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Abstract

Cone-copositive piecewise quadratic Lyapunov functions (PWQ-LFs) for the stability analysis of continuous-time piecewise
affine (PWA) systems are proposed. The state space is assumed to be partitioned into a finite number of convex, possibly
unbounded, polyhedra. Preliminary conditions on PWQ functions for their sign in the polyhedra and continuity over the
common boundaries are provided. The sign of each quadratic function is studied by means of cone-constrained matrix
inequalities which are translated into linear matrix inequalities (LMIs) via cone-copositivity. The continuity is guaranteed by
adding equality constraints over the polyhedra intersections. An asymptotic stability result for PWA systems is then obtained
by finding a continuous PWQ-LF through the solution of a set of constrained LMIs. The effectiveness of the proposed approach
is shown by analyzing an opinion dynamics model and two saturating control systems.

Key words: Piecewise affine systems; piecewise quadratic Lyapunov functions; cone-copositivity; asymptotic stability;
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1 Introduction

Piecewise affine (PWA) systems are characterised by a
set of state-dependent switching affine subsystems de-
fined over a state space partitioned into convex polyhe-
dra [22]. There exist numerous important applications
which involve PWA systems. At least they can be em-
ployed to approximate nonlinear systems and are shown
to be equivalent to several classes of hybrid systems [10].
The stability analysis of PWA systems is a difficult
issue due to their hybrid nature. A classical sufficient
condition is the quadratic stability [2,5] which is how-
ever known to be conservative. Different approaches
have been investigated in the last years with the aim of
obtaining less conservative results. Among others, the
multiple Lyapunov function approach, i.e., to combine
Lyapunov functions defined over different regions of the
state space, has been proposed, see [18]. In particular,
piecewise quadratic Lyapunov functions (PWQ-LFs)
obtained by patching together quadratic forms (for the

Email addresses: rafierv@unina.it (Raffaele Iervolino),
domenico.tangredi@unisannio.it (Domenico Tangredi),
francesco.vasca@unisannio.it (Francesco Vasca).

regions containing the origin) and quadratic functions
(for the regions which do not contain the origin), have
been widely investigated starting from the seminal
work [15]. In this framework the stability conditions are
typically formulated in terms of constrained inequalities
which can be solved by means of a set of linear matrix
inequalities (LMIs) by applying the S-procedure [18].
Unfortunately the S-procedure is lossy in general. Sev-
eral variants of this technique have been proposed in
the more recent literature including sliding modes [21],
attraction domain estimation [17], and relaxed LMIs for
discrete-time PWA systems [11].
In [12] a PWQ-LF approach suitable for Lur’e systems
with slab partitions is proposed, however the results
therein cannot be directly extended to PWA systems
with more general polyhedral partitions of the state
space. In [13] conewise linear systems were considered,
which excluded the presence of bounded polyhedra in
the state space partition. In this paper we propose a
new PWQ approach for continuous-time PWA systems
where the PWQ-LF, differently from the other ap-
proaches, is obtained by suitably combining quadratic
functions for all regions of the state space partition.
The stability conditions are expressed in terms of cone-
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constrained inequalities which are translated into LMIs
by formulating a cone-copositive problem. The coposi-
tive programming for a given matrix analyzed in [3,23]
is here exploited with a more challenging perspective.
Indeed our problem consists in finding a set of cone-
copositive matrices that define a PWQ-LF and whose
entries are degrees of freedom for the stability problem.
The approach is shown to be effective for the stability
analysis of opinion dynamics [26] and saturated control
systems [19,4].
The paper is organized as follows. In Sec. 2 some pre-
liminary definitions and concepts are recalled. The sign
analysis for a PWQ function is considered in Sec. 3 and
its continuity is investigated. The stability problem for
PWA systems is presented in Sec. 4. The numerical ex-
amples illustrated in Sec. 5 confirm the effectiveness of
the approach. Sec. 6 concludes the paper.

2 Preliminaries

Let us recall some useful definitions and concepts.

Definition 1 Given a finite number ρ of points {r`}ρ`=1,
r` ∈ Rn, ρ ∈ N, a conical hull C = cone {r`}ρ`=1 is the set
of points v ∈ Rn such that v =

∑ρ
`=1 θ`r`, with θ` ∈ R+,

R+ being the set of nonnegative real numbers. The set
C is also called (polyhedral) cone and the points {r`}ρ`=1
are called rays of the cone. The matrix R ∈ Rn×ρ whose
columns are the points {r`}ρ`=1 in an arbitrary order is
called ray matrix. Any v ∈ C can be written as v = Rθ
where θ ∈ Rρ+.

Definition 2 Given a finite number λ of points {v`}λ`=1,
v` ∈ Rn, λ ∈ N, a convex hull, say conv{v`}λ`=1, is a

conical hull with
∑λ
`=1 θ` = 1.

Definition 3 Given a finite number λ of vertices

{v`}λ`=1 and a finite number ρ of rays {r`}ρ`=1, v`, r` ∈
Rn, λ, ρ ∈ N, the (convex) set

X = conv{v`}λ`=1 + cone{r`}ρ`=1 (1)

is a polyhedron in Rn. The expression (1) identifies the
so-called V-representation of the polyhedron.

In the following we assume that in the polyhedron rep-
resentation (1) all possible redundancies of the set of
vertices and rays have been eliminated.
Any non-empty polyhedron can be equivalently rep-
resented by using the H-representation or the V-
representation [1]. Given an H-representation of a
polyhedron there exist numerical tools for obtaining a
corresponding V-representation, e.g., [7].

Definition 4 Denote by int(X) the interior of a full-
dimensional set X ⊆ Rn and S a finite positive inte-
ger. A partition of X is the family of full-dimensional

sets {Xs}Ss=1 satisfying X = ∪Ss=1Xs and int(Xs) ∩
int(Xm) = ∅ for s 6= m.

In this paper we are interested in polyhedral partitions
ofX, i.e., to the case where {Xs}Ss=1 are polyhedra, such
that the intersection of two polyhedra is either empty or
a common face. If such property does not hold, regions
can be subdivided such that the property is fulfilled. An
(n− 1)-dimensional face of a polyhedron is called facet.
Given a polyhedron one can define two corresponding
cones of interest. The conical hull of a polyhedron X
represented as in (1) is the cone CX ⊆ Rn defined as

CX = cone{{v`}λ`=1, {r`}
ρ
`=1}. (2)

In the following we assume that (2) is a minimal repre-
sentation for CX , in the sense that in (2) all possible re-
dundancies of the set of generators have been eliminated
and the numbers λ and ρ redefined accordingly. The ma-

trix R = ( v1 . . . vλ r1 . . . rρ ), with R ∈ Rn×(λ+ρ), is

the ray matrix of CX . Note that if 0 ∈ int(X) then CX is
equal to Rn. For the analysis of interest in the sequel of
the paper it is assumed without loss of generality that if
0 ∈ X then the origin belongs to the boundary of X.
Another cone related to a polyhedron X ⊂ Rn, denoted
by ĈX ⊂ Rn+1, is obtained by means of the homogeniza-
tion procedure defined below.

Definition 5 Consider a polyhedron X ⊂ Rn with the
representation (1). For each vertex v` ∈ Rn, its vertex-
homogenization v̄` ∈ Rn+1 is defined as v̄` = col(v`, 1) ∈
Rn+1, where col(·) indicates a vector obtained by stacking
in a unique column the column vectors in its argument.
For each ray r` ∈ Rn its direction-homogenization r̄` ∈
Rn+1 is defined as r̄` = col(r`, 0) ∈ Rn+1.

Given a polyhedron X ⊂ Rn it is possible to define a
corresponding cone ĈX ⊂ Rn+1 by moving X to the
hyperplaneH =

{
x̄ ∈ Rn+1 : x̄ = col(x, 1), x ∈ Rn

}
and

drawing all the halflines from the origin of Rn+1 to any
point of X, as stated in the following proposition.

Proposition 6 Given a polyhedron X ⊂ Rn, consider
the points {v̄`}λ`=1 and {r̄`}ρ`=1 in Rn+1 obtained by ap-
plying the homogenization in Def. 5. Then the cone in
Rn+1

ĈX = cone{{v̄`}λ`=1, {r̄`}
ρ
`=1} (3)

is such that ĈX∩H = X̄ whereH is the hyperplane defined
above and X̄ =

{
x̄ ∈ Rn+1 : x̄ = col(x, 1), x ∈ X

}
.

For any cone ĈX ⊂ Rn+1 defined by Proposition 6, one
can obtain a corresponding ray matrix R̂ ∈ R(n+1)×(λ+ρ)

which has the form

R̂ =

(
v1 . . . vλ r1 . . . rρ

1 . . . 1 0 . . . 0

)
. (4)
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A nonempty intersection of two polyhedra is a polyhe-
dron. In the stability analysis we will need to formulate
the continuity condition of a candidate Lyapunov func-
tion over the polyhedra intersections. To this aim we will
exploit the following result.

Lemma 7 Given two polyhedra X1, X2 ⊂ Rn such that
X1 ∩X2 6= ∅, then ĈX1∩X2

= ĈX1
∩ ĈX2

.

PROOF. The proof easily follows by applying the ho-
mogenization procedure and then the definitions of poly-
hedron and cone.

We can now present some definitions and results on
copositivity and cone-copositivity.

Definition 8 A symmetric matrix P ∈ Rn×n is cone-
copositive with respect to a cone C ⊆ Rn if it is positive
semidefinite with respect to that cone, i.e., if x>Px ≥ 0
for any x ∈ C. A cone-copositive matrix will be denoted
by P <C 0. If the equality only holds for x = 0, then P
is strictly cone-copositive and the notation is P �C 0. In
the particular case C = Rn+, a (strictly) cone-copositive
matrix is called (strictly) copositive.

The notation P < 0, i.e., without any superscript on
the inequality, indicates that P is positive semidefinite,
i.e., x>Px ≥ 0 for any x ∈ Rn. The cone-copositivity
evaluation of a known symmetric matrix P on a cone
can be always transformed into an equivalent copositive
problem and then to an LMI, as stated by the following
result.

Lemma 9 Let P ∈ Rn×n be a symmetric matrix, C ⊆
Rn be a cone, R ∈ Rn×ρ be the ray matrix of the cone C,
N be a symmetric (entrywise) positive matrix. Consider
the following constrained inequalities

P �C 0, (5a)

R>PR �Rρ
+ 0, (5b)

R>PR−N < 0. (5c)

Then the following conditions hold

i) (5a)⇐⇒ (5b)
ii) (5c) =⇒ (5a).

PROOF. i) The equivalence is directly obtained by us-
ing Def. 1.
ii) From (5c) it is R>PR − N = Q with Q < 0 and
hence θ>R>PRθ = θ>(Q + N)θ is strictly positive for
θ ∈ Rρ+ − {0} because θ>Nθ is strictly positive for posi-
tive θ. Then (5b) holds and from i) the proof is complete.

3 Continuous PWQ functions

In this section we consider the sign analysis and the
continuity problem for a PWQ function defined over a
polyhedral partition {Xs}Ss=1 of Rn. With reference to
this partition, denote by Σ0 the subset of indices s such
that 0 ∈ Xs and Σ1 its complement, i.e., Σ0 ∪ Σ1 =
{1, . . . , S}. Let

V (x) = x>Psx+2ν>s x+ωs, x ∈ Xs, s = 1, . . . , S (6)

be a PWQ function, where {Ps}Ss=1 are symmetric ma-
trices with Ps ∈ Rn×n, {νs}Ss=1 are vectors with νs ∈ Rn,
{ωs}Ss=1 are real scalars with ωs = 0 for s ∈ Σ0, {Xs}Ss=1
are polyhedra providing a partition of Rn and expressed
as

Xs = conv{vs,`}λs`=1 + cone{rs,`}ρs`=1 (7)

with s = 1, . . . , S. Let us define the matrices

Rs =
(
vs,1 . . . vs,λs rs,1 . . . rs,ρs

)
, (8a)

R̂s =

(
vs,1 . . . vs,λs rs,1 . . . rs,ρs

1 . . . 1 0 · · · 0

)
, (8b)

P̂s =

(
Ps νs

ν>s ωs

)
, (8c)

with Rs ∈ Rn×(λs+ρs), R̂s ∈ R(n+1)×(λs+ρs), P̂s ∈
R(n+1)×(n+1). The matrices (8) will be used below for the
sign and continuity analysis of the PWQ function (6).

3.1 Sign of quadratic functions on polyhedra

For the sign analysis of (6) we need the following result.

Lemma 10 Let Ps ∈ Rn×n be a symmetric matrix, νs ∈
Rn be a vector, ωs be a real scalar, P̂s ∈ R(n+1)×(n+1)

be given by (8c), Xs ⊂ Rn be a polyhedron represented

as in (7), and ĈXs ⊂ Rn+1 the corresponding cone de-
fined by the homogenization procedure. The constrained
inequality x>Psx+ 2ν>s x+ ωs ≥ 0 for x ∈ Xs, is equiv-

alent to P̂s <ĈXs 0, with ωs = 0 if 0 ∈ Xs.

PROOF. The proof follows from Proposition 2 in [24].

Remark 11 If 0 /∈ Xs, Lemma 10 is valid also for strict
inequalities.

In order to analyze the sign of the PWQ function (6) we
first consider its sign on a single polyhedron Xs by dis-
tinguishing the cases 0 /∈ Xs and 0 ∈ Xs. The corollary
at the end of the subsection will unify the results ob-
tained for each single polyhedron to s ∈ Σ0 ∪ Σ1 and it
will express a condition for the sign of the PWQ function
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on the whole state space in terms of a set of LMIs. First
we analyze the easier problem of the sign of a quadratic
function over a polyhedron Xs with 0 /∈ Xs.

Lemma 12 Let Ps ∈ Rn×n be a symmetric matrix,
νs ∈ Rn be a vector and ωs be a real scalar, Xs ⊂ Rn
be a polyhedron represented as in (7) with 0 /∈ Xs and

ĈXs ⊂ Rn+1 the corresponding cone obtained by apply-
ing the homogenization procedure. Consider the following
constrained inequalities

x>Psx+ 2ν>s x+ ωs > 0, x ∈ Xs, (9a)

P̂s �ĈXs 0 (9b)

R̂>s P̂sR̂s �
Rλs+ρs

+ 0 (9c)

R̂>s P̂sR̂s −Ns < 0, (9d)

with P̂s ∈ R(n+1)×(n+1) given by (8c), R̂s ∈ R(n+1)×(λs+ρs)

ray matrix of the cone ĈXs given by (8b) Ns a sym-
metric (entrywise) positive matrix. Then the following
conditions hold

i) (9a)⇐⇒ (9b)
ii) (9b)⇐⇒ (9c)

iii) (9d) =⇒ (9a).

PROOF. The proof of i) follows from Remark 11. The

application of Lemma 9 with the cone ĈXs furnishes a
direct proof of ii) and iii).

Lemma 12 cannot be used when 0 ∈ Xs because in this
case the quadratic function is assumed to be zero in the
origin, i.e., ωs = 0, which implies that (9a) is no more
equivalent to (9b). In the following lemma we consider
the case when the origin belongs to Xs.

Lemma 13 Let Ps ∈ Rn×n be a symmetric matrix, νs ∈
Rn be a vector, Xs ⊂ Rn be a polyhedron represented as
in (7) with 0 ∈ Xs, and CXs ⊂ Rn the corresponding cone
defined as the conical hull of Xs. Consider the following
constrained inequalities

x>Psx+ 2ν>s x > 0, x ∈ Xs − {0}, (10a)

x>Psx+ 2ν>s x > 0, x ∈ CXs − {0}, (10b)

x>Psx ≥ 0, 2ν>s x ≥ 0, x ∈ CXs − {0}, (10c)

@x̃ ∈ CXs − {0} : x̃>Psx̃ = 0, 2ν>s x̃ = 0, (10d)

θ>R>s PsRsθ + 2ν>s Rsθ > 0, θ ∈ Rλs+ρs+ − {0}, (10e)

R>s PsRs �
Rλs+ρs

+ 0, 2ν>s Rsei ≥ 0, (10f)

R>s PsRs −Ns < 0, 2ν>s Rsei ≥ 0. (10g)

with {ei}λs+ρsi=1 being the vectors of the standard basis,
i.e., all entries equal to zero except for the i-th element

equal to 1, Rs ∈ Rn×(λs+ρs) ray matrix of the cone CXs
given by (8a), and Ns a symmetric (entrywise) positive
matrix. Then the following conditions hold

i) (10b) =⇒ (10a)

ii) (10b) ⇐⇒ (10c) + (10d)

iii) (10b) ⇐⇒ (10e)

iv) (10f) =⇒ (10e)

v) (10g) =⇒ (10a).

PROOF. i) It follows from the fact that Xs ⊆ CXs .
ii) implication is proved by contradiction. Assume there
exists a x̃ ∈ CXs such that x̃>Psx̃ < 0 (2ν>s x̃ < 0, re-
spectively) with x̃>Psx̃+ 2ν>s x̃ > 0. Since x̃ ∈ CXs then
also τ x̃ ∈ CXs for any positive real number τ . Therefore
from (10b) it must be τ2x̃>Psx̃ + 2τν>s x̃ > 0, for any
τ > 0. We can always choose a sufficiently large τ (suf-
ficiently small τ , respectively) such that the sign of this
inequality is determined by the dominant quadratic (lin-
ear, respectively) term, provided that this term is not zero
in x̃, which contradicts the corresponding initial assump-
tion. Then (10c) holds. Moreover the two terms cannot
be zero simultaneously because their sum is strictly posi-
tive by assumption, hence (10d).
iii) Using Def. 1 for the cone CXs we can write x = Rsθ

where θ ∈ Rλs+ρs+ which proves the equivalence.

iv) The first of (10f) implies that θ>R>s PsRsθ > 0 with

θ ∈ Rλs+ρs+ − {0}. Since any positive θ can be written as
a linear combination of the standard basis with nonneg-
ative coefficients, (10f) implies (10e).
v) First notice that the first of (10g) implies the first
of (10f) from Lemma 9. Then by using iv) of the present
Lemma, we get (10g) =⇒ (10e). Finally from iii), ii) and
i) we get the implication (10g) =⇒ (10a).

Lemma 12 and Lemma 13 can be applied to the polyhe-
dra of the partition of Rn in order to get a set of LMIs
which provides a sufficient condition for the sign deter-
mination of the PWQ function (6). This is synthesized
by the following corollary.

Corollary 14 Consider the PWQ function (6), the ma-

trices {P̂s}Ss=1 with P̂s ∈ R(n+1)×(n+1) given by (8c), the
matrices {Rs}s∈Σ0

with Rs ∈ Rn×(λs+ρs) given by (8a)

and the matrices {R̂s}s∈Σ1 with R̂s ∈ R(n+1)×(λs+ρs)

given by (8b). Assume that 2ν>s Rsei ≥ 0 hold for i =
1, . . . , λs + ρs, s ∈ Σ0. If there exist entrywise positive

matrices {Ns}Ss=1 with Ns ∈ R(λs+ρs)×(λs+ρs)
+ such that

the set of LMIs

R>s PsRs −Ns < 0, s ∈ Σ0, (11a)

R̂>s P̂sR̂s −Ns < 0, s ∈ Σ1, (11b)

is satisfied, then the PWQ function (6) is strictly positive.
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PROOF. The proof derives by applying v) in Lemma 13
and iii) in Lemma 12 to the polyhedra of the polyhedral
partition of Rn.

Note that the LMIs (11) are not independent because of
possible common vertices and/or rays of different poly-

hedra of the partition. Each matrix of the set {R̂s}Ss=1
has at least one common column with another matrix of
the set.

3.2 Continuity of the PWQ function

We now formulate the continuity (6) over the intersec-
tions of the polyhedra {Xs}Ss=1 in terms of equality con-
ditions. Note that any common boundary of the polyhe-
dra is itself a polyhedron. For the continuity we do not
need to distinguish the two cases whether the origin be-
longs to Xs or not.

Lemma 15 Consider the PWQ function (6) and the

matrices {P̂s}Ss=1 with P̂s ∈ R(n+1)×(n+1) given by (8c).
Let Xi and Xj be two elements of {Xs}Ss=1 such that

Xi∩Xj 6= ∅ and denote by Γij ∈ R(n+1)×mij ,mij < n+1
the matrix of the common rays of the corresponding cones
ĈXi and ĈXj obtained by applying the homogenization
procedure. Then (6) is continuous on the common bound-
ary between Xi and Xj if

Γ>ij(P̂i − P̂j)Γij = 0 (12)

for all i, j ∈ {1, . . . , S}, such that Xi ∩Xj 6= ∅.

PROOF. Clearly Xi ∩Xj 6= ∅ implies ĈXi ∩ ĈXj 6= ∅.
The continuity of (6) on the polyhedra boundaries can be
expressed as

x>Pix+ 2ν>i x+ ωi = x>Pjx+ 2ν>j x+ ωj , (13)

for x ∈ Xi ∩Xj, i and j ∈ {1, . . . , S}, and Xi ∩Xj 6= ∅.
Remind that ωi = ωj = 0 if 0 ∈ Xi ∩ Xj. The condi-
tion (13) can be rewritten as

x̄>(P̂i − P̂j)x̄ = 0 (14)

where P̂i and P̂j are defined according to (8c), x̄ =
col(x, 1) with x ∈ Xi ∩ Xj. By considering that any

nonzero x̂ ∈ ĈXi∩Xj can be written as x̂ = tx̄ with t > 0,
the equality (14) is equivalent to

x̂>(P̂i − P̂j)x̂ = 0, x̂ ∈ ĈXi∩Xj (15)

Moreover, by Lemma 7, (15) is equivalent to

x̂>P̂ix̂ = x̂>P̂j x̂, x̂ ∈ ĈXi ∩ ĈXj (16)

for i and j ∈ {1, . . . , S}. Since Γij contains the common

rays of ĈXi and ĈXj , for any x̂ ∈ ĈXi ∩ĈXj one can write

x̂ = Γijθ with θ ∈ Rmij+ . Therefore the continuity condi-
tions (16) are guaranteed by (12) for all i, j ∈ {1, . . . , S},
such that Xi ∩Xj 6= ∅.

Remark 16 For those Xi and Xj such that Xi ∩Xj =
{0} conditions (12) are trivial and do not correspond to

any constraint on the corresponding matrices P̂i and P̂j.

The proof of Lemma 15 allows to argue that the con-
tinuity of the PWQ function (6) in Rn across the com-
mon boundaries of the polyhedra {Xs}Ss=1 is equivalent

to the continuity of the PWQ form x̂>P̂sx̂ with P̂s given
by (8c), across the common boundaries of the cones

{ĈXs}Ss=1 in Rn+1.

4 Asymptotic stability of PWA systems

We consider the stability problem for the PWA system

ẋ = Asx+ bs, x ∈ Xs, s = 1, . . . , S (17)

where As ∈ Rn×n, bs ∈ Rn, Xs ⊂ Rn is a polyhedron
represented as in (7), {Xs}Ss=1 is a polyhedral partition
of Rn. It is assumed bs = 0 for all s ∈ Σ0 and that
the vector field on the polyhedra intersections takes any
value among the vector fields defined by the polyhedra
sharing that boundary.

4.1 Solution concept

The following solution concept for (17) is adopted.

Definition 17 Suppose that there are no left accumu-
lation of switches. Given an initial state x(0) = x0, a
function x(t) : [0,∞) → Rn is a solution of the discon-
tinuous system (17) in the sense of Caratheodory, if it
is absolutely continuous on each compact subinterval of
[0,∞) and satisfies (17) almost everywhere.

A result on the existence and the uniqueness of
Caratheodory solutions of system (17) can be found
in [8]. Definition 17 assumes that the considered system
dynamics is not affected by sliding modes or Zeno be-
havior. A sufficient condition for these exclusions is the
continuity of the vector fields over the boundaries [25].
Some preliminary results which consider sliding modes
in the simpler case of conewise linear systems are re-
ported in [14]. A sufficient condition for guaranteeing
the absence of regular and higher order sliding modes
on a common facet between two polyhedra can be ex-
pressed in our framework as shown below. Note that,
for the partitions of our interest, two polyhedra cannot
have more than one common facet.
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Lemma 18 Consider the polyhedra pairs {Xi, Xj} with
i 6= j, i, j ∈ {1, . . . , S} andXi∩Xj being a common facet.
Denote by λij and ρij the number of vertices and rays of

the polyhedron Xi ∩Xj, respectively, Rij ∈ Rn×(λij+ρij)

the ray matrix of CXi∩Xj , R̂ij ∈ R(n+1)×(λij+ρij) the ray

matrix of ĈXi∩Xj . Let {x : h>ijx+gij = 0} with hij ∈ Rn,
gij ∈ R be the hyperplane containing Xi ∩Xj. Define

Q̂
(k)
ij =

(
Q

(k)
ij µ

(k)
ij

µ
(k)>

ij ζ
(k)
ij

)
, (18)

with

Q
(k)
ij = Ak

>

i hijh
>
ijA

k
j (19a)

µ
(k)
ij =

1

2
(Ak

>

j hijh
>
ijA

k−1
i bi +Ak

>

i hijh
>
ijA

k−1
j bj)

(19b)

ζ
(k)
ij = b>i A

k−1>

i hijh
>
ijA

k−1
j bj . (19c)

where k is a positive integer. Assume that the inequalities

2µ
(k)>

ij Rije` ≥ 0 hold for those i, j such that 0 ∈ Xi∩Xj,
` = 1, . . . , λij + ρij, and that, if k ≥ 2,

h>ijA
χ−1
i (Aix+ bi) = h>ijA

χ−1
j (Ajx+ bj) = 0, (20)

for some x ∈ Xi ∩Xj, χ = 1, . . . , k − 1.
If there exist symmetric (entrywise) positive matricesNij
such that the following LMI holds

R>ijQ
(k)
ij Rij −Nij < 0, 0 ∈ Xi ∩Xj (21a)

R̂>ijQ̂
(k)
ij R̂ij −Nij < 0, 0 /∈ Xi ∩Xj , (21b)

then the system (17) does not present sliding of order k
on the facet Xi ∩Xj.

PROOF. A sufficient condition for no regular sliding
mode (k = 1) to occur onXi∩Xj is that the trajectories
cross the common facet, which can be expressed as

(x>A>i + b>i )hij · h>ij (Ajx+ bj) > 0 (22)

for all x ∈ Xi∩Xj . In the case that (20) hold, analogous
sufficient conditions can be written for the absence of
higher order sliding modes (k ≥ 2) by taking higher
order time derivatives of h>ijx:

(x>A>i + b>i )Ak−1>

i hij · h>ijAk−1
j (Ajx+ bj) > 0 (23)

for all x ∈ Xi ∩Xj . Clearly, the expression (23) reduces
to (22) in the case k = 1. With simple algebraic manip-
ulations and by using (19), the inequality (23) can be

rewritten as

x>Q
(k)
ij x+ 2µ

(k)>

ij x+ ζ
(k)
ij > 0, (24)

for all x ∈ Xi ∩Xj . Then by applying Corollary 14, one
obtains that (21) imply (24) and hence (23).

In general, to find operative conditions for a PWA system
to be free from attracting sliding modes along a face of
dimension less than n − 1 and from Zeno behavior is a
nontrivial task, see [8,15]. In the following we assume
that for each initial condition the system (17) has an
absolutely continuous solution in the sense of Def. 17.

4.2 Stability analysis

By exploiting the results obtained in the previous section
we can derive a sufficient condition for the asymptotic
stability of (17) given by the feasibility of a suitable set
of constrained LMIs. Any solution of the proposed set
of LMIs directly provides the matrices of a PWQ-LF.

Theorem 19 Consider the system (17) with the poly-
hedra {Xs}Ss=1 expressed as (7), the matrices {Rs}s∈Σ0

with Rs ∈ Rn×(λs+ρs) given by (8a), the matrices

{R̂s}s∈Σ1
with R̂s ∈ R(n+1)×(λs+ρs) given by (8b), and

define the matrices

Âs =

(
As bs

0 0

)
(25)

with s ∈ Σ1. Consider the set of LMIs

R>s PsRs −Ns < 0 (26a)

−R>s (A>s Ps + PsAs)Rs −Ms < 0 (26b)

for all s ∈ Σ0, and

R̂>s P̂sR̂s −Ns < 0 (27a)

−R̂>s (Â>s P̂s + P̂sÂs)R̂s −Ms < 0 (27b)

for all s ∈ Σ1, where P̂s ∈ R(n+1)×(n+1) are symmetric
matrices in the form (8c), Ns, Ms are symmetric (en-
trywise) positive matrices of appropriate dimensions, to-
gether with the set of inequalities

2ν>s Rsei ≥ 0, −2ν>s AsRsei ≥ 0 (28)

for i = 1, . . . , λs + ρs, s ∈ Σ0. If the set of LMIs (26)–
(27) subject to the equality constraints (12) and
to the inequality constraints (28) has a solution
{Ps, νs, ωs, Ns,Ms}Ss=1 with ωs = 0 for s ∈ Σ0, then the
system (17) is globally asymptotically stable.
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PROOF. Choose the PWQ function (6) as a candi-
date Lyapunov function. By following arguments similar
to [16], it can be shown that if the function (6) is con-
tinuous, strictly positive, radially unbounded and strictly
decreasing along any solution x(t) of (17), then the sys-
tem is globally asymptotically stable.
From (12) through Lemma 15 it follows that the func-
tion (6) is continuous across the polyhedra boundaries
and then it is continuous in the whole state space.
From (26a), (27a), the first of (28) and by using Corol-
lary 14, the PWQ function (6) is strictly positive in
Rn − {0}.
In order to show that (6) is radially unbounded, consider
Xs unbounded in the two cases s ∈ Σ0 and s ∈ Σ1. In the
former case clearly if (6) is radially unbounded in CXs
then it is also radially unbounded along any ray of CXs
contained in Xs. Consider a x̃ ∈ CXs then also τ x̃ ∈ CXs
for any positive real number τ . Therefore for all x = τ x̃
it is

lim
‖x‖→+∞

V (x) = lim
τ→+∞

(τ2x̃>Psx̃+2τν>s x̃) = +∞ (29)

where we used (10g) =⇒ (10c)+(10d) from Lemma 13.
In the case s ∈ Σ1 consider

lim
‖x‖→+∞

V (x) = lim
‖x̄‖→+∞

x̄>P̂sx̄ (30)

where x̄ = col(x, 1) and x ∈ Xs. Since x̄ ∈ ĈXs , by us-
ing (9b), which is implied by (27a), we can conclude that
the limit (30) is infinity. Then (6) is radially unbounded.
Definition 17 assumes that x(t) does not remain on
the polyhedra boundaries for any time interval. There-
fore (12) allow to say that (6) is continuous and piece-
wise differentiable when it is evaluated along any solution
x(t) of (17). Define the “upper derivative” of V along
the solutions of (17) as

V̇ ∗(x) = max{V̇s(x)}s∈Σ(x), x ∈
⋂

s∈Σ(x)

Xs (31)

where Σ(x) is the set of all indices s ∈ {1, . . . , S} such
that x ∈ Xs, and

V̇s(x) =x>(A>s Ps + PsAs)x

+ 2(ν>s As + b>s Ps)x+ 2ν>s bs, (32)

s = 1, . . . , S. Note that for x ∈ int(Xs̄) it is Σ(x) = s̄ and

V̇ ∗(x) = V̇s̄(x). For s ∈ Σ0 it is bs = 0; from (26b) to-
gether with the second of (28) and by using Corollary 14
with−(A>s Ps+PsAs)← Ps it follows that (32) is strictly
negative for all s ∈ Σ0. For s ∈ Σ1 from direct substitu-
tion of (25) and (8c) one has

Â>s P̂s+P̂sÂs =

(
A>s Ps + PsAs A

>
s νs + Psbs

ν>s As + b>s Ps 2ν>s bs

)
. (33)

The matrix (33) is related to (32) similarly to how the
matrix (8c) is related to (6). From (27b) and by using

Corollary 14 with −(Â>s P̂s + P̂sÂs) ← P̂s and (32) in-
stead of (6), it follows that (32) is strictly negative for
all s ∈ Σ1. Then (31) is strictly negative. For any t > 0
denote by {ti}Ni=1 the strictly increasing sequence of time
instants in (0, t) such that, for all i, x(ti) lies on the
boundary of Xs for some s. With some abuse of notation
let t0 = 0 and tN+1 = t. Therefore, since (31) is strictly
negative and (6) is continuous one can write

V (x(t)) = V (x(0)) +

N∑
i=0

∫ ti+1

ti

V̇ ∗(x(τ))dτ

≤ V (x(0))−
N∑
i=0

γi(ti+1 − ti)

≤ V (x(0))− γt, (34)

where −γi = maxt∈[ti,ti+1] V̇
∗(x(t)) is strictly negative

and −γ = max{−γi}Ni=0 is strictly negative. There-
fore (6) is strictly decreasing along any solution x(t)
of (17) and goes asymptotically to zero, which completes
the proof.

The conditions of the stability theorem above can be
simplified, for instance, by dropping the continuity con-
straints (12) when for any given i the state flows exclu-
sively from the region Xi to some region Xj (and not
from Xj to Xi).

Remark 20 The proposed approach and Theorem 19
can be used for quadratic forms too by setting ν>s = 0 and
ωs = 0 in (6). On the other hand, the linear terms allow
to increase the number of variables which is useful for the
verification of the continuity constraints (12). In partic-
ular, the use of the linear terms νs allows to increase by
nS the number of decision variables.

Remark 21 Theorem 19 can be reformulated for study-
ing local stability in a bounded (polyhedral) region con-
taining the origin and proved by using similar arguments,
provided that the region is an invariant set. In the case of
bounded region which is not an invariant set for the sys-
tem (17), the local stability result is relative to the largest
level set of the Lyapunov function that is fully contained
in the analysis region [15]. However, finding such a re-
gion can be a complex problem especially in higher di-
mensions.

Remark 22 An analogous of Theorem 19 can be proved
by considering a PWQ-LF defined on a new polyhedral
partition of the state space obtained by refining the par-
tition indicated by the PWA system structure and by
using the same system matrices for the refined polyhe-
dra.Although there exist algorithms for automated parti-
tion refinements based on the simplex partition, e.g., the
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bisection along the longest edge technique, see [13,15], the
sub-partitioning procedures are not ensured to provide a
positive stability answer in finite-time.

Remark 23 The approach of this paper can be applied
also to discrete-time PWA systems, once the transitions
from one polyhedron to another, which can be determined
by a reachability analysis, see [6], are known. In this case
the continuity conditions can be dropped and the decreas-
ing of the candidate Lyapunov function can be obtained
and expressed in terms of LMIs by using Lemma 12 and
Lemma 13.

5 Examples

The problem (26)–(28) with (12) has a number of deci-
sion variables which depends on the number of vertices
and rays of the polyhedra. For each s ∈ Σ0 there are
0.5n2 + n+ (λs + ρs)

2 + λs + ρs decision variables cor-
responding to Ps, νs, Ns and Ms, while for each s ∈ Σ1

there are 0.5n2 + 1.5n+ (λs+ρs)
2 +λs+ρs+ 1 decision

variables corresponding to P̂s, Ns and Ms. The inequal-
ities and equalities to be satisfied are: the 2S LMIs (26)–
(27), the 2

∑
s∈Σ0

(λs + ρs) linear inequalities (28) and

the linear matrix equalities (12) whose number is given
by the polyhedra pairs sharing a common boundary. In
this section the proposed PWQ-LF approach is applied
for the stability analysis of a Hegselmann-Krause con-
sensus model and of two saturated systems. The numeri-
cal results are obtained by using CDD [7] and CVX [9] with
a PC Intel Dual Core processor at 2.4 GHz.

5.1 Multiagent consensus model

The Hegselmann-Krause model is widely analyzed in the
literature dealing with the consensus in multiagent sys-
tems, see among others [20,26]. The model consists of a
set ofN autonomous agents, with a state variable ξi ∈ R
for each agent whose dynamics is described by

ξ̇i =

N∑
j=1

φ(ξi, ξj)(ξj − ξi) (35)

with ξi ∈ [0, 1], i = 1, . . . , N , φ : [0, 1]2 → {0, 1} a
weight function defined as φ(ξi, ξj) = 1 if |ξi − ξj | ≤ d
and φ(ξi, ξj) = 0 if |ξi − ξj | ≥ d, d ∈ R+ − {0}. The

dynamics (35) preserves the average α = 1
N

∑N
i=1 ξi(0).

Depending on the initial conditions, the convergence to
an equilibrium or a clustering with different steady state
values can occur [20].
By introducing the state translation xi = ξi − α, for

i = 1, . . . , N − 1 and by using ξN = α −
∑N−1
i=1 xi, the

transformed model becomes

ẋi =

N−1∑
j=1

φ (xi, xj) (xj − xi)

+ φ(xi +

N−1∑
j=1

xj , 0) (xi +

N−1∑
j=1

xj) (36)

for i = 1, . . . , N − 1. The feasibility region in RN−1

can be obtained by considering that ξi ∈ [0, 1] implies
xi ∈ [−α, 1−α], i = 1, . . . , N−1, and ξN ∈ [0, 1] implies∑N−1
i=1 xi ∈ [α− 1, α]. By assuming N = 3, α = 0.5 and

d = 0.5, the feasibility region of (36) is represented by
the larger hexagon with dashed sides shown in Fig. 1.
By referring to the partition in Fig. 1, the model (36)
can be written in the form (17) with

As =

(
−3 0

0 −3

)
for s=1. . . 6,

A7 = A8 =

(
−2 −1

−1 −2

)
, A9 = A10 =

(
−1 1

0 −3

)
,

A11 = A12 =

(
−3 0

1 −1

)
, A13 = A14 =

(
−2 −1

0 0

)
,

A15 = A16 =

(
0 0

−1 −2

)
, A17 = A18 =

(
−1 1

1 −1

)
,

and bs = 0 for all s ∈ {1, . . . , 18}. The local asymptotic
stability of the origin of (36) can be analyzed by using the
proposed PWQ-LF approach. By applying Theorem 19,
we found a PWQ-LF for the PWA dynamics in the star-
shape region contained in the feasibility domain. In the
same region the no-sliding conditions (21) are satisfied.
From Proposition 2.1 in [20] and Proposition 3.3 in [26]
one can deduce that the star-shape region in Fig. 1 is
an invariant set and hence the origin is asymptotically
stable for any initial condition belonging to that region.
Fig. 2 shows a state trajectory and some PWQ-LF level
curves which confirm the stability result.

5.2 Stability with saturating control

Consider the Lur’e system with saturation feedback rep-
resented as

ẋ = Ax+ bu, (37a)

u = sat(f>x), −1 ≤ u ≤ 1. (37b)

The state space can be divided into the three regions
Ω1 = {x ∈ Rn : f>x ≥ 1}, Ω2 = {x ∈ Rn : −1 ≤ f>x ≤
1}, Ω3 = {x ∈ Rn : f>x ≤ −1}. For each saturated
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Fig. 1. State space polyhedral partition for (36) with d = 0.5,
α = 0.5 and i = 1, 2.
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0

0.1

0.2
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0.5

Fig. 2. State space for the model (36): a state trajectory
(black line) and some level curves of the PWQ-LF (dotted
lines).

region, the model can be written in the form (17) with
A1 = A3 = A, A2 = A+bf>, b1 = −b3 = b, b2 = 0. The
continuity of the vector fields implies that the system
does not exhibit sliding behavior.

Consider the choice analyzed in [19]:

A =

(
0 1

1 0

)
, b =

(
0

5

)
, f =

(
−2

−1

)
. (38)

By exploiting Remark 22 and by applying Theorem 19
we obtained a PWQ-LF with the partition in 10 poly-
hedra of the (bounded) region surrounding the origin,
see Fig. 3. In particular, the local asymptotic stability

-10 -8 -6 -4 -2 0 2 4 6 8 10

x1

-10

-5

0

5

10

x
2

Ω1

Ω2

Ω3

Fig. 3. State space for the system (37)–(38): the polyhedral
partition (black lines) of the (bounded) region of analysis, a
state trajectory (thick black line), some level curves of the
PWQ-LF (dotted lines), the regions of attraction reported
in [19] (light gray and light gray+gray areas).

of the origin is guaranteed for all initial conditions be-
longing to the region delimited by the thick red line, i.e.,
to the largest level set of the PWQ-LF contained in the
region of analysis. Our approach provides a stability re-
gion whose area is about 9% wider than the one obtained
with the approach in [19], where a PWA function with
30 symmetrical facets is employed.

The validity of Theorem 19 for global stability is checked
by considering the saturating control system described
by Example 1 in [4] which can be represented in the
form (37) with the following matrices

A =

(
−2 1

−3 1

)
, b =

(
0

−1

)
, f =

(
1

1

)
. (39)

By exploiting Remark 22 and by applying Theorem 19,
we obtained a solution to the LMIs (26)–(27), i.e., a
PWQ-LF, and then the global asymptotic stability of
the origin by considering a partition of the state space
in 12 polyhedra, see Fig. 4.

6 Conclusions

PWQ functions have been analyzed as candidate Lya-
punov functions for the stability analysis of PWA
systems. We have shown that the cone-copositivity ap-
proach and the homogenization procedure allow to ex-
ploit the advantages of having both quadratic and linear
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Fig. 4. State space for the system (37) with (39): the poly-
hedral partition (black lines) of R2, a state trajectory (thick
black line), some level curves of the PWQ-LF (dotted lines).

terms in the Lyapunov function. By using the cone-
copositivity idea we derived conditions for the existence
of a continuous PWQ-LF and hence for the asymptotic
stability of PWA systems. The stability conditions are
expressed with LMIs constrained by continuity con-
ditions. As a byproduct the result can be applied for
searching PWQ-LFs with a state space partition fur-
ther refined with respect to that originally dictated by
the PWA system structure. The proposed approach has
been shown to be successful for predicting the region of
asymptotic stability of a Hegselmann-Krause consen-
sus model and an input saturation system, and for the
global asymptotic stability of a saturating control sys-
tem. Possible directions for future research are a dual
reformulation of the stability results based on the poly-
hedra H-representation, the inclusion of sliding modes
and conditions for the existence of a PWQ-LF for any
asymptotically stable PWA system.
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