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ABSTRACT
We propose a convolutional neural network for the pansharp-
ening of remote-sensing imagery. A very compact architecture
is designed, which enables accurate training even with small-
size datasets. Prior knowledge on the remote sensing domain is
taken into account by augmenting the input with several maps of
radiometric indices. Extensive experiments on images from various
multiresolution sensors show the proposed CNN to outperform the
current state of the art in terms of both full-reference and no-
reference measures.

Index Terms— pansharpening; segmentation; super-resolution;
machine learning; convolutional neural networks.

I. INTRODUCTION

In order to deliver data with high resolution in both the spatial
and spectral domains modern remote-sensing systems rely on multi-
resolution images. A high (spatial) resolution panchromatic band
(PAN) is complemented by a low resolution multispectral (MS)
stack. Signal processing methods are then used to process these
sources jointly, or to pansharpen them, thus generating a datacube
with the highest spectral and spatial resolution.

In [1] traditional methods for pansharpening are clustered in two
main categories, component substitution and detail injection. With
the first approach, the MS is transformed in some suitable domain
where one of the components is replaced by the high-resolution
PAN image before up-sampling and back-transforming the whole
stack. Performance depends closely on the type of transform used.
Good results have been observed with Brovey transform (BT) [2]
and Gram-Schmidt (GS) spectral sharpening [3]. To reduce spectral
distortion, an adaptive version of GS is proposed in [4] while [5]
relies on the partial replacement of components (PRACS).

Detail injection, instead, consists in extracting high-frequency
content from the PAN and injecting it into the up-sampled version
of the MS. The extraction can be carried out through suitable
multiresolution analysis tools, like the á Trous Wavelet transform
(ATWT) or Laplacian Pyramids (LP) [6]. To avoid distortion and
artifacts, a model is necessary [7] which relates the scales at
which data are available, based on the modulation transfer functions
(MTFs) of the sensors. Some of the most promising injection-
based methods are SFIM [8], Indusion [9], and algorithms based
on ATWT [7], [10], and LP [11], [12], [13]. Lately, methods based
on sparse representations have also gained some popularity.On
the contrary, little attention has been devoted to deep learning,
despite the impressive results observed in computer vision, image
processing, and also remote sensing [14], [15].

In [16] we proposed a convolutional network for remote-sensing
image pansharpening, building upon the architecture proposed in
[17] for the closely related super-resolution problem. After adapting
the architecture to the pansharpening case, we exploit domain-
specific knowledge by augmenting the input with a number of
radiometric indices. The resulting architecture is very compact,
allowing easy and effective training, and providing promising per-
formance. Here we carry out a deeper experimental analysis, com-
paring results with a large number od state-of-the-art methods on

Fig. 1. Sample result of the proposed pansharpening method. From
left to right: input multiresolution image acuired by the GeoEye-1
sensor, interpolation of MS, pansharpened image.

three datasets comprising images acquired by the Ikonos, GeoEye-
1 and WorldView-2 sensors. A sample result of the proposed
pansharpening method is visible in Fig.1. We show on the left
the input PAN and MS images at their original resolutions, then
the interpolated MS, and finally the pansharpened output (all MS
images are projected on a suitable RGB space for visualization).
The spatial resolution of the PAN is fully preserved and a high
spectral fidelity is ensured. Results on all the datasets confirm the
excellent performance of the proposed CNN.

II. CNN-BASED PANSHARPENING

In [17] it was shown that some state-of-the-art super-resolution
methods, based on sparse coding and dictionary learning, can be
implemented by means of a simple convolutional network. Besides
proving the versatility of CNNs, this result has significant practi-
cal implications. The theoretical equivalence with a conventional
method provides precious guidelines for the design of an effective
and compact CNN architecture. From this good starting point,
training can be used to optimize jointly all layers of the network.
Moreover, architectural changes can be easily explored starting for
the basic solution to further improve performance.

Following this approach, in [16] we proposed a three-layer
CNN for the pansharpening of remote sensing images. Preliminary
experiments made clear that several features extracted from the first
layer of the net were remarkably close to well-known radiometric
indexes, such as the normalized vegetation index (NDVI) and
the normalized water index (NDWI). Therefore, we decided to
precompute maps accounting for these indexes and provide them
as input to the net together with the PAN and upsampled MS
components. After some more structural developments, we obtained
the three-layer architecture shown pictorially in Fig.2.

The input image y0 comprises the B upsampled MS bands, the
PAN, and the Brad upsampled radiometric index maps. Because of
the nature of the problem, with the output image having the same
spatial resolution as the PAN, only convolutional layers are needed.
Therefore, all layers implement convolution followed by non-linear
activation

yi+1 = fi(yi ∗ wi + bi),
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Fig. 2. Proposed CNN architecture for pansharpening. MS components and index maps are upsampled and joined with the PAN at the
input.

using ni+1 filters with kernels wi of size ni × (ki × ki) and bias
vectors bi. Some hyper-parameters are fixed, n0 = B + Brad + 1
and n3 = B, while the others are chosen based on preliminary
experiments and are summarized below for the three datasets used
in the expriments. A ReLU non-linearity is used in the first two
layers, while an identity is used in the last one.

The first convolutional layer has resulted to be the most sensitive
to the choice of the hyper-parameters. In particular experimental
tests suggested to use n1 = 48 filters in the first layer for all three
sensors, but with different receptive fields (k1 × k1): 9 × 9 for
GeoEye-1 and WorldView-2, and 5×5 for Ikonos. The second and
third layer, instead, have the same hyper-parameters for all sensors.
In particular n2 = 32 filters compose the second layer and 5 × 5
receptive fields are uses in both the second and the third layers:
k2 = k3 = 5.

It is worth underlining that this is quite a simple CNN architec-
ture, relatively shallow, and hence easy to train even with a small
dataset. This is extremely important for the remote sensing field,
where training data are often scarce as opposed to the millions
images typically available for computer vision applications.

III. PERFORMANCE ASSESSMENT
To test the performance of the proposed method we designed

three datasets comprising multi-resolution images acquired by
some of the most popular sensors in the field, that is, GeoEye-1,
IKONOS, and WorldView-2. Details on such datasets are reported
in [16]. We assessed performance for the proposed method and a
large number of reference techniques, listed in Tab.1, using the
experimental protocol proposed in [1]. Results are reported in
Tables 2, 3, and 4. Both full-reference (Q4, Q, SAM, ERGAS,
SCC) and no-reference (Dλ, DS , QNR) measures are used. The
former are computed, assuming scale-invariance, by working on
subsampled datacubes.

In the tables, methods are listed in temporal sequence (oldest
first) except for tightly related methods that are grouped together.
This organization allows one to catch at a glance the progress of the
state of the art. We showed in blue the best performance and in red
the second best. For all three datasets and all measures, our CNN
solution provides always the best result, with the only exception of
two no-reference results, Dλ on IKONOS and DS on WorldView-
2, where the CNN ranks third. The comparison with the second
best result is especially meaningful, as it makes clear that deep
learning guarantees in most cases an impressive performance gain.
This holds in particular for full reference measures. For example,
the CNN method reduces SAM distortion by 33%, 20%, and 25%
on the three datasets with respect to the second best. Likewise,

for the Q measure, CNN reduces significantly the gap towards the
ideal optimum of 1, going even from 0.883 to 0.940 for GeoEye-1.
Results are less striking on no-reference measures, ringing a bell
on possible distortions on the output images. So we turn to visual
inspection, which is of paramount importance for remote-sensing
applications.

We inspected and compared carefully the pansharpened images
provided by all techniques. For some selected details, one for each
sensor, we show in Fig.3 the output images (to be observed on a
computer screen with suitable zoom) generated by the methods that,
according to numerical results, appear to be the most promising.
In extreme summary, these images confirm the good pansharpening
quality of the proposed method. Together with C-BDSD it provides
the sharpest results, but the latter introduces visible spectral distor-
tions. On the down side, we noticed some artificial patterns in flat
areas of the IKONOS images. These may be due to the training
on low-resolution patches, relying therefore on a scale-invariance
property which is not guaranteed to hold. Future work will address
this problem and focus on possible architectural changes.

A BT : Brovey Transform [2]
B GS : Gram Schmidt [3]
C GSA : Gram Schmidt Adaptive [4]
D HPF : High-Pass filtering based Fusion [18]
E SFIM : Smoothing Filter-based Intensity Modulation[8]
F ATWT-M2 : A Trous Wavelet Transform with Model 2 [7]
G ATWT-M3 : A Trous Wavelet Transform with Model 3 [7]
H ATWT-UIM : ATWT w/ Unitary Injection Model [10]
I MTF-GLP : Gen. Lapl. Pyramid with MTF-matched filter [6]
J MTF-GLP-CBD : (with regression based injection model) [12]
K MTF-GLP-HPM : (with multiplicative injection model) [11]
L MTF-GLP-HPM-PP : (with Post-Processing) [13]
M AWLP : Additive Wavelet Luminance Proportional [19]
N Indusion : wavelet transform with additive injection model [9]
O BDSD : Band-Dependent Spatial-Detail [20]
P C-BDSD : BDSD with nonlocal extension [21]
Q PRACS : Partial Replacement Adaptive Comp. Substitution [5]
X PNN : proposed CNN-based Pansharpening

Table I. Techniques under comparison: heading letters are used to
index the following tables.
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Fig. 3. Comparison of pansharpened images from selected techniques. Top to bottom: GeoEye-1, IKONOS, WorldView-2.

Q4 Q SAM ERGAS SCC Dλ DS QNR
→ 1 → 1 → 0 → 0 → 1 → 0 → 0 → 1

A .649 .832 3.256 2.861 .846 .090 .125 .797
B .643 .824 3.674 2.947 .829 .082 .121 .807
C .724 .854 3.637 2.480 .809 .132 .193 .701
D .691 .850 3.277 2.597 .810 .138 .163 .723
E .697 .852 3.240 11.332 .727 .133 .157 .732
F .582 .779 3.520 3.151 .798 .073 .089 .844
G .600 .790 3.554 3.072 .794 .071 .071 .863
H .719 .865 3.255 2.413 .825 .148 .182 .699
I .728 .867 3.268 2.365 .826 .155 .187 .688
J .731 .854 3.651 2.486 .807 .130 .182 .712
K .735 .871 3.220 5.034 .788 .152 .181 .695
L .706 .847 3.566 8.620 .792 .182 .196 .659
M .717 .861 3.629 2.613 .787 .124 .152 .743
N .574 .777 3.536 3.548 .760 .127 .126 .765
O .739 .883 3.338 2.234 .852 .049 .099 .857
P .739 .878 3.481 2.437 .859 .083 .134 .795
Q .699 .856 3.236 2.429 .811 .047 .087 .869
X .809 .940 2.131 1.566 .915 .032 .061 .908

Table II. Performance comparison on the GeoEye-1 dataset.

IV. CONCLUSIONS

In this paper we have proposed to use CNNs to address the
pansharpening task. To improve performance we augmented the
input by including several maps of nonlinear radiometric indices.
We tested the proposed method against a number of state-of-the-
art references obtaining a very good performance under all metrics,
both full-reference and no-reference, and also in terms of subjective
quality. Future research on this topic will exploit the full potential of

Q4 Q SAM ERGAS SCC Dλ DS QNR
→ 1 → 1 → 0 → 0 → 1 → 0 → 0 → 1

A .606 .750 3.459 2.727 .871 .113 .218 .695
B .616 .767 3.358 2.669 .884 .087 .194 .737
C .716 .833 2.927 2.064 .898 .120 .194 .712
D .688 .823 3.017 2.255 .893 .139 .204 .686
E .693 .829 2.949 2.186 .901 .138 .199 .691
F .517 .702 3.489 3.119 .809 .113 .152 .752
G .557 .724 3.580 3.032 .818 .124 .145 .749
H .705 .832 2.969 2.154 .901 .149 .218 .666
I .712 .834 2.942 2.091 .904 .154 .225 .657
J .718 .834 2.922 2.055 .898 .124 .187 .715
K .717 .842 2.882 2.055 .907 .152 .218 .664
L .686 .808 3.124 2.224 .902 .189 .247 .612
M .714 .838 2.842 2.112 .906 .138 .195 .695
N .592 .766 3.280 2.796 .850 .126 .161 .734
O .719 .857 2.914 1.985 .908 .039 .088 .876
P .720 .856 2.910 2.055 .916 .071 .121 .817
Q .659 .802 2.993 2.359 .873 .049 .114 .842
X .760 .900 2.283 1.663 .941 .051 .073 .879

Table III. Performance comparison on the Ikonos dataset.

deep learning. In particular, we will test the use of further external
inputs, such as textural features [22] or information derived from
external segmenters [23].
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