
Janus: a general purpose WebRTC gateway

A. Amirante, T. Castaldi, L. Miniero, S. P. Romano
University of Napoli Federico II, Napoli, Italy

and
Meetecho s.r.l., Napoli, Italy

{alex, tcastaldi, lorenzo}@meetecho.com, spromano@unina.it

ABSTRACT
This paper deals with the design and implementation of
Janus, a general purpose, open source WebRTC gateway.
Details will be provided on the architectural choices we took
for Janus, as well as on the APIs we made available to ex-
tend and make use of it. Examples of how the gateway can
be used for complex WebRTC applications are presented,
together with some experimental results we collected during
the development process.

Keywords
Gateways, IETF, Rtcweb, WebRTC, Web communication,
JavaScript, Conferencing, Streaming

1. INTRODUCTION
Web Real-Time Communication (WebRTC) is a new stan-
dard and industry effort that extends the web browsing
model. For the first time, browsers are able to directly ex-
change real-time media with other browsers in a peer-to-peer
fashion. The World Wide Web Consortium (W3C [11]) and
the Internet Engineering Task Force (IETF [8]) are jointly
defining the JavaScript APIs (Application Programming In-
terfaces), the standard HTML5 tags, and the underlying
communication protocols for the setup and management of
a reliable communication channel between any pair of next-
generation web browsers. The standardization goal is to de-
fine a WebRTC API that enables a web application running
on any device, through secure access to the input peripher-
als (such as webcams and microphones), to exchange real-
time media and data with a remote party in a peer-to-peer
fashion. The most general WebRTC architectural model
draws its inspiration from the so-called SIP (Session Initi-
ation Protocol) Trapezoid [23]. In the WebRTC Trapezoid
model (Fig. 1), both browsers are running a web application,
which is downloaded from a different web server. Signaling
messages are used to set up and terminate communications.
They are transported by the HTTP or WebSocket proto-
col via web servers that can modify, translate, or manage

IPTComm ’14 September 30 - October 2, 2014, Chicago, IL, USA

Figure 1: The WebRTC Trapezoid

them as needed. It is worth noting that the signaling be-
tween browser and server is not standardized in WebRTC,
as it is considered to be part of the application. As to the
data path, a PeerConnection allows media to flow directly
between browsers without any intervening servers. It rep-
resents an association with a remote peer, which is usually
another instance of the same JavaScript application running
at the remote end. Communications are coordinated via a
signaling channel provided by scripting code in the page via
the web server, e.g., using XMLHttpRequest or WebSocket.
Once a peer connection is established, media streams can
be sent directly to the remote browser. The two web servers
can communicate using a standard signaling protocol such
as SIP or Jingle [17]. Otherwise, they can use a proprietary
signaling protocol.

Besides the basic scenario associated with direct browser-to-
browser communication, there are several alternative situa-
tions where an end-user may actually be interacting with an
application, rather than another user. These include talking
to an IVR system, a PSTN gateway or a conferencing server.
Since day one, WebRTC has attracted the attention of two
different worlds: those who envisaged the chance to create
innovative applications based on a new paradigm, and those
who basically just envisioned a new client to legacy services
and applications. In the depicted scenario, the need has
soon arisen for some kind of component to be placed be-
tween two or more WebRTC peers, thus going beyond (or
even breaking) the end-to-end approach WebRTC is based
upon. It is important to point out that, even in a simple



peer-to-peer scenario, the two involved parties do not neces-
sarily need to be browsers, but may actually run a different
application. Such an application might be acting as a Multi-
point Control Unit (MCU), a media recorder, an Interactive
Voice Response (IVR) system, a bridge towards a differ-
ent technology (e.g., SIP, RTMP, or any legacy streaming
platform) or something else. It should implement most, if
not all, the WebRTC protocols and technologies, and would
actually represent a WebRTC Gateway: one side talks We-
bRTC, while the other might be talking some entirely dif-
ferent protocol (e.g., translating signaling protocols and/or
transcoding media packets).

In the above depicted scenario, we have recently worked on
an open source WebRTC gateway called Janus, which has
been conceived at the outset as a general purpose approach
to the design and implementation of a WebRTC-enabled me-
diation component. In this paper we will guide the reader
through the common requirements and challenges applica-
tion architects have to face when designing and implement-
ing such a complex networked system.

2. CONTEXT AND MOTIVATION
There are several reasons why a gateway can be useful. Tech-
nically speaking, MCUs and server-side stacks can be seen as
gateways as well, which means that, even when you do not
step outside the WebRTC world and just want to extend the
one-to-one/full-mesh paradigm among peers, having such a
component can definitely help depending on the scenario
you have in mind. Nevertheless, the main motivation comes
from the significant number of legacy infrastructures that
may benefit from a WebRTC-enabled kind of access. In
fact, one might assume that the re-use of existing protocols
like SDP [22], RTP [24] and others in WebRTC makes this
a trivial task. Unfortunately, most of the times that is not
the case. If for instance we refer to existing SIP infrastruc-
tures, even if we made use of SIP as a signaling protocol in
WebRTC we would nevertheless incur serious issues, due to
the many differences between the standards implemented by
WebRTC endpoints and those available in current deploy-
ments. Just to make a simple example, most legacy compo-
nents do not support media encryption, and when they do
they usually only support SDES (Session Description Pro-
tocol Security Descriptions). On the other hand, for secu-
rity reasons WebRTC mandates the use of DTLS (Datagram
Transport Layer Security [18]) as the only way to establish
a secure media connection. DTLS has been around for a
while but has witnessed limited deployment in the existing
communication frameworks so far.

The same incompatibilities between the two worlds emerge
in other aspects as well, like the extensive use WebRTC
endpoints make of ICE [21] for NAT traversal, RTCP feed-
back messages for managing the status of a connection or
RTP/RTCP multiplexing, whereas existing infrastructures
usually rely on simpler approaches like Hosted Nat Traver-
sal (HNT) in Session Border Controllers (SBCs), separate
even/odd ports for RTP and RTCP, and more or less basic
RFC3550-compliant RTCP statistics and messages. Things
get even worse when we think of the additional functional-
ity, mandatory or not, that is being added to WebRTC right
now, as BUNDLE [14], Trickle ICE [15] and new codecs
(that the legacy media servers will most likely not support).

Researchers and implementors have hence started to work
on gateways since the first WebRTC browsers have seen the
light. We briefly touch on related work in Sec. 6. The main
idea behind the Janus WebRTC gateway is to make avail-
able a component that is general enough to flexibly adapt to
as many situations as possible, by relying on a lightweight
WebRTC core that can be properly extended/customized
through dynamic injection of application-specific plugins.

3. THE JANUS WEBRTC GATEWAY
As anticipated in Sec. 2, a need is arising for components
able to bridge WebRTC endpoints to legacy architectures
and technologies. Starting from this assumption, we de-
signed our WebRTC gateway as a general purpose compo-
nent that can be exploited in a programmable way.

We called this component, which we released as open source
on GitHub [2], Janus, as a homage to the well known God
of the Ancient Rome pantheon. In fact, it is known that
Janus had two faces, one looking at the past, and one at the
future, which is why January, as a bridge between two years,
was called like that. For the same reason, we found Janus
to be the perfect name for our component, as it always has
at least two faces: one overlooking legacy technologies (the
past), the other taking care of WebRTC (the future).

Coming to the design and implementation of the gateway,
we conceived it as a modular architecture, with a core re-
sponsible for everything related to WebRTC itself. Since we
wanted the implementation to be as lightweight and as fast
as possible, we chose C as a programming language for the
actual implementation. An overview of the overall Janus
architecture is presented in Sec. 3.1, while the protocols im-
plemented by the core are discussed in Sec. 3.2. To conclude,
the API exposed by the gateway is presented in Sec. 3.3.

3.1 Modular architecture
Since the beginning, we conceived the Janus architecture as
modular. Specifically, we designed it as a core with a spe-
cific set of responsibilities, and pluggable modules to provide
specific features, namely support for legacy technologies and
protocols. This approach was motivated by our former expe-
riences within the IETF MEDIACTRL Working Group [12]
. This WG was devoted to the definition of a standard way
to implement an effective communication among Applica-
tion Servers handling application logic, and Media Servers
enforcing the related media manipulation tasks. Commu-
nication relied on so called control packages, allowing the
usage of a generic protocol to drive the communication be-
tween an application and one or more packages providing
specific functionality in a pluggable way.

We chose to follow a similar path for Janus as well, with a
core handling the high level communication with users (ses-
sions and handles management, WebRTC-related protocols)
and server-side plugins to provide specific functionality in a
way that is transparent to WebRTC, and as such indepen-
dent from the web application. More details on the com-
munication part are provided in Sec. 3.3, while an overview
of the architecture and related interactions is depicted in
Fig. 2.

The core is mostly responsible for three things: i) managing



Figure 2: Janus modular architecture

application sessions with users through a REST-ful API; ii)
implementing the WebRTC communication with the same
users, by taking care of the whole WebRTC lifecycle (negoti-
ation, establishment and management of PeerConnections);
iii) attaching users to plugins, in order to allow them to
exchange messages (based on a per-plugin ad-hoc protocol)
and more importantly media (relaying plain RTP/RTCP).
This allows plugins to easily communicate with WebRTC
users, as most hassles associated with the WebRTC stack
are masked by the gateway core. Janus plugins just need to
implement the related plugin API to set up a specific session
with users that want to take advantage of their features, and
get prepared to receive and/or send RTP packets and related
RTCP messages, in case of need. For instance, an echo test
plugin will simply send back whatever it receives, while a
video calling or MCU plugin would relay packets coming
from one user to one or more different users. At the same
time, more complex plugins involving different technologies
may make use of those packets in a different way.

To showcase the pluggable nature of the modular architec-
ture, we implemented a few simple plugins to address some
typical use case scenarios: i) an Echo Test plugin; ii) a
Video Call plugin, bridging two WebRTC users through the
gateway; iii) a Streaming plugin, allowing to relay external
sources (e.g., audio files or live RTP streams originated by
a different tool) towards WebRTC users; iv) a SIP plugin,
acting as a gateway between WebRTC users and an existing
SIP infrastructure; v) an Audio Bridge plugin, mixing Opus
streams coming from different WebRTC users, thus enabling
audio conferencing scenarios; vi) a Video MCU plugin, act-
ing as an MCU among several WebRTC users, thus enabling
a number of different scenarios like video conferencing, we-
binars, screen sharing and so on; vii) a Voice Mail plugin,
that simply records to an Opus file (and then returns back)
whatever a WebRTC user says.

An online demonstration of how these plugins can be used
for real-world applications is provided on the Janus online
demos web page [3]. While definitely not an exhaustive list
of features a gateway may provide, these simple plugins al-
ready allow for the realization of complex multimedia sce-
narios, especially if one looks at them like “bricks” that can
be used for building more complex applications. More de-
tails about them are provided in Sec. 4, where we describe
some applications that can be built using the existing set of
plugins made available out of the box.

As already stated, the gateway exposes an API for creating
new plugins: hopefully this will foster in the near future
the publication of third-party plugins written by developers
interested in exploiting the functionality of our gateway for
purposes that go beyond what is currently available.

3.2 Standard protocols
While the plugins provide specific functionality, the Janus
core is responsible for everything that is related to WebRTC
itself. Specifically, the core makes sure that a WebRTC Peer-
Connection can be correctly negotiated and established with
interested users, and that this PeerConnection can be used
to send and receive media in a way that WebRTC users can
understand. For this reason, we implemented the core so
that it can handle the entire suite of protocols and tech-
nologies mandated by the WebRTC standard. Specifically,
with the help of open source libraries where possible, we
implemented support for the JavaScript Session Establish-
ment Protocol (JSEP) [25], the Session Description Proto-
col (SDP) [22], the Real-time Transport Protocol [24] and
its secure extensions [13], the Interactive Connectivity Es-
tablishment [21] and the Datagram Transport Layer Secu-
rity extensions for SRTP [18], all as mandated by the latest
media-related specification [20]. Besides, we also added sup-
port for new mechanisms currently under standardization,
like BUNDLE [14], Trickle ICE [15] and Data Channels [16].

The core is hence responsible for the negotiation, through
JSEP and SDP, of multimedia sessions with WebRTC users,
as well as for the actual establishment of one or more SRTP/SRTCP
multimedia channels with them by means of ICE (for NAT
traversal and connectivity checks) and DTLS (to setup a
secure channel). This process is the same no matter which
plugin will be used afterwards to manipulate the multimedia
channel itself. In fact, the core hides every aspect related
to WebRTC from plugins, except for some media-related in-
formation the plugins may either require or provide (e.g., if
a plugin expects a specific codec, or is interested in audio
but not video). Once the multimedia channel is set up, the
gateway has access to plain RTP and RTCP flows, which
can be leveraged to let WebRTC users exchange media with
specific plugins.

It is worth noting that, since the gateway will most of the
time manipulate RTP and RTCP information (e.g., SSRCs),
the core is also responsible for keeping them coherent when
moving RTP packets and messages around. More informa-
tion about this process is documented in a draft currently
under discussion in the STRAW Working Group [19].

3.3 REST-ful API
We already clarified how the IETF and W3C chose not to
mandate any signaling protocol for creating media sessions.
This was a deliberate choice to allow for the maximum flex-
ibility in creating web applications, while at the same time
being strict with respect to the media negotiation and trans-
port. While many applications, including existing gateways,
chose to rely on well known protocols like SIP or XMPP for
the purpose, we decided to take a different approach. In
fact, considering the general purpose nature of the gateway,
and the idea of fostering the usage of multiple plugin con-
nections within the same application session, we resolved to
design a REST-ful API that could be contacted by means of



Figure 3: REST-ful API

an ad-hoc protocol based on the JSON (JavaScript Object
Notation) format. This allowed us to dynamically create
and manage gateway sessions (the generic session between
a WebRTC user and the gateway, not to be confused with
whatever application level session may be used in the web
application itself) and plugin handles (everything related
to web-to-plugin communication and WebRTC PeerConnec-
tions) using an extensible, yet simple, mechanism.

The API we conceived is based on the idea that every web
page interested in exploiting the features made available by
Janus opens a gateway session. Such a session creates a new
endpoint on the gateway web server, which can be queried,
e.g., by means of HTTP long polls, for events. Within the
context of the session, a web page will hence be able to create
one or more plugin handles (i.e., connections with specific
plugins), to take advantage of their functionality. Each such
handle will potentially be usable to setup a new PeerCon-
nection whose usage will depend on the plugin it is attached
to. When a plugin has been created, web applications can
interact with it using a JSON-based protocol as a transport
for asynchronous messages. Since each plugin will typically
implement specific functionality, and might potentially be
provided by different parties, the specifics of the protocol
and syntax used to interact with it are opaque to the Janus
JSON protocol itself. As anticipated in Sec. 3.1, this is the
same approach that is used for control packages in MEDI-
ACTRL, and is an effective way to provide extensibility in
a transparent way.

An example of such an approach is depicted in Fig. 3. It
is worth noting that we recently implemented a WebSock-
ets interface as an alternative to REST, which uses exactly
the same API. This allows for the setup of a sort of con-
trol channel, which is useful in scenarios where the Janus
API is actually going to be wrapped on the server side by
frameworks and applications.

To make things easier for web developers, we also imple-
mented a JavaScript API that can be used as-is to inte-
grate Janus within web applications. This API is based on
a generic object that implements methods and callbacks,
and that can be used with any plugin made available by
the gateway instance it is going to be attached to. Having
in mind the lengthy discussions within the standardization
bodies with respect to whether the WebRTC API should be

high level (and thus easier to use, but less flexible) or low
level (more complicated, but much more flexible in terms of
adaptability)1, we chose to implement this API at a slightly
lower level in terms of interaction with the gateway. In fact,
different plugins will often require a customized communi-
cation syntax. This consideration motivated us to design
a generic framework for such interaction. The choice we
made will allow us in the future to also design and imple-
ment higher level APIs specifically conceived for the plugins
we already made available. As an example, let us figure
out a videoconferencing API designed on top of the Video
MCU plugin and allowing web developers to only care about
people joining and/or leaving rooms. Such a plugin would
provide information about media becoming available, with-
out worrying about the specifics of the interaction with the
gateway itself.

Both the REST-ful API and the JavaScript API we designed
to interact with it are documented on the project website
(the documentation can also be built by developers them-
selves when installing the component). The same site also
hosts live examples of their usage within the context of real-
world application scenarios.

4. MULTIMEDIA APPLICATIONS
We have so far described how we designed and implemented
Janus, in particular how we separated the responsibilities be-
tween its core and feature-specific pluggable modules. We
also introduced some of the plugins we chose to make avail-
able out-of-the-box, and how an application can exploit them
by means of an open API.

Rather than digging into the details of such an interaction,
we present in this section an overview of some rich mul-
timedia applications that can be built on top of Janus. In
particular, we will describe how different plugins, sometimes
with more than a single instance per user, can be used in an
effective way as “bricks” to realize a much more complex ap-
plication than the one each individual plugin was designed
for. These examples are even more interesting when con-
sidering the fact that the features made available by Janus
can be easily integrated within a more complex framework
and interact with external components taking care of differ-
ent functionality (e.g., an XMPP library and infrastructure
to provide instant messaging associated with a multimedia
session powered by Janus).

The following examples are by no means intended to be an
exhaustive list of applications. They are rather meant to
provide a quick overview of the flexibility made available
by Janus and its default plugins (flexibility that can be fur-
ther improved with third-party plugins). We encourage the
reader to think of other applications that may be realized,
and figure out the functions they would require from Janus
in order to be effectively implemented.

4.1 Screen Sharing with Q/A
Screensharing is a typical scenario commonly deployed nowa-
days. Such an application proves most useful during webinar
sessions, where one or few speakers do a presentation, e.g.,

1Discussions that eventually resolved towards the definition
of JSEP as a middle ground



Figure 4: Screen Sharing with Q/A example

by sharing their screen and publishing their audio and video
feeds. During the presentation, or immediately thereafter,
a questions and answers slot involving any of the attendees
can take place to start a discussion.

A simple way to approach such an application would be
decomposing it into a subset of individual functionality, such
as: i) a way to broadcast/relay the screen being shared by
one of the speakers, ii) a way to display the video feed of the
main speakers themselves, and iii) a way to allow passive
attendees to chime in for a while in order to allow them to
ask questions to the speakers (since, for scalability reasons,
we may want to limit the level of interaction, especially if
several passive attendees are expected). A simple diagram
representing this situation is depicted in Fig. 4.

This functional decomposition can be easily matched to fea-
tures provided by the default plugins in Janus. As to screen
broadcasting, the Video MCU can be used, as it allows for an
easy way to relay the contribution of a single WebRTC user
(in this case, a screen being shared, a feature that Chrome
already allows for) to several viewers. Similarly, the same
Video MCU plugin can be used for the video feeds coming
from the speakers as well: in fact, since the Video MCU
plugin allows users to selectively publish and/or subscribe
to a feed, a dedicated room can be used by the speakers to
publish their own contributions (and get attached to other
speakers’s feeds, if any), while letting passive attendees just
view the feeds being published. Finally, for what concerns
audio, the Audio Bridge can be leveraged to let speakers
present while at the same time allowing for a time-limited,
audio-only interaction with the other attendees. The men-
tioned plugin would implement an audio mix of the involved
parties, thus limiting the bandwidth being used.

It is worth noting that the audio part, including the time-
limited interaction for Q/A, could be achieved by means of
the same room used for the video of the speakers. Nev-
ertheless, it is sometimes useful to delegate the audio part
to a different component, e.g., in case you are interested
in an audio recording of the event (that using the Audio
Bridge plugin would already be mixed with no need for post-
processing later on). The same consideration holds in case
you are using a different infrastructure for audio and you
want a WebRTC front-end towards it (e.g., you’re using a
SIP-based conference bridge to allow PSTN users to join

Figure 5: Social TV example

for questions). We do believe such a decomposition clearly
illustrates the benefits derived from the separation of re-
sponsibilities when building a multimedia application.

4.2 Social TV
Social TV is a challenging application that several researchers
and developers are trying to address. If we consider the low-
delay nature of WebRTC, together with its easy integration
within web applications, it is safe to assume that it definitely
represents a useful building block for this kind of scenarios.

In this section we show how Janus can be effectively lever-
aged in order to build a social TV. Specifically, we design
a web page providing a live broadcast of an event (e.g., a
sport match or a TV show), while at the same time allowing
a few users watching the same event to interact with each
other by means of real-time audio and video.

This application may be implemented via Janus by exploit-
ing two different plugins: i) the Streaming plugin, allowing
to seamlessly relay an external source to one or more inter-
ested WebRTC users, and ii) the Video MCU plugin, which,
as explained in the previous example, can be used to easily
implement video rooms involving multiple WebRTC users
as publishers and/or listeners. This mapping is depicted in
Fig. 5.

4.3 Audio/Video calls on Social Networks
This third example addresses another common scenario nowa-
days, that is social networks providing multimedia commu-
nication functionality to their users. Several social networks
have chosen to rely on plugins for the purpose (e.g., Face-
book with Skype, or Google+ with Hangout), while only
few of them have switched to WebRTC in the meanwhile
(among them, Tiscali’s Indoona [10], an effort we recently
contributed to). With WebRTC starting to gain pace, more
and more such infrastructures will start relying on it for the
purpose. The following is an example of how such an effort
may be accomplished by means of Janus.

Let us assume this social network already has a SIP infras-
tructure in place, with each user also associated with a ded-
icated SIP identity. The Janus SIP plugin can easily do the
job of letting these SIP users become WebRTC-enabled, too.
In this scenario, a social network may choose to also rely on
a couple more functions, i.e.: i) an Echo Test web page, to
allow users to make sure they would be currently able to



2 4 6 8 10 12

0
50

10
0

15
0

20
0

Server CPU usage comparison

n of peers

C
P

U
 u

sa
ge

 (%
)

2 4 6 8 10 12

0
50

10
0

15
0

20
0

2 4 6 8 10 12

0
50

10
0

15
0

20
0

Janus
Jitsi
Licode

(a) Server CPU comparison

2 4 6 8 10 12

0
5

10
15

Server memory usage comparison

n of peers

M
em

 u
sa

ge
 (%

)

2 4 6 8 10 12

0
5

10
15

2 4 6 8 10 12

0
5

10
15 Janus

Jitsi
Licode

(b) Server MEM comparison

Figure 6: Experimentation results: server side

setup a WebRTC multimedia session, and ii) a landing page
in case the callee is not reachable, allowing us to record a
voice message.

Considering the requirements, it is quite simple to identify
how Janus may be used to satisfy them. We already an-
ticipated how the SIP plugin may be exploited for such a
purpose, as it would allow social network users to trans-
parently register at the SIP infrastructure, and send/receive
calls from a page in the social network. At any time, users
would be able to check whether or not WebRTC works in
their environment by opening a check page. The web page
would just need to exploit the features made available by the
Echo Test plugin, allowing for an evaluation of the WebRTC-
related functionality independently of SIP signaling. Finally,
for the landing page to leave voice messages the Voice Mail
plugin can be leveraged, as it allows for a simple recording of
media frames. It is worth noting that, while both the echo
test and the voice message features may be built within the
SIP infrastructure itself (e.g., by relying on a SIP PBX for
the purpose), the use of a different plugin helps keep the
features both separated and more easily controllable.

5. EXPERIMENTATION
Our desire to benchmark the performance of Janus, and its
ability to properly handle as many users as possible in a scal-
able way, was immediately faced with a first challenge. In
fact, considering its general purpose nature and the fact that
different plugins may have completely different requirements
and/or impact on the performance of a Janus instance, we
soon realized that quantifying this would not be trivial.

To make things simple, we chose to do our experimenta-
tion on a single plugin to be used as a reference, that is
the Video MCU plugin. There were several reasons behind
this choice: i) the Video MCU plugin exposes some of the
most commonly desired features in a WebRTC gateway; ii)
it can handle several different PeerConnections at the same
time, thus proving a valid testbed for the relaying function-
ality in the gateway; iii) there are other open source tools
available specifically conceived for acting as WebRTC MCUs
(see Sec. 6), which makes a comparison of results easier. Of

course, we plan to also start further campaigns addressing
other plugins as well, which will hopefully help us assess the
extensibility and capability of the core itself.

As a first step for the experimental campaign, we chose the
tools to use as a comparison for Janus. Specifically, we de-
cided to use Licode and the Jitsi videobridge, two of the most
popular WebRTC conferencing platforms available in the
open source community. All such systems, including Janus,
were installed on the same machine, in order to make sure
the results of each test session would be comparable. The
purpose of the test was to assess the performance associated
with two different factors: CPU and memory usage on both
the server and the client (participant) sides. In fact, while
the performance of the server is obviously important, the im-
pact of the usage of such a platform on a generic participant
cannot be underestimated, and represented in our opinion
an important aspect to be taken into account. The server
machine was equipped with two 3.2GHz Intel Xeon CPUs
and 2GB RAM. It hosted a 32bit Linux Ubuntu Server 12.04
OS. The machine on which we collected client performance
data was a 2.4GHz Intel Core 2 Duo with 4GB RAM, host-
ing a Mac OS X 10.9.3. For all tests, we made use of Google
Chrome v. 35.0.1916.153.

We designed some tools to automatically stress test each
component to compare, by leveraging the APIs exposed by
Licode, Jitsi, and Janus in order to prepare scripts that could
be used to programmatically generate users to attach to the
platforms. Since we were obviously interested in realistic
scenarios, we involved actual WebRTC PeerConnections to
handle as well. In order to simulate those without just rely-
ing on raw manpower (that is, people behind a laptop phys-
ically joining a WebRTC room), we leveraged the Selenium
Framework [9] for browser automation. By using the proper
“webdriver”, this allowed us to remotely control (through
Python scripts) Google Chrome instances deployed on some
of our servers. Since we did not care about the actual con-
tent of the media flows, we made use of the -use-fake-

ui-for-media-stream and -use-fake-device-for-media-

stream flags that Chrome exposes for making testing easier.
This allowed us to easily increase the number of “partici-



2 4 6 8 10 12

0
20

40
60

80

2 4 6 8 10 12

0
20

40
60

80

2 4 6 8 10 12

0
20

40
60

80

Client CPU usage comparison

n of peers

C
P

U
 u

sa
ge

 (%
)

Janus
Jitsi
Licode

(a) Client CPU comparison

2 4 6 8 10 12

0
2

4
6

8

2 4 6 8 10 12

0
2

4
6

8

Client memory usage comparison

n of peers

M
em

 u
sa

ge
 (%

)

2 4 6 8 10 12

0
2

4
6

8

Janus
Jitsi
Licode

(b) Client MEM comparison

Figure 7: Experimentation results: client side

pants” needed to stress each tool, and just focus on server’s
performance assessment. In each experiment, we also had
a single “real” user joining the WebRTC room, in order to
evaluate the impact on the client side.

The several test sessions we carried out on each platform
eventually allowed us to get some interesting results, de-
picted in Fig. 6 and Fig. 7. The figures represent a sum-
mary of the CPU and memory usage on both server and
client sides when testing each of the target platforms.

For what concerns the server side, if we look at the aver-
age performance of each of the tools, we can see that the
CPU usage of Janus was quite low, and apparently increas-
ing in a roughly quadratic way with the number of active
participants. This was the expected pattern, since every
time a new participant joins, Janus has to create a new
PeerConnection per each pre-existing participant. Similar
yet slightly worse results were achieved by Licode, where
we can still recognize a quadratic increase of the CPU load.
Jitsi, instead, seemed to be the most CPU-hungry compo-
nent on the server side. This is probably due to the fact
that Jitsi videobridge is executed as a plugin of the Open-
fire server, which inevitably adds CPU and memory load,
while Janus and Licode are stand-alone applications. These
results can be seen in Fig. 6a. It is also worth remarking that
Jitsi’s CPU evolution is roughly linear with the number of
participants: this can be explained by the fact that Jitsi is
the only tool that makes use of SSRC multiplexing, and as
such of a single PeerConnection for all participants, rather
than having different PeerConnections for each participant
to display.

For what concerns the memory usage on the server side,
depicted in Fig. 6b, the results were pretty much the same
again, with Janus using less memory than Licode and Jitsi.

The rest of the figures are instead related, as anticipated, to
the usage of the same resources on the client side, i.e., they
measure the impact each platform has on a single participant
joining a conference. For what concerns CPU usage, which
is depicted in Fig. 7a, the first results seemed to confirm

what we got for the server side, that is a slightly better per-
formance achieved by Janus when compared to Licode and
Jitsi. When looking at the memory usage figures reported
in Fig. 7b, instead, we can see how Janus and Licode mostly
behave the same way, while Jitsi is the clear winner here.
This can be explained again by Jitsi’s usage of SSRC multi-
plexing: this technique, while more demanding in terms of
CPU, requires less memory since less network resources are
needed.

6. RELATED WORK
As soon as the first browser-based WebRTC implementa-
tions were made available, work has started on gateways
aimed at making them interoperable with existing legacy ar-
chitectures (SIP infrastructures in the first place). Several
implementations of gateways are currently available, many
of which even open sourced like our Janus.

That said, most of these implementations usually cover some
specific scenarios or use cases. For instance, the webrtc2sip
gateway by Doubango Telecom [1] was specifically aimed at
implementing a WebRTC-to-SIP gateway, to interact with
existing SIP and/or IMS infrastructures, taking care of trans-
coding if needed. Likewise, a lot of work has been done
on well known and widespread platforms like Asterisk or
Kamailio to make the interaction with the existing SIP in-
frastructure easier. Other implementations, like Licode [6]
or Jitsi [4], have been specifically conceived as MCUs for
video conferencing and collaboration scenarios. Implemen-
tations like Medooze [7] and Kurento [5], instead, have been
designed as media servers.

To the best of our knowledge, no other effort has been de-
voted so far to the design of a general purpose WebRTC
gateway that can be used in a number of different scenar-
ios and whose features can be selectively activated and/or
configured.

7. CONCLUSIONS AND FUTURE WORK
We have presented in this paper our efforts towards the
design and implementation of a general purpose WebRTC
gateway we called Janus and released as open source. We



described our choices in terms of architecture, and presented
preliminary results related to tests addressing one of the sce-
narios it can be used for (namely, video conferencing) and
comparing it to some of the existing alternatives.

While in its current form Janus already proved to be effec-
tive, especially in terms of flexibility and adaptability to het-
erogeneous scenarios, work is of course far from completion.
Future work definitely includes efforts on making it more sta-
ble and reliable, in order to turn it into a production-ready
component that can be used in commercial applications. In
that respect, we are already working on making it the ac-
tual multimedia backend of Meetecho, our web conferencing
platform, and are helping several other developers and com-
panies to integrate Janus in their infrastructure. Besides, we
plan to make available additional plugins, e.g., to interact
with Jingle or RTMP infrastructures. As anticipated before,
we also hope that third-party plugins will start to appear as
well, to address features that we originally did not envisage,
hence pushing Janus beyond its current boundaries.

For what concerns the architecture, we plan to expand the
way plugins can be attached and used. For instance, we are
interested in allowing for the presence of plugin-to-plugin
interaction, e.g., in terms of filters that can be used as a
support to other modules (e.g., a recorder or transcoding
module that can be used as a support for a more application-
oriented plugin).

Finally, we of course aim at keeping the pace of the We-
bRTC standardization efforts, which are currently quite a
moving target. In that respect, we will also work on in-
tegrating new functions as they start appearing or become
more widespread (e.g., SSRC multiplexing and simulcast-
ing).

Acknowledgments
The authors would like to acknowledge Antonio Bevilacqua
and Pasquale Boemio for their significant contribution and
help during the experimentation of Janus and its comparison
to other tools.

This work was partially funded by the Italian Ministry of Ed-
ucation, University and Research (MIUR) within the frame-
work of projects PON01 01007 “PLATform for INnOative
services in future internet” (PLATINO) and PON04a2 C
(“SMART HEALTH’).

8. REFERENCES
[1] Doubango webrtc2sip. http://webrtc2sip.org/.

[2] Janus on GitHub.
https://github.com/meetecho/janus-gateway.

[3] Janus Online Demos. http://janus.conf.meetecho.com.

[4] Jitsi Videobridge.
https://jitsi.org/Projects/JitsiVideobridge.

[5] Kurento. http://www.kurento.org/.

[6] Licode. http://lynckia.com/licode/.

[7] Medooze. http://www.medooze.com/.

[8] Real-Time Communication in WEB-browsers (IETF).
http://tools.ietf.org/wg/rtcweb/charters.

[9] Selenium Framework. http://docs.seleniumhq.org/.

[10] Tiscali Indoona. http://www.indoona.com/.

[11] Web Real-Time Communications Working Group
Charter (W3C).
http://www.w3.org/2011/04/webrtc-charter.html.

[12] A. Amirante, T. Castaldi, L. Miniero, and S. P.
Romano. Separation of Responsibilities between
Application Servers and Media Servers in NGNs: A
Practical Approach. In Next Generation Teletraffic
and Wired/Wireless Advanced Networking, pages
199–211. Springer, 2008.

[13] M. Baugher, D. McGrew, and M. N. et al. The Secure
Real-time Transport Protocol (SRTP). RFC 3711,
RFC Editor, March 2004.

[14] C. Holmberg, H. Alvestrand, and C. Jennings.
Negotiating Media Multiplexing Using the Session
Description Protocol (SDP). Internet-Draft
draft-ietf-mmusic-sdp-bundle-negotiation-08, IETF
Secretariat, Apr. 2014.

[15] E. Ivov, E. Rescorla, and J. Uberti. Trickle ICE:
Incremental Provisioning of Candidates for the
Interactive Connectivity Establishment (ICE)
Protocol. Internet-Draft
draft-ietf-mmusic-trickle-ice-01, IETF Secretariat, Feb.
2014.

[16] R. Jesup, S. Loreto, and M. Tuexen. WebRTC Data
Channels. Internet-Draft
draft-ietf-rtcweb-data-channel-11, IETF Secretariat,
June 2014.

[17] S. Ludwig, J. Beda, and P. Saint-Andre. XEP-0166:
Jingle. Technical report, XMPP Standards
Foundation, December 2009.

[18] D. McGrew and E. Rescorla. Datagram Transport
Layer Security (DTLS) Extension to Establish Keys
for the Secure Real-time Transport Protocol (SRTP).
RFC 5764, RFC Editor, May 2010.

[19] L. Miniero, V. Pascual, and S. G. Murillo. Guidelines
to support RTCP end-to-end in Back-to-Back User
Agents (B2BUAs). Internet-Draft
draft-ietf-straw-b2bua-rtcp-01, IETF Secretariat, Dec.
2013.

[20] C. Perkins, M. Westerlund, and J. Ott. Web
Real-Time Communication (WebRTC): Media
Transport and Use of RTP. Internet-Draft
draft-ietf-rtcweb-rtp-usage-17, IETF Secretariat, Apr.
2014.

[21] J. Rosenberg. Interactive Connectivity Establishment
(ICE): A Protocol for Network Address Translator
(NAT) Traversal for Offer/Answer Protocols. RFC
5245, RFC Editor, April 2010.

[22] J. Rosenberg and H. Schulzrinne. An Offer/Answer
Model with the Session Description Protocol (SDP).
RFC 3264, RFC Editor, June 2002.

[23] J. Rosenberg, H. Schulzrinne, and G. C. et al. SIP:
Session Initiation Protocol. RFC 3261, RFC Editor,
June 2002.

[24] H. Schulzrinne, S. Casner, and R. F. et al. RTP: A
Transport Protocol for Real-Time Applications. RFC
3550, RFC Editor, July 2003.

[25] J. Uberti and C. Jennings. Javascript Session
Establishment Protocol. Internet-Draft
draft-ietf-rtcweb-jsep-07, IETF Secretariat, Feb. 2014.


