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Abstract— In this work, a synergy-based reinforcement learn-
ing algorithm has been developed to confer autonomous grasp-
ing capabilities to anthropomorphic hands. In the presence of
high degrees of freedom, classical machine learning techniques
require a number of iterations that increases with the size of the
problem, thus convergence of the solution is not ensured. The
use of postural synergies determines dimensionality reduction
of the search space and allows recent learning techniques, such
as Policy Improvement with Path Integrals, to become easily
applicable. A key point is the adoption of a suitable reward
function representing the goal of the task and ensuring one-

step performance evaluation. Force-closure quality of the grasp
in the synergies subspace has been chosen as a cost function
for performance evaluation. The experiments conducted on the
SCHUNK 5-Finger Hand demonstrate the effectiveness of the
algorithm showing skills comparable to human capabilities in
learning new grasps and in performing a wide variety from
power to high precision grasps of very small objects.

I. INTRODUCTION

New generation of robots, to serve humans by substituting

them in any kind of application or also by replacing parts

of the body, should have comparable abilities to deftly

move in different environments, autonomously learn and

make decisions. To learn new tasks just as humans do, i.e.

through trial-and-error policy, physical interaction is crucial.

Therefore, advanced mechatronic structure and high number

of degrees freedom (DoFs) for a robot are essential to change

different configurations and adapt to the environment. At the

same time, design and control complication due to high DoFs

can be somewhat offset by means of coordinated motion

patterns and sensory-motor synergies that help to simplify

robot hardware and software [1]. This can be summarized

by saying that the robot must be equipped with embodied

intelligence.

This work focuses on one of the most fascinating and

complex part of human and robot body in terms of mechan-

ical design, sensors and control, namely the hand. To play

the same role and functions of the human hand, artificial

hands require anthropomorphic design, human-inspired con-

trol strategies and autonomous learning from interaction and

exploration of the environment. Grasp synthesis based on

analytic approaches suffers from computational complexity

and modelling difficulties. First of all a precise model of the

object should be available and, even more complex, a task

description is needed to model object affordance. For this
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reason, new research trends in robotics go toward learning

strategies that can integrate model-based pre-programmed

actions with real-time learning from actions [2]. In the litera-

ture different classifications of learning strategies for robotics

exist [3], [4]. In [5] two broad categories are distinguished

for learning grasping mainly on the basis of the focus of

observation, i.e. techniques centered on the observation of

humans performing the grasp and techniques centered on

the observation of the grasped object. To the first category

belongs learning-by-demonstration strategies where sensors

and signal processing are the key points for categorization

[6], [7]; to the second category belong strategies that learn

to associate grasp parameters to object geometric features or

learn to identify grasping regions in an object image [8], [9].

The difference between imitation learning and Reinforcement

Learning (RL) are highlighted in [10] and in particular a

survey of RL in the context of robotics is provided. RL repre-

sents the future trends of learning strategies in robotics since

it provides a robot with autonomous capabilities of learning

new tasks on the basis of exploration and trial-and-error

policy. Several RL approaches are found in robotics literature

and are mainly based on policy search methods, which are

preferable with respect to value function approaches as the

latter are not suitable for high dimensional state and action

space [11]. Different approaches for implementing policy-

search are available with pros and cons, e.g. policy-gradient

algorithms [12], Expectation-Maximization (EM) [13], yet

more interesting results come from search algorithms from

the field of stochastic optimization such as Policy Improve-

ment with Path Integrals (PI2) [14], [15]. This method

belongs to the framework of stochastic optimal control and

overcomes gradient computation of a cost function for the

parameters update, thus avoiding problems related with dis-

continuities and noise in the cost functions. In this direction

promising methods are obtained combining Cross-Entropy

Method (CEM) optimization algorithm [16] to overcome a

limit of PI2 method that has a constant degree of exploration

during the learning process. Hence, to obtain an exploration-

exploitation trade-off, adaptive exploration is conceived by

integrating in PI2 the Covariance Matrix Adaptation (CAM)

rule from the CEM [17], [18], [19]. In the field of RL

some examples of application to robotics can be found in

[20], [21], [22], [23]. The application on an anthropomorphic

hand is realized in [24]. PI2 is used to learn particular tasks

involving two fingers such as slide a switch and turn a knob.

The trajectories are represented via Dynamic Movement

Primitives (DMPs), and are learned in the tendon-space of

the index finger and of the thumb. The authors demonstrate



that optimizing a small number of trajectories in the synergy

space can produce comparable performance to optimizing

the trajectories of the tendons individually. In this work, the

goal is quite different as well as the method used to define

a policy, its initial parameters, and the reward function. The

design of appropriate policy representations is essential for

RL methods to be successfully applied to real-world robots.

The idea is to demonstrate that a synergy-based approach is

powerful for learning grasping with anthropomorphic hands

due to configuration space dimesionality reduction. Motor

synergies are a paradigm, inherited form neuroscience studies

on the human hand [25], to represent joint couplings and

inter-finger coordination as a powerful tool to plan grasps

and control artificial hands using few parameters compared

to the degrees of freedom (DOF) of the hand itself. Principal

component analysis (PCA) and human grasps data set serve

as data structures to define a policy and its initial parameters

for a reinforcement learning algorithm. Indeed, starting from

a “good enough” demonstration, the algorithm can optimize

the policy parameters to gradually refine a stable grasp.

When a clear measure about the success of the task is avail-

able, RL adaptability to new objects is ensured. The paper

is organized as follows. In Sect. II the main characteristic

of the Policy Improvement with Path Integrals algorithm

adopted in this work is described. Section III provides the

description of the hardware available for the experiments,

i.e. the SCHUNK 5-Finger Hand; moreover, the description

of the motor synergies subspace underlying the PI2 policy

is also provided; Section IV describes the reward function

and the learning policy. In Sect. V experimental results are

reported to validate the efficiency of the method in realizing

grasps of objects with different shape and size. Finally,

Section VI and VII respectively provide a discussion of the

results and the conclusions.

II. POLICY IMPROVEMENT WITH PATH INTEGRALS (PI2)

In reinforcement learning, the agent and its environment,

such as a robot arm that inserts a peg in a hole or a mobile

robot moving in a room or a hand that grasps objects,

are modeled with a state s ∈ S and can perform action

a ∈ A. The action a changes the state of the system and

the agent receives a feedback in terms of a scalar function

named reward that measures the one-step performance of

the robot with respect to the desired goal. The function

π that maps states to actions is called policy. The goal

of the RL is to discover the policy that maximizes the

cumulative expected reward. Due to robotic systems high-

dimensionality, Policy Search (PS) methods represent the

optimal choice in robotics with respect to the classical RL

techniques since the search space dimension is reduced by

operating directly in the parameter space of the policy.

Several policy search methods have been developed over the

last two decades [10], [18], [19]. The Policy Improvement

with Path Integrals algorithm is one of the most efficient

and numerically robust examples of this approach and comes

from the field of stochastic optimization. Unlike other policy

search algorithm, PI2 does not require a gradient estimate

for the parameters update since it uses the principle of

probability-weighted averaging to compute changes of the

policy parameters, avoiding numerical instabilities due to

matrix inversions. Minimizing a cost function through an

iterative process of exploration and parameter updating is the

goal of this method. The exploration is done by taking K

samples θk=1···K from a Multivariate Gaussian distribution,

with mean θ and covariance matrix Σ. The vector θ repre-

sents the parameters of a policy π (θ), which yields a specific

trajectory τ k. Each of these samples leads to different cost.

The cost is determined by evaluating a task specific scalar

function S (τ k), which is defined in terms of the trajectory

since the reward depends on the robot performance. The

trajectory assumes a different interpretation depending on

the particular application. The expression of the adopted

algorithm is provided in Algorithm 1 (see below) [14]. As

previously discussed, the main difference between PI2 and

other policy search algorithms is the parameter update rule.

In order to update the policy parameters, the PI2 assigns to

each trajectories a probability in inverse proportion to their

rewards, as in line 8 of Algorithm 1.

This is the key point of the entire algorithm, since the new

policy parameters are evaluated by performing probability-

weighted averaging on the samples, as in line 10 of Algo-

rithm 1. Therefore, the PI2 method updates the parameter

vector θ such that it is expected to generate trajectories

that lead to lower costs. The process continues with the

new θ as the basis for the new exploration. The classical

PI2 implementation provides only the distribution mean up-

dating. Therefore, the exploration degree is constant during

the learning process. However, the exploration-exploitation

trade-off is crucial in a reinforcement learning problem. The

agent has to exploit the already known actions, but it also

needs to explore in order to learn new actions that may be

better.

Algorithm 1 shows a variant of the classical PI2, by inte-

grating the covariance matrix adaptation (CAM), in which

the exploration decays during learning in favour of the

exploitation [18], [19]. In the early stages of the learning it

is convenient to have a high exploration degree to discover

the best alternatives. On the contrary, in order to exploit

the learned task, the exploration should be low in the final

stages of the process. For this reason, a gradual decay of

the exploration level has been implemented. In particular,

exploration decays during learning in accordance with the

law described in line 11 of Algorithm 1, where 0 ≪ γ < 1,

and u is the update number. The value γ depends on the

number of updates required to learn the task.

The algorithm parameters used in this work are detailed

in Table I. Moreover, in the considered application the

parameters of the policy are the synergies coefficient σ

and the trajectories τ k represent the hand configuration

corresponding to the synergy coefficients by means of (2)

that the hand reaches using its low-level control, i.e.

τ k = τ(θk) = q(σ).

The reward function S is based on the force closure cost



function [26] i.e.

Sk = S(q(σk)) = r(σ).

All these parameters and functions will be better detailed in

Sects. III and IV.

TABLE I

PI2 PARAMETERS SETTING.

N = 10 Number of updates

K = 5 Number of trials per update

λ = 1000 Exploration level

γ = 0.9 Exploration decay coefficient

Algorithm 1 PI2

Input: θ

λinit

K

γ

Σinit = λI

1: while true do

2: for k = 1 to K do

3: θk ∼ N (θ,Σ)
4: τ k = τ(θk)
5: Sk ≡ S (τ k)
6: end for

7: for k = 1 to K do

8: Pk = e
−

1

λ
Sk

∑
K

k=1
e
−

1

λ
Sk

9: end for

10: θ
new =

∑

K

k=1
Pk (θk − θ)

11: Σ = γuΣinit

12: end while

III. THE SCHUNK S5FH MOTOR SYNERGIES

The synergy-based reinforcement learning strategy has

been tested experimentally on an anthropomorphic hand,

the Schunk 5-Finger Hand [27], [28]. The hand motion is

driven by 9 motors that move 20 joints. The majority of the

joints are actuated through leadscrew mechanisms converting

linear into rotational motion. The other joints are passively

moved by means of a rigid linkage that realizes couplings

to reproduce natural movements using a reduced number of

independent degrees of freedom. Therefore, the hand has its

own mechanical synergies represented by the (20 × 9) Sm

matrix that maps the motor space into the joint space, as in

the following:

q = Smm+ q
0
, (1)

where q ∈ IRn, with n = 20, is the vector of joint variables,

m ∈ IRm, with m = 9, is the vector of motor variables

and q
0

is a mechanical offset characterizing joint angles

when the motors position are set to zero. To further reduce

the dimension of the control problem, postural synergies

are mapped from human hand grasping demonstration using

the results obtained in [29], [30] where the effectiveness of

the first three synergies subspace in planning and control

grasping actions has been demonstrated. As a result of these

studies the (9× 3) Ss matrix of the first three eigenvectors

sorted in decreasing order of variance are computed in the

motor space using Principal Component Analysis (PCA).

Hence, the computed motor synergies matrix Ss and the vec-

tor m̄, that represents the origin of the synergies subspace,

are connected to the hand configuration space by means of

the mechanical synergies matrix Sm. The mapping between

the synergies subspace and the joint space is given by the

following expression:

q = Sm(Ssσ + m̄) + q
0
, (2)

where σ represents the (3×1) vector of synergy coefficients.

The synergies subspace, represented by the matrix Ss, has

been computed using human grasp data and a mapping algo-

rithm available from previous work [31], [32]. Because of un-

deractuation, whatever is the mapping method of human hand

motion to the robotic hand, a faithful mapping will never be

achieved and part of the information will be inevitably lost.

Thus, the coefficients of the first three synergies, computed

by projection of a given grasp in the synergies subspace, can

determine only a good hand preshaping but cannot reproduce

a stable grasp [29].

IV. REWARD FUNCTION AND GRASP QUALITY

The success of a reinforcement learning algorithm based

on PI2 is the proper choice of the policy representations

suitable for the particular application. Examples available

in the literature of policy representation in the context

of robotic manipulation are the Gaussian Mixture Model

(GMM) and Gaussian Mixture Regression (GMR) used in

[33] and DMPs for a compact representation of a movement

[13]. In the particular application of anthropomorphic hand

grasping synthesis, to improve the PI2 performance and

ensure fast convergence, the algorithm has been implemented

in the synergies subspace and the learning policy is based

on the synergy-based approach. Taking advantage from

dimesionality reduction, the optimal policy parameters are

searched directly into the synergies subspace. The parameters

of the policy have a precise meaning; in particular, the

vector θ represents the postural synergy coefficients, i.e.

θ = σ. Therefore, each trial extracted from the multivariate

Gaussian distribution is a robotic hand grasp configuration.

In this framework, a synergy-based quality index V (σ) has

been used in the reward function where it is summed to a

discontinuous function φ that drastically penalizes the reward

if no contact occurred. In particular the adopted force-closure

cost function has been introduced in [26]. This cost function

has to be minimized to achieve the best grasp feasible with

the given set of synergies.

Specifically, the reward function r (σ) used in the PI2

algorithm is defined by:

r (σ) = βV (σ) + φ (3)



where β = 10−6 is a normalization coefficient and φ is:

φ =

{

0 if grasp succeeds

103 if grasp fails
(4)

The value φ = 103 has been chosen so high in order

to penalize decisively the failed grasp, where no contact

between robotic hand and object occurs.

PI2 is a global method, yet the convergence to the global

optimum is not ensured when variations to the classical

version of the method are introduced, as described in Sect. II.

Nevertheless, the choice of the policy and a good initializa-

tion of the parameters allows reaching an excellent solution.

In this work, the initial policy parameters for each grasp

is computed as the synergy coefficients corresponding to the

closer object contained in the reference set used for synergies

computation [30].

Starting from hand preshaping, the learning algorithm is

in charge of searching autonomously for a stable grasp.

The hand preshaping configuration is the result of a sort of

imitation learning of human actions and contains information

on task compatibility, i.e. number of fingers involved in the

grasp, influencing the cost function, and object affordance.

The imitation learning determines the policy and the initial

policy parameters, while the policy improvement learning

algorithm, based on the chosen reward function, ensures

stability and adaptability to new objects and determine the

task execution. In Fig. 1 a schematic representation of the

strategy is reported.

Fig. 1. A schematic representation of the learning algorithm.

V. EXPERIMENTS

To experimentally show the performance of the presented

method and validate the choice of the policy, the PI2 al-

gorithm has been tested on the SCHUNK 5-Finger Hand.

The S5FH is controlled using a Robot Operating System

(ROS) package that contains the driver for the low-level

interface and enables an easy control of the hand using

a customized library written in C++ [34]. The low-level

control law is a kinematic control strategy developed in the

TABLE II

VALUES OF THE FORCE CLOSURE COST FUNCTION FOR EACH STEP OF

THE LEARNING PROCESS DEPICTED IN FIGS. 2, 3, 4, 5, 6, 7.

Object Preshaping Intermediate grasp Final Grasp

Bottle 2.48 · 106 4.06 · 105 1.75 · 105

Cylindrical object 7.45 · 106 6.23 · 106 5.37 · 106

Card 6.96 · 106 5.46 · 106 4.60 · 106

Strawberry 5.52 · 106 4.96 · 106 2.70 · 106

Marble 3.38 · 105 2.57 · 105 1.84 · 105

Needle 2.08 · 105 1.45 · 105 9.37 · 104

synergies subspace where the fingers reference position is

given by the output of the learning algorithm as desired

synergy coefficients. Moreover, in order to limit the contact

forces during the execution of the grasp, the desired target is

modified on the basis of the measured motor current and of

a defined threshold that is related to the texture of the object,

for more details see [29]. The Robotics System Toolbox is

used to provide an interface between MATLAB and ROS in

such a way as to create a ROS node in MATLAB to exchange

messages with the hand driver node.

The PI2 algorithm has been implemented in MATLAB.

To test the learning capacity of the algorithm in different

situations, power, precision and lateral grasp have been

considered as well as objects of different shape and size.

The learning results are shown in Figs. 2 to 7. In each of

these figures three images of the experiment with the same

object are reported. The first image represents the hand in the

preshaping phase that is the result of the imitation learning

as shown in Fig. 1. The intermediate image represents the

hand and the object during learning. To show the progress

of the algorithm during the learning phase, we have chosen

for each object a configuration of the hand corresponding

to an intermediate trial of the algorithm. Finally, the third

image represents the final hand configuration corresponding

to the convergence of the algorithm and to a stable grasp.

In Table II, the force closure cost value corresponding to

each learning phase (arranged from left to right in order of

appearance of the images in the figures) are reported. As

expected, the cost value decreases from left to right.

Fig. 2. Power grasp example: bottle.

First of all it should be noted that at the end of the learning

all the objects are grasped with accuracy and stability.

Moreover, starting from the initial parameters of the policy,

the algorithm is able to distinguish the number of fingers

involved in the grasp. This result is amazing, especially

considering that the hand, using only the initial parameters

of the policy, cannot grasp any of the considered objects.



Fig. 3. Tripodal grasp example: strawberry.

Fig. 4. Bipodal grasp example: marble.

The algorithm implemented in this work provides a stan-

dard number of updates for each object. In particular, the

algorithm performs ten updates with five trials for each of

them. However, the experimental tests have shown that the

task is learned in fewer trials, as illustrated in Table III. In

this work, a certain grasp is evaluated as successful when

the object is not lost, and this evaluation can be easily

performed on the basis of the measured values of the motor

currents. It is important to emphasize that to avoid that hand

configurations, generated by the learning algorithm, could

exert excessively high contact forces on the object, we have

introduced a current threshold in the low-level control of the

hand such that beyond this threshold the motors are stopped.

VI. DISCUSSION OF THE RESULTS

A. Comparison of PI2 performance in the full-DoF system

To show how dimensionality reduction of the policy search

space makes the algorithm extremely fast and efficient, we

report the results obtained using the RL algorithm in the

full-DoF motor space. For the sake of comparison, two

different objects have been selected to perform a power grasp

and a precision grasp. When the complete motor space is

considered as the search space of the policy, the convergence

of the algorithm is not ensured. In Fig. 8 the results of the

RL algorithm applied to a tripodal grasp are reported. The

initial parameters of the search policy are chosen in the full-

DoF motor space. It is possible to observe from images that

the algorithm do not converge and the object is not grasped.

For simpler grasps the algorithm converges but with a higher

TABLE III

MINIMUM NUMBER OF TRIALS FOR A STABLE GRASP.

Bottle 15 Trials

Card 15 Trials

Cylindrical object 20 Trials

Strawberry 25 Trials

Marble 40 Trials

Needle 45 Trials

Fig. 5. Precision grasp with five fingers example: small cylinder.

Fig. 6. Lateral side grasp example: card.

number of trials. In Fig. 9 the bottle has been grasped after 20
trials, i.e. 5 more than the trials obtained when the algorithm

operates in the synergies subspace. In addition, the final

grasp has a higher value of the force closure cost function,

3.01 · 106.

B. Limits of the method

A limitation of this work is the absence of an arm

accompanying the hand in the phase of reaching towards

the object and preshaping. Thus, learning knowledge related

to object affordance and task description, that are obviously

two important aspects of grasping actions, will be addressed

in future work where the whole hand-arm system will be

considered. Nevertheless, at this stage part of the information

is contained in the initial parameters of the policy. Another

limitation regards the object association with the closest tar-

get in the reference data set to generate the initial parameters

of the policy (i.e. the preshaping of the hand), see Sect. IV.

In this regard, in future works a vision system can extract

the characteristics of the object and associate them to the

closest object among those contained in a database. After

identifying the nearest object, the synergies coefficients for

hand preshaping can be computed. Furthermore, the vision

system will be utilized also to automatically evaluate the

success of the grasp (Eq. (4)) for the reward function.

VII. CONCLUSIONS

In this work, a reinforcement learning algorithm has been

implemented for learning grasping with an anthropomorphic

robotic hand using a synergy-based search policy. In partic-

ular, the chosen search approach is the Policy Improvement

with Path Integrals and comes from the field of stochastic

optimization. This algorithm has been chosen for the char-

acteristic to be very effective in the field of robotics and

in particular in applications in which the dimension of the

“actions” space is high. In order to ensure the convergence of

the algorithm and improve the performance we have chosen,

as policy, an approach based on postural synergies of the

robotic hand. The convergence towards a solution that in our

case corresponds to a stable grasp, confirms that the chosen

reward function as the synergy-based force closure cost and

the chosen exploration law is a winning choice.



Fig. 7. Precision grasp example of a very small object: needle.

Fig. 8. Tripodal grasp example using the full-DoF search space: strawberry.
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