for a parity NPTA of index m with n states, and transition
function ρ can be solved in time O(|ρ| ·2O(||ρ||2·n2·m2 logm)).

Alternating automata for CGS (ACG for short) (Schewe
and Finkbeiner 2006). ACG generalize alternating au-
tomata by branching universally or existentially over all suc-
cessors that result from the agents’ decisions. Formally, for
a set X , let B+(X) be the set of positive Boolean formulas
over X , i.e. Boolean formulas built from elements in X us-
ing ∨ and ∧. A subset Y of X is a model of θ ∈ B+(X)

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

165

if the truth assignment that assigns true (resp., false) to the
elements in Y (resp., X \ Y) satisfies θ. A parity ACG over
2AP and Ag is a tuple A = 〈Q, q0, δ,Ω〉, where Q, q0, and
Ω are defined as for NPTA, while δ is a transition function
of the form δ : Q × 2AP → B+(Q × {�,♦} × 2Ag). The
transition function δ maps a state and an input letter to a posi-
tive Boolean combination of universal atoms (q,�, A) which
refer to all successors states for some available A-decision,
and existential atoms (q,♦, A) which refer to some succes-
sor state for all available A-decisions. The size |A| of A is
|Q|+ |Atoms(A)|, where Atoms(A) is the set of atoms of A,
i.e. the set of tuples in Q × {�,♦} × 2Ag occurring in the
transition function δ.

We interpret the parity ACG A over CGT. Given a CGT
T = 〈T, ε, Lab, τ〉 over AP and Ag, a run of A over T is
a (Q× T)-labeled N-tree r = 〈Tr, Labr〉, where each node
of Tr labelled by (q, ν) describes a copy of the automaton
that is in the state q and reads the node ν of T . Moreover,
we require that r(ε) = (q0, ε) (initially, the automaton is in
state q0 reading the root node), and for each y ∈ Tr with
r(y) = (q, ν), there is a set H ⊆ Q × {�,♦} × 2Ag such
that H is a model of δ(q, Lab(ν)) and the set L of labels
associated with the children of y in Tr satisfies the following:
• for all universal atoms (q′,�, A) ∈ H , there is an available
A-decision dA in the node ν of T such that for all the
children ν′ of ν which are consistent with dA, (q′, ν′) ∈ L;

• for all existential atoms (q′,♦, A) ∈ H and for all avail-
ableA-decisions dA in the node ν of T , there is some child
ν′ of ν which is consistent with dA such that (q′, ν′) ∈ L.
The run r is accepting if for all infinite paths π starting

from the root, the highest color of the states appearing in-
finitely often along Labr(π) is even. The language L(A)
accepted by A consists of the CGT T over AP and Ag such
that there is an accepting run of A over T .

We exploit a known translation of ATL∗ state formulas
(resp., ATL formulas) into equivalent parity ACG which has
been provided in (Bozzelli and Murano 2017). In particular,
the following holds, where for a finite setB disjunct from AP
and a CGT T = 〈T, ε, Lab, τ〉 over AP , a B-labeling exten-
sion of T is a CGT over AP ∪B of the form 〈T, ε, Lab′, τ〉,
where Lab′(ν) ∩AP = Lab(ν) for all ν ∈ T .
Theorem 3.2. (Bozzelli and Murano 2017) For an ATL∗
state formula (resp., ATL formula) ϕ over AP , one can con-
struct in doubly exponential time (resp., linear time) a parity
ACG Aϕ over 2AP∪Bϕ , where Bϕ is the set of basic subfor-
mulas of ϕ, such that for all CGT T over AP , T is a model
of ϕ iff there exists a Bϕ-labeling extension of T which is
accepted by Aϕ. Moreover, Aϕ has size O(22O(|Φ|·log(|ϕ|))

)

and index 2O(|ϕ|) (resp., size O(|ϕ|) and index 2).

3.1 Upper Bounds for ATL and ATL∗ Pushdown
Module-checking

Let S be an open PMS, ϕ an ATL∗ (resp., ATL) formula,
and A¬ϕ the parity ACG over 2AP∪Bϕ (Bϕ is the set of
basic subformulas of ϕ) of Theorem 3.2 associated with the
negation of ϕ. By Theorem 3.2, checking that G(S) |=r ϕ
reduces to check that there are no Bϕ-labeling extensions of

the strategy trees of G(S) accepted by A¬ϕ. In this section,
we provide an algorithm for checking this last condition. In
particular, we establish the following result.
Theorem 3.3. Given an open PMS S on AP , a finite set B
disjunct from AP , and a parity ACGA on 2AP∪B , checking
that there are no B-labeling extensions of strategy trees of
G(S) accepted by A can be done in time doubly exponential
in the size of A and singly exponential in the size of S .

By Theorems 3.2 and 3.3, and since pushdown module-
checking against CTL is already 2EXPTIME-complete, and
EXPTIME-complete for a fixed CTL formula (Bozzelli, Mu-
rano, and Peron 2010), we obtain the following corollary.
Corollary 3.4. Pushdown module-checking for ATL∗ is in
4EXPTIME while pushdown module-checking for ATL is
2EXPTIME-complete. Moreover, for a fixed ATL∗ state for-
mula (resp., ATL formula), the pushdown module-checking
problem is EXPTIME-complete.

In Section 4, we provide a lower bound for ATL∗ matching
the upper bound in the corollary above. We now illustrate
the proof of Theorem 3.3 which is based on a reduction to
emptiness of parity NPTA. For simplicity, we assume that the
set B in the statement of Theorem 3.3 is empty (the general
case where B 6= ∅ is similar).

Fix an open PMS S = 〈Q,Γ ∪ {γ0}, q0, Lab,∆〉 on AP
and a parity ACGA on 2AP , and let G(S) = 〈S, s0, LabS, τ〉.
For all pairs (q, γ) ∈ Q× (Γ ∪ {γ0}), let nextS(q, γ) be the
finite set of pairs (q′, β) ∈ Q× Γ∗ s.t. there is a full decision
d so that ∆(q, γ, d) = (q′, β). We fix an ordering on the set
nextS(q, γ) which induces an ordering on the finite set of
successors of all the configurations of the form (q, γ · α),
and we consider the parameter kS = max{|nextS(q, γ)| |
(q, γ) ∈ Q × (Γ ∪ {γ0})} representing the finite branch-
ing degree of Unw(G(S)). Thus, we can encode each track
ν = s0, s1, . . . , sn of G(S) starting from the initial state,
by the finite word i1, . . . , in over {1, . . . , kS} of length n
where for all 1 ≤ h ≤ n, ih represents the index of state
sh in the ordered set of successors of state sh−1. Now, we
observe that the transition function τ ′ of a strategy tree
T = 〈T, ε, Lab′, τ ′〉 of G(S) is completely determined by T
and the transition function τ of G(S). Hence, for the fixed
open CGS G(S), T can be simply specified by the underly-
ing 2AP -labeled tree 〈T, Lab′〉. We consider an equivalent
representation of 〈T, Lab′〉 by a (2AP ∪ {⊥})-labeled com-
plete kS -tree 〈{1, . . . , kS}∗, Lab⊥〉, called the⊥-completion
encoding of T (⊥ is a fresh proposition), where the labeling
Lab⊥ is defined as follows for each node x ∈ {1, . . . , kS}∗:
• if x encodes a track s0 · ν such that ν is a node of T , then

Lab⊥(x) = Lab′(ν) (concrete nodes);
• otherwise, Lab(x) = {⊥} (completion nodes).
In this way, all the labeled trees encoding strategy trees
T of G(S) have the same structure (they all coincide with
{1, . . . , kS}∗), and they differ only in their labeling. Thus,
the proposition ⊥ is used to denote both “completion” nodes
and nodes in Unw(G(S)) which are absent in T (possible
environment choices are disabled). We show the following
result which, together with Proposition 3.1, provides a proof
of Theorem 3.3 (for the case B = ∅).

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

166

Theorem 3.5. For an open PMS S = 〈Q,Γ∪{γ0}, q0, Lab,
∆〉 over AP and a parity ACG A = 〈QA, q0

A, δ,Ω〉 over
2AP with index h, one can construct in single exponential
time, a parity NPTA P accepting the set of the ⊥-completion
encodings of the strategy trees of G(S) which are accepted
by A. Moreover, P has index O(h|A|2), number of states
O(|Q| · (h|A|2)O(h|A|2)), and transition function ρ such that
||ρ|| = O(|∆| · (h|A|2)O(h|A|2)).

Sketched Proof. First, we observe that for the given parity
ACG A and an input CGT T , we can associate in a standard
way to A and T an infinite-state parity game, where player
0 plays for acceptance, while player 1 plays for rejection.
Winning strategies of player 0 correspond to accepting runs
of A over T . Thus, since the existence of a winning strategy
in parity games implies the existence of a memoryless one,
we can restrict ourselves to consider only memoryless runs
ofA, i.e. runs r = 〈Tr, Labr〉 where the behavior ofA along
r depends only on the current input node and current state.
Formally, r is memoryless if for all nodes y and y′ of r having
the same label, the subtrees rooted at the nodes y and y′ of
r are isomorphic. We now provide a representation of the
memoryless runs of A over the strategy trees of the open
CGS G(S) induced by the given open PMS S .

Fix a strategy tree T = 〈T, ε, LabT , τ〉 of G(S) and let
〈{1, . . . , kS}∗, Lab⊥〉 be the ⊥-completion encoding of T .
Recall that Atoms(A) is the set of atoms ofA, i.e. the set of tu-
ples inQA×{�,♦}×2Ag occurring in the transition function
δ of A. Let Ann = 2QA×Atoms(A) be the finite set of annota-
tions and Υ = (2AP ×Ann×Ann)∪{⊥}. For an annotation
an ∈ Ann, we denote by Dom(an) the set of A-states q such
that (q, atom) ∈ an for some atom atom ∈ Atoms(A), and
by Cod(an) the set of states occurring in the atoms of an. We
represent memoryless runs r ofA over T as annotated exten-
sions of the⊥-completion encoding 〈{1, . . . , kS}∗, Lab⊥〉 of
T , i.e. Υ-labeled complete kS-trees 〈{1, . . . , kS}∗, LabΥ〉,
where for every concrete node x ∈ {1, . . . , kS} encoding
a node νx of T , LabΥ(x) is of the form (Lab⊥(x), an, an′)
(recall that Lab⊥(x) = LabT (νx)), and for every comple-
tion node x, LabΥ(x) = Lab⊥(x) = {⊥}. Intuitively, the
meaning of the first annotation an in the label of a concrete
node x is as follows: Dom(an) represents the set of A-states
q associated with the copies of A in the run r which read
the input node νx of T , while for each q ∈ Dom(an), the
set of atoms atom such that (q, atom) ∈ an represents the
model of δ(q, LabT (νx)) selected by A in r on reading node
νx in state q. Additionally, the second annotation an′ in the
labeling of node x keeps tracks, in case x is not the root, of
the subset of the moves in the first annotation of the parent
ν′ of νx in T for which, starting from ν′, a copy of A is sent
to the current node νx along r. Moreover, we require that the
two annotations an and an′ are consistent, i.e., an′ = ∅ if x is
the root and Cod(an′) = Dom(an) otherwise. An annotated
extension 〈{1, . . . , kS}∗, LabΥ〉 of 〈{1, . . . , kS}∗, Lab⊥〉 is
well-formed if it satisfies the local requirements informally
expressed above. We deduce the following result.
Claim 1: one can construct in singly exponential time a parity
NPTA Pwf over Υ-labeled complete kS-trees accepting the

set of well-formed annotated extensions of the ⊥-completion
encodings of the strategy trees of G(S). Moreover, Pwf has
number of states O(|Q| · 2O(|QA|·|Atoms(A)|)), index 1, and
transition function ρ such that ||ρ|| = O(|∆|).

In order to check that the memoryless run r of the ACG
A over the input T encoded by a well-formed annotated
extension 〈{1, . . . , kS}∗, LabΥ〉 of 〈{1, . . . , kS}∗, Lab⊥〉 is
accepting, we proceed as follows. Let π be an infinite path
of 〈{1, . . . , kS}∗, LabΥ〉 from the root which does not visit
a ⊥-labeled node. Then, LabΥ(π) keeps tracks of all infinite
sequences of states in QA (we call QA-paths) along r as-
sociated with the input path of the strategy tree T encoded
by π. In particular, if LabΥ(π(i)) = (σi, ani, an′i) for all
i ≥ 0, these QA-paths correspond to the sequences q0q1 . . .
of QA-states such that for all i ≥ 0, qi ∈ Dom(ani) and
(qi, (qi+1,m,A)) ∈ ani ∩ an′i+1 for some m ∈ {�,♦} and
set A of agents. We need to check that all these QA-paths sat-
isfy the acceptance condition of A. Then, we first easily con-
struct a co-parity nondeterministic word automaton B over
Υ with O(|QA| · |Atoms(A))| states and index h (the index
of A) which accepts an infinite word over Υ iff it contains a
QA-path that does not satisfy the parity acceptance condition
of A. We now co-determinize B, i.e., determinize it and com-
plement it in a singly-exponential construction (Safra 1988)
to obtain a deterministic parity word automaton B′ that re-
jects violating QA-paths. By (Safra 1988), B′ has (nh)O(nh)

states and indexO(nh), where n = |QA| · |Atoms(A)|. From
B′, we construct a standard parity nondeterministic tree au-
tomaton (parity NTA)Aacc over Υ-labeled complete kS -trees
having (nh)O(nh) states and index O(nh) obtained by sim-
ply running B′ in parallel over all the branches of the input
which do not visit a ⊥-labeled node. Then, the parity NPTA
P satisfying Theorem 3.5 is obtained by projecting out the
annotation components of the input trees accepted by the
intersection of the NPTA Pwf in Claim 1 with the parity NTA
Aacc (recall that parity NPTA are effectively and polynomial-
time closed under projection and intersection with nonde-
terministic tree automata (Kupferman, Piterman, and Vardi
2002)). This concludes the proof of Theorem 3.5.

4 4EXPTIME–hardness of ATL∗ Pushdown
Module-checking

In this section, we establish the following result.

Theorem 4.1. Pushdown module-checking against ATL∗ is
4EXPTIME–hard even for two-player turn-based PMS of
fixed size.

Theorem 4.1 is proved by a polynomial-time reduction
from the word problem for 3EXPSPACE–bounded Alter-
nating Turing Machines (ATM, for short) with a binary
branching degree. Formally, such a machine is a tuple
M = 〈Σ, Q,Q∀, Q∃, q0, δ, F 〉, where Σ is the input alpha-
bet which contains the blank symbol #, Q is the finite set of
states which is partitioned intoQ = Q∀∪Q∃,Q∃ (resp.,Q∀)
is the set of existential (resp., universal) states, q0 is the initial
state, F ⊆ Q is the set of accepting states, and the transition
function δ is a mapping δ : Q× Σ→ (Q× Σ× {←,→})2.
Configurations ofM are words in Σ∗·(Q×Σ)·Σ∗. A configu-

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

167

rationC = η·(q, σ)·η′ denotes that the tape content is η·σ·η′,
the current state (resp., input symbol) is q (resp., σ), and the
reading head is at position |η|+ 1. From configuration C, the
machineM nondeterministically chooses a triple (q′, σ′, d)
in δ(q, σ) = 〈(ql, σl, dl), (qr, σr, dr)〉, and then moves to
state q′, writes σ′ in the current tape cell, and its reading head
moves one cell to the left or to the right, according to d. We
denote by succl(C) and succr(C) the successors of C ob-
tained by choosing respectively the left and the right triple in
〈(ql, σl, dl), (qr, σr, dr)〉. The configuration C is accepting
(resp., universal, resp., existential) if the associated state q is
in F (resp., in Q∀, resp., in Q∃). Given an input α ∈ Σ+, a
(finite) computation tree ofM over α is a finite tree in which
each node is labeled by a configuration. The root of the tree
is labeled by the initial configuration associated with α. An
internal node that is labeled by a universal configuration C
has two children, corresponding to succl(C) and succr(C),
while an internal node labeled by an existential configuration
C has a single child, corresponding to either succl(C) or
succr(C). The tree is accepting if each its leaf is labeled by
an accepting configuration. An input α ∈ Σ+ is accepted by
M if there is an accepting computation tree ofM over α.

If the ATMM is 3EXPSPACE–bounded, then there is a
constant c ≥ 1 such that for each α ∈ Σ+, the space needed
byM on input α is bounded by Tower(|α|c, 3), where for
all n, h ∈ N, Tower(n, h) denotes a tower of exponentials
of height h and argument n (i.e, Tower(n, 0) = n and
Tower(n, h+ 1) = 2Tower(n,h)). It is well-known (Chandra,
Kozen, and Stockmeyer 1981) that the acceptance problem
for 3EXPSPACE–bounded ATM is 4EXPTIME-complete even
if the ATM is assumed to be of fixed size.

Fix a 3EXPSPACE–bounded ATMM and an inputα ∈ Σ+.
Let n = |α|. W.l.o.g. we assume that the constant c is 1 and
n > 1. Hence, any reachable configuration ofM over α can
be seen as a word in Σ∗ · (Q×Σ) ·Σ∗ of length Tower(n, 3),
and the initial configuration is (q0, α(0))α(1) . . . α(n −
1) · (#)t where t = Tower(n, 3) − n. Note that for an
ATM configuration C = u1u2 . . . uTower(n,3) and for all
i ∈ [1,Tower(n, 3)] and dir ∈ {l, r}, the value u′i of the i-th
cell of succdir(C) is completely determined by the values
ui−1, ui and ui+1 (taking ui+1 for i = Tower(n, 3) and
ui−1 for i = 1 to be some special symbol, say `). We denote
by nextdir(ui−1, ui, ui+1) our expectation for u′i (this func-
tion can be trivially obtained from the transition function of
M). According to the previous observation, we use the set
Λ of triples of the form (up, u, us) where u ∈ Σ ∪ (Q× Σ),
and up, us ∈ Σ ∪ (Q × Σ) ∪ {`}. We prove the following
result from which Theorem 4.1 directly follows.
Theorem 4.2. One can construct, in time polynomial in the
size ofM and the length n of theM-input α, a turn-based
PMS S and an ATL∗ state formula ϕ over the set of agents
Ag = {sys, env} such thatM accepts α iff there is a strategy
tree in exec(G(S)) that satisfies ϕ iff G(S) 6|=r ¬ϕ. More-
over, the size of G(S) depends only on the size ofM.

The rest of this section is devoted to the proof of Theo-
rem 4.2. We first define an encoding of the ATM configura-
tions by using the following set Main of atomic propositions.

Main := Λ ∪ {0, 1, ∀, ∃, l, r, f} ∪ {s1, s2, s3, e1, e2, e3}

In the encoding of an ATM configuration, for each ATM cell,
we record the content of the cell, the location (cell number)
of the cell on the ATM tape, and the contents of the previous
and next cell (if any). In order to encode the cell number,
which is a natural number in [0,Tower(n, 3) − 1], for all
1 ≤ h ≤ 3, we define the notions of h-block and well-
formed h-block. For h = 1, 2, well-formed h-blocks encode
integers in [0,Tower(n, h)−1], while well-formed 3-blocks
encode the cells of ATM configurations. In particular, for
h = 2, 3, a well-formed h-block encoding a natural number
m ∈ [0,Tower(n, h)− 1] is a sequence of Tower(n, h− 1)
well-formed (h − 1)-blocks, where the ith (h − 1)-block
encodes both the value and the position of the ith-bit in the
binary representation of m. Formally, a 0-block is a word
of the form {b} where b ∈ {0, 1} (b is the content of {b}).
For 1 ≤ h ≤ 3, an h-block bl is a word of the form {sh} ·
bl0 . . . blt · {τ} · {eh}, where (i) t ≥ 1, τ ∈ {0, 1} if h 6= 3,
and τ ∈ Λ otherwise (τ is the content of bl), and (ii) for all
0 ≤ i ≤ t, bli is an (h − 1)-block. The h-block bl is well-
formed if t = Tower(n, h − 1) − 1 and whenever h > 1,
then the (h − 1)-block bli is well-formed and has number
i for each 0 ≤ i ≤ t. In this case, the number of bl is the
natural number in [0,Tower(n, h) − 1] whose binary code
is given by b0 . . . bt where bi is the content of the sub-block
bli for all 0 ≤ i ≤ t.

ATM configurations C = u1u2 . . . uk (note that here we
do not require that k = Tower(n, 3)) are then encoded by
words wC of the form wC = tag1 · bl1 · . . . · blk · tag2,
where tag1 ∈ {{l}, {r}}, for each i ∈ [1, k], bli is a 3-
block whose content is (ui−1, ui, ui+1) (where u0 =` and
uk+1 =`), tag2 = {f} if C is accepting, tag2 = {∃} if C is
non-accepting and existential, and tag2 = ∀ otherwise. The
symbols l and r are used to mark a left and a right ATM
successor, respectively. We also use the symbol l to mark
the initial configuration. If k = Tower(n, 3) and for each
i ∈ [1, k], bli is a well-formed 3-block having number i− 1,
then we say that wC is a well-formed code of C. A sequence
wC1 · . . . · wCp of well-formed ATM configuration codes is
faithful to the evolution ofM if for each 1 ≤ i < p, either
wCi+1

is marked by symbol l and Ci+1 = succl(Ci), or
wCi+1

is marked by symbol r and Ci+1 = succr(Ci).

Behaviour of the PMS S and encoding of accepting com-
putation trees on α. The PMS S in Theorem 4.2 generates,
for different environment behaviors, all the possible computa-
tion trees ofM. External nondeterminism is used in order to
produce the actual symbols of each ATM configuration code.
Whenever the PMS S reaches the end of an existential (resp.,
universal) guessed ATM configuration code wC , it simulates
the existential (resp., universal) choice ofM from C by ex-
ternal (resp., internal) nondeterminism, and, in particular, S
chooses a symbol in {l, r} and marks the next guessed ATM
configuration with this symbol. This ensures that, once we fix
the environment behavior, we really get a tree T where each
existential ATM configuration code is followed by (at least)
one ATM configuration code marked by a symbol in {l, r},
and every universal configuration is followed (in different
branches) by two ATM configurations codes, one marked by
the symbol l and the other one marked by the symbol r. We

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

168

f

e3

s3 s3

check3

e3

s3 s3

check3

e3

s3

check3

∃ or ∀

3-block in
reverse order

no marked 3-blocks
until next configuration

configuration code
in reverse order

no marked 3-blocks in
next configurations

e3

s3 s3

ĉheck3

e3

s3 s3

ĉheck3

λ ∈ Λ

= System node = Environment node = owner agent depending on context
e3 maybe marked

3-block copy
e2

s2

e2

s2

s3

Tree-encoding
of 3-block

e2

b ∈ {0, 1}
e1

s1

1-block in
reverse order

e1

s1

s2

Tree encoding
of 2-block

{b, check2}

e1

s1s1

∅ω

1-block in
reverse order

check1

check1
e1

s1s1

∅ω s2

∅ω

2-block in
reverse order

Check 2-block-tree

Figure 2: Subtree of the computation tree of the open PMS S rooted at an f -node (pop-phase)

have to check that the guessed computation tree T (corre-
sponding to environment choices) corresponds to a legal com-
putation tree ofM over α. To that purpose, we have to check
several properties about each computation path π of T , in
particular: (i) the ATM configurations codes are well-formed
(i.e., the Tower(n, 3)-bit counter is properly updated), and
(ii) π is faithful to the evolution ofM. The PMS S cannot
guarantee by itself these requirements. Thus, these checks are
performed by a suitable ATL∗ formula ϕ. However, in order
to construct an ATL∗ formula of polynomial size, we need to
‘isolate’ the (arbitrary) selected path π from the remaining
part of the tree. This is the point where we use the stack of the
PMS S . As the ATM configurations codes are guessed sym-
bol by symbol, they are pushed onto the stack of the PMS S .
Whenever the end of an accepting computation path π (i.e., a
sequence of ATM configuration codes where the last ATM
configuration is accepting) is reached, the PMS by using both
internal and external nondeterminism pop the entire computa-
tion path π from the stack. In this way, the PMS S partitions
the sanity checks for π into separate branches (corresponding
to the reverse of π and augmented with additional informa-
tion). In particular, S marks by internal nondeterminism the
content of exactly one 3-block bl3 with the special symbol
check3 and, successively, (in case bl does not belong to the
first configuration code of π) marks by external nondetermin-
ism the content of exactly one 3-block bl ′3 with the special
symbol ĉheck3 (see Figure 2 (at left)) by ensuring that bl3 and
bl ′3 belong to two consecutive configurations codes along π.
Moreover, for each 2-block bl2 of π, S generates by internal
nondeterminism a tree copy of bl2 (check 2-block-tree). This
tree (see Figure 2 (at right)) consists of a marked copy (of the
reverse) of bl2 (the content of bl2 is marked by the special
symbol check2) extended with additional branches (chosen
by external nondeterminism) which represent marked copies
of the (reverse of) 1-sub-blocks bl1 of bl2 (the content of bl1
is marked by the special symbol check1).

Let AP = Main∪{check1, check2, check3, ĉheck3}. We
now formally define the AP -labeled trees associated with
the accepting strategy trees of G(S), i.e. the strategy trees
where each play from the root visits a {f}-labeled node. In
the following, a 2AP -labeled tree is minimal if the children
of each node have distinct labels. A branching-node of a tree

is a node having at least two distinct children. A tree-code is
a finite minimal 2AP -labeled tree 〈T, Lab〉 such that (i) for
each path π from the root, Lab(π) is a sequence of ATM
configuration codes, (ii) a node x is labeled by {f} iff x is
a leaf, and (iii) each node labeled by {∀} has two children,
one labeled by {l} and one labeled by {r}.
Intuitively, tree-codes correspond to the maximal portions
of the accepting strategy trees of G(S) where S performs
push operations (push-phase). We now extend a tree-code
〈T, Lab〉 with extra nodes in such a way that each leaf x of
〈T, Lab〉 is expanded in a tree, called check-tree (pop-phase).

Check-trees: the definition of check-trees is based on the
notion of check 2-block-tree and simple check-tree. The struc-
ture of a check 2-block-tree for a 2-block bl2 is depicted in
Figure 2 (at right): the branching nodes are labeled by {e1}
and are controlled by the environment. A partial check 2-
block-tree for bl2 is obtained from the check 2-block-tree for
bl2 by pruning some choices from the branching nodes. For a
sequence ν of ATM configuration codes, a simple check-tree
for ν is a minimal 2AP -labeled tree 〈T, Lab〉 such that
• for each path π from the root, Lab(π) corresponds to the

reverse of ν followed by ∅ω but there is exactly one 3-
block bl3 of ν whose content is additionally marked by
proposition check3, and in case bl3 does not belong to the
first configuration code of ν, there is exactly one 3-block
bl ′3 whose content is marked by proposition ĉheck3; more-
over, bl ′3 and bl3 belong to two consecutive configuration
codes, and bl ′3 precedes bl3 along ν;

• for each 3-block bl3 of ν, there is a path π from the root
such that the sequence of nodes associated with bl3 is
marked by check3 (i.e., all the 3-blocks of ν are checked);

• each branching-node x has label {e3} and two children:
one labeled by {λ} and the other one labeled by {λ, tag}
for some λ ∈ Λ and tag ∈ {check3, ĉheck3}. If tag =

check3 (resp., tag = ĉheck3), we say that x is a check3-
branching (resp., ĉheck3-branching) node.

Finally, a check-tree for ν is a minimal 2AP -labeled tree
〈T, Lab〉 which is obtained from some simple check-tree
〈T ′, Lab′〉 for ν by adding for each node x of T ′ with la-
bel {e2} an additional child y and a subtree rooted at y so
that the subtree rooted at x obtained by removing all the

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

169

descendants of x in T ′ is a partial check 2-block-tree for the
2-block associated with node x in T ′. Thus, in a check-tree,
we have four types of branching nodes: check3-branching
nodes and {e2}-branching nodes which are controlled by the
system, and ĉheck3-branching nodes and {e1}-branching
nodes which are controlled by the environment.
Extended tree-codes: An extended tree-code is a minimal
2AP -labeled tree 〈Te, Labe〉 such that there is a tree-code
〈T, Lab〉 so that 〈Te, Labe〉 is obtained from 〈T, Lab〉 by re-
placing each leaf x with a check-tree for the sequence of
labels associated with the path of 〈T, Lab〉 leading to x. By
construction and the intuitions given about the PMS S, we
easily obtain the following result.

Lemma 4.3. One can build, in time polynomial in the size
of the ATMM, a PMS S over AP and Ag = {env, sys} s.t.:
• the set of 2AP -labeled trees 〈T, Lab〉 associated with the

accepting strategy trees 〈T, Lab, τ〉 in exec(G(S)) coin-
cides with the set of extended tree-codes;

• for each accepting strategy tree 〈T, Lab, τ〉 in exec(G(S)),
the unique nodes controlled by the system in a check-
subtree of 〈T, Lab, τ〉 are the check3-branching nodes and
the {e2}-branching nodes.

Construction of the ATL∗ formula ϕ in Theorem 4.2. A
check-tree 〈T, Lab〉 for a sequence ν of ATM configuration
codes is well-formed if
• goodness: there are no ĉheck3-branching nodes (this

means that the subtree rooted at the {s3}-node of a check3-
marked 3-block contains at most one ĉheck3-marked 3-
block), and each {e1}-node in a partial 2-block check-
subtree has two children (i.e., all the environment choices
in the {e1}-branching nodes are enabled);
• the ATM configuration codes in ν are well-formed;
• ν starts with the code of the initial configuration for α;
• fairness: ν is faithful to the evolution ofM and for each

path visiting a (well-formed) check3-marked 3-block bl3
and a (well-formed) ĉheck3-marked 3-block bl ′3, bl3 and
bl ′3 have the same number.
An extended tree-code 〈Te, Labe〉 is well-formed if each

check-tree in 〈Te, Labe〉 is well-formed. Evidently, there is a
well-formed extended tree-code iff there is an accepting com-
putation tree ofM over α. We show the following result that
together with Lemma 4.3 provides a proof of Theorem 4.2.

Lemma 4.4. One can construct in time polynomial in |AP |
and the length n of theM-input α, an ATL∗ state formula
ϕ over AP and Ag = {env, sys} such that for each strategy
tree T = 〈T, Lab, τ〉 in exec(G(S)), T is a model of ϕ iff
〈T, Lab〉 is a well-formed extended tree-code.

Sketched Proof. The crucial part of the proof concerns the
definition of two ATL∗ formulas ϕconf and ϕfair satisfying the
following for each good check-tree 〈T, Lab〉 of an accept-
ing strategy tree of the PMS S of Lemma 4.3: 〈T, Lab〉 is a
model of ϕconf (resp., ϕfair) iff the ATM configuration codes
in 〈T, Lab〉 are well-formed (resp., 〈T, Lab〉 satisfies the fair-
ness requirement). We focus on the definition of the formula
ϕfair. By construction and the goodness requirement, for en-
suring the fairness requirement, it suffices to require that for

each (well-formed) check3-marked 3-block bl3 in 〈T, Lab〉
which does not belong to the first configuration code, denoted
by bl ′3 the unique (well-formed) ĉheck3-marked 3-block in
the subtree rooted at the s3-node of bl3 and by (up, u, us)
(resp., (u′p, u

′, u′s)) the content of bl3 (resp., bl ′3), the fol-
lowing holds: (i) bl3 and bl ′3 have the same number, and (ii)
u = nextl(u′p, u

′, u′s) if l marks the ATM configuration code
of bl3, and u = nextr(u′p, u

′, u′s) otherwise.
Here, we define the ATL∗ formula ϕ= ensuring that bl3 and

bl ′3 have the same number. For this, we exploit the auxiliary
formula ψ= in the definition of ϕ= for requiring from the
current e2-node x of the current 2-sub-block bl2 of bl3 that
the 2-sub-block bl ′2 of bl ′3 having the same number as bl2 has
the same content as bl2 too. Recall that in a good check-tree,
the unique nodes controlled by the system are the check3-
branching nodes and the {e2}-nodes, and each strategy of
the system selects exactly one child for each node controlled
by the system. Thus, the formula ψ= asserts the existence of
a strategy fx of the player system s.t. the following holds:
1. each outcome of fx from node x visits a node marked

by check2 whose parent (e2-node) belongs to a ĉheck3-
marked 3-block. This ensures that all the outcomes get
trapped in the same check 2-block-tree associated with
some 2-block bl ′2 of bl ′3. Moreover, bl2 and bl ′2 have the
same content.

2. For each outcome π′ of fx from xwhich leads to a marked
1-sub-block bl ′1 (hence, a marked copy of a 1-sub-block
of bl ′2), the 1-sub-block of bl2 having the same number as
bl ′1 has the same content as bl ′1 too. This ensures that bl2
and bl ′2 have the same number.

The first (resp., second) condition is implemented by the
first (resp., second) conjunct in the argument of the strategic
quantifier 〈〈sys〉〉 in the auxiliary subformula ψ= of ϕ=.

ϕ= :=
∧

dir∈{l,r}

AG
([

check3∧ (¬l∧¬r) U (dir∧X(∃∨∀))
]

−→
[
(¬e3 ∧ (e2 → ψ=)) U s3

])
ψ= := 〈〈sys〉〉

(
F
[
ĉheck3 ∧ (¬e3 U check2)

]
∧

Fcheck1 → X((¬e2 ∧ (e1 → Xη1)) U s2)
)

η1 :=
(i=n∧
i=1

∨
b∈{0,1}

((Xi b) ∧ F(check1 ∧ Xib))
)
−→∨

b∈{0,1}

(b ∧ F(check1 ∧ b))

5 Conclusion
In this paper, we have addressed and carefully investigated
the computational complexity of the module-checking prob-
lem of multi-agent pushdown systems (PMS) against ATL
and ATL∗ specifications. As future work, we aim to inves-
tigate the considered problems in the setting of imperfect
information under memoryless strategies. We recall that this
setting is decidable in the finite-state case (Alur, Henzinger,
and Kupferman 2002). However, moving to pushdown sys-
tems one has to distinguish whether the missing information
relies in the control states, in the pushdown store, or both.
We recall that in pushdown module checking only the for-
mer case is decidable for specifications given in CTL and
CTL∗ (Aminof et al. 2013).

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

170

References
Alur, R.; Henzinger, T. A.; and Kupferman, O. 2002.
Alternating-time temporal logic. Journal of the ACM
49(5):672–713.
Aminof, B.; Legay, A.; Murano, A.; Serre, O.; and Vardi,
M. Y. 2013. Pushdown module checking with imperfect
information. Inf. Comput. 223(1):1–17.
Aminof, B.; Kupferman, O.; and Murano, A. 2012. Improved
model checking of hierarchical systems. Inf. Comput. 210:68–
86.
Aminof, B.; Mogavero, F.; and Murano, A. 2014. Synthesis
of hierarchical systems. Sci. Comput. Program. 83:56–79.
Ball, T., and Rajamani, S. 2000. Bebop: a symbolic model
checker for boolean programs. In 7th SPIN Workshop, LNCS
1885, 113–130. Springer.
Bouajjani, A.; Esparza, J.; and Maler, O. 1997. Reachabil-
ity Analysis of Pushdown Automata: Application to Model-
Checking. In CONCUR’97, LNCS 1243, 135–150. Springer.
Bozzelli, L., and Murano, A. 2017. On the complexity of
ATL and ATL* module checking. In GandALF’17, EPTCS
256, 268–282.
Bozzelli, L.; Murano, A.; and Peron, A. 2010. Push-
down module checking. Formal Methods in System Design
36(1):65–95.
Bozzelli, L.; Murano, A.; and Peron, A. 2020. Mod-
ule checking of pushdown multi-agent systems. CoRR
abs/2003.04728.
Bozzelli, L. 2011. New results on pushdown module check-
ing with imperfect information. In GandALF’11, EPTCS 54,
162–177.
Chandra, A.; Kozen, D.; and Stockmeyer, L. 1981. Alterna-
tion. Journal of the ACM 28(1):114–133.
Chen, T.; Song, F.; and Wu, Z. 2016. Global Model Checking
on Pushdown Multi-Agent Systems. In AAAI’16, 2459–2465.
AAAI Press.
Clarke, E., and Emerson, E. 1981. Design and synthesis
of synchronization skeletons using branching time temporal
logic. In LP’81, LNCS 131, 52–71.
Emerson, E., and Halpern, J. 1986. ”Sometimes” and ”Not
Never” revisited: on branching versus linear time temporal
logic. Journal of the ACM 33(1):151–178.
Hague, M., and Ong, C. L. 2009. Winning regions of push-
down parity games: A saturation method. In CONCUR’09,
LNCS 5710, 384–398. Springer.
Harel, D.; Rosner, R.; and Vardi, M. Y. 1990. On the power
of bounded concurrency III: Reasoning about programs (pre-
liminary report). In LICS’90, 478–488. IEEE Computer
Society.
Jamroga, W., and Murano, A. 2014. On module checking
and strategies. In AAMAS’14, 701–708. IFAAMAS/ACM.
Jamroga, W., and Murano, A. 2015. Module checking of
strategic ability. In AAMAS’15, 227–235. ACM.
Kupferman, O., and Vardi, M. 1996. Module checking. In
CAV’96, LNCS 1102, 75–86. Springer.

Kupferman, O.; Piterman, N.; and Vardi, M. 2002. Pushdown
specifications. In LPAR’02, LNAI 2514, 262–277. Springer-
Verlag.
Löding, C.; Madhusudan, P.; and Serre, O. 2004. Visibly
pushdown games. In FSTTCS’04, LNCS 3328, 408–420.
Springer.
Murano, A., and Perelli, G. 2015. Pushdown Multi-Agent
System Verification. In IJCAI’15, 1090–1097. AAAI Press.
Murano, A.; Napoli, M.; and Parente, M. 2008. Program
complexity in hierarchical module checking. In LPAR’08,
LNCS 5330, 318–332. Springer.
Pnueli, A. 1977. The temporal logic of programs. In
FOCS’77, 46–57. IEEE.
Queille, J., and Sifakis, J. 1981. Specification and verification
of concurrent programs in Cesar. In SP’81, LNCS 137, 337–
351. Springer.
Safra, S. 1988. On the complexity of ω-automata. In
FOCS’88, 319–327. IEEE.
Schewe, S., and Finkbeiner, B. 2006. Satisfiability and
finite model property for the alternating-time mu-calculus. In
CSL’06, LNCS 4207, 591–605. Springer.
Walukiewicz, I. 1996. Pushdown processes: Games and
Model Checking. In CAV’96, LNCS 1102, 62–74. Springer.

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

171

