
Logical Methods in Computer Science
Vol. 4 (3:1) 2008, pp. 1–21
www.lmcs-online.org

Submitted Sep. 24, 2007
Published Jul. 29, 2008

ENRICHED µ–CALCULI MODULE CHECKING ∗

ALESSANDRO FERRANTE a, ANIELLO MURANO b, AND MIMMO PARENTE c

a,c Università di Salerno, Via Ponte don Melillo, 84084 - Fisciano (SA), Italy
e-mail address: {ferrante,parente}@dia.unisa.it

b Università di Napoli “Federico II”, Dipartimento di Scienze Fisiche, 80126 Napoli, Italy
e-mail address: murano@na.infn.it

Abstract. The model checking problem for open systems has been widely studied in
the literature, for both finite–state (module checking) and infinite–state (pushdown module

checking) systems, with respect to CTL and CTL∗. In this paper, we further investigate
this problem with respect to the µ-calculus enriched with nominals and graded modalities
(hybrid graded µ-calculus), in both the finite–state and infinite-state settings. Using an
automata-theoretic approach, we show that hybrid graded µ-calculus module checking is
solvable in exponential time, while hybrid graded µ-calculus pushdown module checking is
solvable in double-exponential time. These results are also tight since they match the
known lower bounds for CTL. We also investigate the module checking problem with
respect to the hybrid graded µ-calculus enriched with inverse programs (Fully enriched

µ-calculus): by showing a reduction from the tiling problem, we show its undecidability.
We conclude with a short overview of the model checking problem for the Fully enriched
µ-calculus and the fragments obtained by dropping at least one of the additional constructs.

1. Introduction

Model-checking is a formal method, applied in system design, to automatically verify
the ongoing behavior of reactive systems ([CE81, QS81]). In this verification technique the
behavior of a system, formally described by a mathematical model, is checked against a
behavioral constraint, usually specified by a formula in an appropriate temporal logic (for
a survey, see [CGP99]).

In the process of modeling a system, we distinguish between closed and open sys-
tems [HP85]. While the behavior of a closed system is completely determined by the state
of the system, the behavior of an open system depends on the ongoing interaction with
its environment [Hoa85]. In model checking open systems, introduced and called module-
checking in [KVW01], one should check the system with respect to arbitrary environments
and should take into account uncertainty regarding the environment. In such a framework,
the open finite–state system is described by a labeled state–transition graph, called in fact

1998 ACM Subject Classification: F.1.1, F.1.2, F.3.1, D.2.4.
Key words and phrases: Finite state machine, tree automaton, push down automaton, interactive and

reactive computation, logics of programs, modal logic, µ-calculus, formal verification, model checking.
∗ The paper is based on [FM07] and [FMP07].

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-4 (3:1) 2008

c© A. Ferrante, A. Murano, and M. Parente
CC© Creative Commons

http://creativecommons.org/about/licenses


2 A. FERRANTE, A. MURANO, AND M. PARENTE

module, whose set of states is partitioned into system states (where the system makes a
transition) and environment states (where the environment makes a transition). Given a
moduleM, describing the system to be verified, and a temporal logic formula ϕ, specifying
the desired behavior of the system, module checking asks whether for all possible environ-
ments, M satisfies ϕ. Therefore, in module checking it is not sufficient to check whether
the full computation tree obtained by unwinding M (that corresponds to the interaction
of M with a maximal environment) satisfies ϕ, but it is also necessary to verify that all
trees obtained from the full computation tree by pruning some subtrees rooted in nodes
corresponding to choices disabled by the environment (those trees represent the interac-
tions ofM with all the possible environments), satisfy ϕ. We collect all such trees in a set
named exec(M). It is worth noticing that each tree in exec(M) represents a “memoryful”
behavior of the environment. Indeed, the unwinding of a moduleM induces duplication of
nodes, which allow different pruning of subtrees. To see an example, consider a two-drink
dispenser machine that serves, upon customer request, tea or coffee. The machine is an
open system and an environment for the system is an infinite line of thirsty people. Since
each person in the line can prefer both tea and coffee, or only tea, or only coffee, each person
suggests a different disabling of the external choices. Accordingly, there are many different
possible environments to consider. In [KV97, KVW01], it has been shown that while for
linear–time logics model and module checking coincide, module checking for specification
given in CTL and CTL∗ is exponentially harder than model checking in the size of the for-
mula and preserves the linearity in the size of the model. Indeed, CTL and CTL∗ module
checking is Exptime–complete and 2Exptime–complete, respectively.

In [BMP05, AMV07], the module checking technique has been extended to infinite-state
systems by considering open pushdown systems (OPD , for short). These are pushdown sys-
tems augmented with finite information that allows us to partition the set of configurations
into system and environment configurations. To see an example of an open pushdown sys-
tem, consider the above two-drink dispenser machine, with the additional constraint that a
coffee can be served only if the number of coffees served up to that time is smaller than that
of teas served. Such a machine can be clearly modeled as an open pushdown system (the
stack is used to guarantee the inequality between served coffees and teas). In [BMP05],
it has been shown that pushdown module checking is 2Exptime–complete for CTL and
3Exptime–complete for CTL∗. Thus, for pushdown systems, and for specification given in
CTL and CTL∗, module checking is exponentially harder than model checking with respect
to the size of the formula, while it preserves the exponential complexity with respect to the
size of the model [Wal96, Wal00].

Among the various formalisms used for specifying properties, a valid candidate is the
µ-calculus, a very powerful propositional modal logic augmented with least and greatest
fixpoint operators [Koz83] (for a recent survey, see also [BS06]). The Fully enriched µ–
calculus [BP04] is the extension of the µ–calculus with inverse programs, graded modalities,
and nominals. Intuitively, inverse programs allow us to travel backwards along accessibility
relations [Var98], nominals are propositional variables interpreted as singleton sets [SV01],
and graded modalities enable statements about the number of successors of a state [KSV02].
By dropping at least one of the additional constructs, we get a fragment of the Fully enriched
µ-calculus. In particular, by inhibiting backward modalities we get the fragment we call
hybrid graded µ-calculus. In [BP04], it has been shown that satisfiability is undecidable in
the Fully enriched µ–calculus. On the other hand, it has been shown in [SV01, BLMV06]
that satisfiability for each of its fragments is decidable and Exptime-complete (for more



ENRICHED µ–CALCULI MODULE CHECKING ∗ 3

details, see also [BLMV08]). The upper bound result is based on an automata–theoretic
approach via two-way graded alternating parity tree automata ( 2GAPT), along with the fact
that each fragment of the Fully enriched µ-calculus enjoys the quasi-forest model property.
Intuitively, 2GAPT generalize alternating automata on infinite trees as inverse programs
and graded modalities enrich the standard µ–calculus: 2GAPT can move up to a node’s
predecessor and move down to at least n or all but n successors. Moreover, a quasi-forest is
a forest where nodes can have roots as successors and having quasi-forest model property
means that any satisfiable formula has a quasi-forest as model. Using 2GAPT and the
quasi-forest model property, it has been shown in [SV01, BLMV06] that given a formula ϕ
of a fragment of the Fully enriched µ-calculus, it is possible to construct a 2GAPT accepting
all trees encodings1 quasi-forests modeling ϕ. Then, the exponential-upper bound follows
from the fact that the emptiness problem for 2GAPT is solvable in Ptime [KPV02].

In this paper, we further investigate the module checking problem and its infinite-
state extension, with respect to the hybrid graded µ-calculus. To see an example of module
checking a finite-state open system w.r.t. an hybrid graded µ-calculus specification, consider
again the above two-drink dispenser machine with the following extra feature: whenever a
customer can choose a drink, he can also call the customer service or the security service.
Suppose also that by taking one of these two new choices, the drink-dispenser machine
stops dispensing drinks, up to the moment the customer finishes operating with the service.
Assume that, for the labeled state–transition graph modeling the system, we label by choose
the choosing state and by the nominals oc and os the states in which the interaction with
the customer and the security services start, respectively. Moreover, suppose we want to
check the following property: “whenever the customer comes at a choice, he can choose
for both the customer and the security services”. This property can be formalized by the
hybrid graded µ–calculus formula νx.((choose → 〈1, call〉 (oc ∨ os)) ∧ [0,−]x), which reads
“it is always true that whenever the drink–dispenser is in the choose state, there are at
least 2 call–successors in which (oc ∨ os) holds”. Clearly, the considered open system does
not satisfy this formula. Indeed, it is not satisfied by the particular behavior that chooses
always the same service.

By exploiting an automata–theoretic approach via tree automata, we show that hybrid
graded µ–calculus module checking is decidable and solvable in Exptime in the size of the
formula and Ptime in the size of the system. Thus, as in general, we pay an exponential–
time blowup with respect to the model checking problem (and only w.r.t. the size of the
formula) for the module checking investigation. In particular, we reduce the addressed mod-
ule checking problem to the emptiness problem for graded alternating parity tree automata
(GAPT ). In more details, given a modelM and an hybrid graded µ-calculus formula ϕ, we
first construct in polynomial time a Büchi tree automaton (NBT ) AM accepting exec(M).
The construction of AM we propose here extends that used in [KVW01] by also taking into
account that M must be unwound in a quasi-forest, rather than a tree, with both nodes
and edges labeled. Thus, the set exec(M) is a set of quasi-forests, and the automaton
AM we construct will accept all trees encodings of all quasi-forests of exec(M). From the
formula side, accordingly to [BLMV06], we can construct in a polynomial time a GAPT
A 6|=ϕ accepting all models that do not satisfy ϕ, with the intent to check that none of these
models are in exec(M). Thus, we check that M models ϕ for every possible choice of the

1Encoding is done by using a new root node that connects all roots of the quasi-forest and new atomic
propositions which are used to encode programs and successor nodes corresponding to nominals.



4 A. FERRANTE, A. MURANO, AND M. PARENTE

environment by checking whether the L(AM) ∩ L(A 6|=ϕ) is empty. The results follow from
the fact that an NBT is a particular case of GAPT , which are closed under intersection
and have the emptiness problem solvable in Exptime [BLMV06]. We also show a lower
bound matching the obtained upper bound by using a reduction from the module checking
for CTL, known to be Exptime-hard.

By exploiting again an automata-theoretic approach, we show that hybrid graded µ-
calculus pushdown module checking is decidable and solvable in 2Exptime in the size of
the formula and Exptime in the size of the system. Thus, as in general, with respect to the
finite–state model checking case we pay an exponential–time blowup in the size of both the
system and the formula for the use of pushdown systems, and an another exponential–time
blowup in the size of the formula for the module checking investigation. Our approach
allow us do not take the trivial 2Exptime result on both the size of the system and the
formula, which can be easily obtained by combining the algorithms existing in the literature
along with that one we introduce in this paper for the finite–state case. We solve the
hybrid graded µ-calculus pushdown module checking by using a reduction to the emptiness
problem for nondeterministic pushdown parity tree automata (PD–NPT ). The algorithm
we propose extends that given for the finite-state case. In particular, given an OPD S, a
moduleM induced by the configurations of S, and an hybrid graded µ-calculus formula ϕ,
we first construct in polynomial time a pushdown Büchi tree automaton (PD–NBT ) AM,
accepting exec(M). From the formula side, accordingly to [BLMV06], we can construct in
a polynomial time a GAPT A 6|=ϕ accepting all models that do not satisfy ϕ. Thus, we can
check that M models ϕ for every possible choice of the environment by checking whether
L(AM)∩L(A 6|=ϕ) is empty. By showing a non-trivial exponential reduction of 2GAPT into
NPT , we show a 2Exptime upper bound for the addressed problem. Since the pushdown
module checking problem for CTL is 2Exptime-hard, we get that the addressed problem
is then 2Exptime-complete.

As regarding the Fully enriched µ-calculus, we also investigate the module checking
problem in a “rewind” framework in the following sense. As far as backward modalities
concern, everytime the system goes back to an environment’s node, he is always able to
redefine a new pruning choice. Given a moduleM and a Fully enriched µ-calculus formula ϕ,
we solve the rewind module checking problem by checking that all trees in exec(M), always
taking the same choice in duplicate environment nodes, satisfy ϕ. By showing a reduction
from the tiling problem [Ber66], we show that the addressed problem is undecidable.

We conclude the paper with short considerations on the model checking on all of the
fragments of the Fully enriched µ-calculus. In particular we show the problem to be Exp-

time-complete for a pushdown system which is allowed to push one symbol per time onto
the stack, with respect to any fragment not including the graded modality: for the fragments
with the graded modality, we show a 2Exptime upper bound.

The rest of the paper is organized as follows. In Section 2, we give all the necessary
preliminaries, Section 3 contains the definition of module checking w.r.t. hybrid graded
µ-calculus, and Section 4 contains definitions and known results about 2GAPT and PD–
NPT . In Sections 5 and 6, we give our main results on module checking for the hybrid
graded µ-calculus. In Section 7, we show the undecidability result for the Fully enriched
module checking and conclude in Section 8 with some complexity considerations on model
checking with all the fragments of the Fully enriched µ-calculus.



ENRICHED µ–CALCULI MODULE CHECKING ∗ 5

2. Preliminaries

In this section, we recall definitions of labeled forests and hybrid graded µ–calculus.
We refer to [BLMV06] for more technical definitions and motivating examples.

2.1. Labeled Forests. For a finite set X, we denote the size of X by |X|, the set of words
over X by X∗, the empty word by ε, and with X+ we denote X∗ \ {ε}. Given a word w in
X∗ and a symbol a of X, we use w · a to denote the word wa. Let IN be the set of positive
integers. For n ∈ IN, let N denote the set {1, 2, . . . , n}. A forest is a set F ⊆ N

+ such that
if x · c ∈ F , where x ∈ N

+ and c ∈ N, then also x ∈ F . The elements of F are called nodes,
and words consisting of a single natural number are roots of F . For each root r ∈ F , the set
T = {r · x | x ∈ N

∗ and r · x ∈ F} is a tree of F (the tree rooted at r). For x ∈ F , the nodes
x · c ∈ F where c ∈ N are the successors of x, denoted sc(x), and x is their predecessor. The
number of successors of a node x is called the degree of x (deg(x)). The degree h of a forest
F is the maximum of the degrees of all nodes in F and the number of roots. A forest with
degree h is an h-ary forest. A full h-ary forest is a forest having h roots and all nodes with
degree h.

Let F ⊆ N
+ be a forest, x a node in F , and c ∈ N. As a convention, we take x·ε = ε·x =

x, (x · c) ·−1 = x, and c ·−1 as undefined. We call x a leaf if it has no successors. A path π
in F is a word π = x1x2 . . . of F such that x1 is a root of F and for every xi ∈ π, either xi

is a leaf (i.e., π ends in xi) or xi is a predecessor of xi+1. Given two alphabets Σ1 and Σ2,
a (Σ1,Σ2)–labeled forest is a triple 〈F, V,E〉, where F is a forest, V : F → Σ1 maps each
node of F to a letter in Σ1, and E : F × F → Σ2 is a partial function that maps each pair
(x, y), with y ∈ sc(x), to a letter in Σ2. As a particular case, we consider a forest without
labels on edges as a Σ1–labeled forest 〈F, V 〉, and a tree as a forest containing exactly one
tree. A quasi–forest is a forest where each node may also have roots as successors. For a
node x of a quasi–forest, we set children(x) as sc(x)\N. All the other definitions regarding
forests easily extend to quasi–forests. Notice that in a quasi–forest, since each node can
have a root as successor, a root can also have several predecessors, while every other node
has just one. Clearly, a quasi–forest can always be transformed into a forest by removing
root successors.

2.2. Hybrid Graded µ–Calculus. Let AP , Var , Prog , and Nom be finite and pairwise
disjoint sets of atomic propositions, propositional variables, atomic programs (which allow to
travel the system along accessibility relations), and nominals (which are particular atomic
propositions interpreted as singleton sets). The set of hybrid graded µ–calculus formulas is
the smallest set such that

• true and false are formulas;
• p and ¬p, for p ∈ AP , are formulas;
• o and ¬o, for o ∈ Nom, are formulas;
• x ∈ Var is a formula;
• if ϕ1 and ϕ2 are formulas, α ∈ Prog, n is a non negative integer, and y ∈ V ar, then the

following are also formulas:

ϕ1 ∨ ϕ2, ϕ1 ∧ ϕ2, 〈n, α〉ϕ1, [n, α]ϕ1, µy.ϕ1(y), and νy.ϕ1(y).

Observe that we use positive normal form, i.e., negation is applied only to atomic
propositions.



6 A. FERRANTE, A. MURANO, AND M. PARENTE

We call µ and ν fixpoint operators. A propositional variable y occurs free in a formula
if it is not in the scope of a fixpoint operator. A sentence is a formula that contains no
free variables. We refer often to the graded modalities 〈n, α〉ϕ1 and [n, α]ϕ1 as respectively
atleast formulas and allbut formulas and assume that the integers in these operators are
given in binary coding: the contribution of n to the length of the formulas 〈n, α〉ϕ and
[n, α]ϕ is ⌈log n⌉ rather than n.

The semantics of the hybrid graded µ–calculus is defined with respect to a Kripke
structure, i.e., a tuple K = 〈W,W0, R, L〉 where W is a non–empty set of states, W0 ⊆W is
the set of initial states, R : Prog → 2W×W is a function that assigns to each atomic program
a transition relation over W , and L : AP ∪Nom → 2W is a labeling function that assigns to
each atomic proposition and nominal a set of states such that the sets assigned to nominals
are singletons and subsets of W0. If (w,w′) ∈ R(α), we say that w′ is an α–successor of w.
Informally, an atleast formula 〈n, α〉ϕ holds at a state w of K if ϕ holds in at least n + 1
α–successors of w. Dually, the allbut formula [n, α]ϕ holds in a state w of K if ϕ holds
in all but at most n α–successors of w. Note that ¬〈n, α〉ϕ is equivalent to [n, α]¬ϕ, and
the modalities 〈α〉ϕ and [α]ϕ of the standard µ–calculus can be expressed as 〈0, α〉ϕ and
[0, α]ϕ, respectively.

To formalize semantics, we introduce valuations. Given a Kripke structure K = 〈W ,
W0, R, L〉 and a set {y1, . . . , yn} of variables in Var , a valuation V : {y1, . . . , yn} → 2W is an
assignment of subsets of W to the variables y1, . . . , yn. For a valuation V, a variable y, and
a set W ′ ⊆W , we denote by V[y ←W ′] the valuation obtained from V by assigning W ′ to
y. A formula ϕ with free variables among y1, . . . , yn is interpreted over K as a mapping ϕK

from valuations to 2W , i.e., ϕK(V) denotes the set of points that satisfy ϕ under valuation
V. The mapping ϕK is defined inductively as follows:

• trueK(V) = W and falseK(V) = ∅;
• for p ∈ AP ∪ Nom, we have pK(V) = L(p) and (¬p)K(V) = W \ L(p);
• for y ∈ Var , we have yK(V) = V(y);
• (ϕ1 ∧ ϕ2)

K(V) = ϕK
1 (V) ∩ ϕK

2 (V) and (ϕ1 ∨ ϕ2)
K(V) = ϕK

1 (V) ∪ ϕK
2 (V);

• (〈n, α〉ϕ)K(V) = {w : |{w′ ∈W : (w,w′) ∈ R(α) and w′ ∈ ϕK(V)}| ≥ n + 1};
• ([n, α]ϕ)K(V) = {w : |{w′ ∈W : (w,w′) ∈ R(α) and w′ 6∈ ϕK(V)}| ≤ n};
• (µy.ϕ(y))k(V) =

⋂
{W ′ ⊆W : ϕK([y ←W ′]) ⊆W ′};

• (νy.ϕ(y))k(V) =
⋃
{W ′ ⊆W : W ′ ⊆ ϕK([y ←W ′])}.

For a state w of a Kripke structure K, we say that K satisfies ϕ at w if w ∈ ϕK. In what
follows, a formula ϕ counts up to b if the maximal integer in atleast and allbut formulas
used in ϕ is b− 1.

3. Hybrid graded µ-calculus module Checking

In this paper we consider open systems, i.e., systems that interact with their envi-
ronment and whose behavior depends on this interaction. The (global) behavior of such
a system is described by a module M = 〈Ws,We,W0, R, L〉, which is a Kripke structure
where the set of states W = Ws ∪We is partitioned in system states Ws and environment
states We.

Given a moduleM, we assume that its states are ordered and the number of successors
of each state w is finite. For each w ∈W , we denote by succ(w) the ordered tuple (possibly
empty) of w’s α-successors, for all α ∈ Prog. When M is in a system state ws, then all



ENRICHED µ–CALCULI MODULE CHECKING ∗ 7

states in succ(ws) are possible next states. On the other hand, whenM is in an environment
state we, the possible next states (that are in succ(we)) depend on the current environment.
Since the behavior of the environment is not predictable, we have to consider all the possible
sub–tuples of succ(we). The only constraint, since we consider environments that cannot
block the system, is that not all the transitions from we are disabled.

The set of all (maximal) computations of M, starting from W0, is described by a
(W,Prog)–labeled quasi–forest 〈FM, VM, EM〉, called computation quasi–forest, which is
obtained by unwindingM in the usual way. The problem of deciding, for a given branching–
time formula ϕ over AP ∪Nom, whether 〈FM, L ◦ VM, EM〉 satisfies ϕ at a root node, de-
noted M |= ϕ, is the usual model–checking problem [CE81, QS81]. On the other hand, for
an open systemM, the quasi–forest 〈FM, VM, EM〉 corresponds to a very specific environ-
ment, i.e., a maximal environment that never restricts the set of its next states. Therefore,
when we examine a branching–time formula ϕ w.r.t. M, the formula ϕ should hold not
only in 〈FM, VM, EM〉, but in all quasi-forests obtained by pruning from 〈FM, VM, EM〉
subtrees rooted at children of environment nodes, as well as inhibiting some of their jumps
to roots (that is, successor nodes labeled with nominals), if there are any. The set of
these quasi–forests, which collects all possible behaviors of the environment, is denoted by
exec(M) and is formally defined as follows. A quasi–forest 〈F, V,E〉 ∈ exec(M) iff

• for each wi ∈W0, we have V (i) = wi;
• for each x ∈ F , with V (x) = w, succ(w) = 〈w1, . . . , wn, wn+1, . . . , wn+m〉, and succ(w) ∩

W0 = 〈wn+1, . . . , wn+m〉, there exists S = 〈w′
1, . . . , w

′
p, w

′
p+1, . . . , w

′
p+q〉 sub-tuple of

succ(w) such that p + q ≥ 1 and the following hold:
− S = succ(w) if w ∈Ws;
− children(x) = {x · 1, . . . , x · p} and, for 1 ≤ j ≤ p, we have V (x · j) = w′

j and

E(x, x · j) = α if (w,w′
j) ∈ R(α);

− for 1 ≤ j ≤ q, let xj ∈ N such that V (xj) = w′
p+j, then E(x, xj) = α if (w,w′

p+j) ∈
R(α).

In the following, we consider quasi–forests in exec(M) as labeled with (2AP∪Nom, P rog),
i.e., taking the label of a node x as L(V (x)). For a module M and a formula ϕ of the
hybrid graded µ–calculus, we say that M reactively satisfies ϕ, denoted M |=r ϕ (where
“r” stands for reactively), if all quasi-forests in exec(M) satisfy ϕ. The problem of deciding
whether M |=r ϕ is called hybrid graded µ–calculus module checking.

3.1. Open Pushdown Systems (OPD). An OPD over AP , Nom and Prog is a tuple
S = 〈Q,Γ, ♭, C0,∆, ρ1, ρ2, Env〉, where Q is a finite set of (control) states, Γ is a finite stack
alphabet, ♭ 6∈ Γ is the stack bottom symbol. We set Γ♭ = Γ ∪ {♭}, Conf = Q × (Γ∗ · ♭)
to be the set of (pushdown) configurations, and for each configuration (q,A · γ), we set

top((q,A · γ)) = (q,A) to be a top configuration. The function ∆ : Prog → 2(Q×Γ♭)×(Q×Γ∗
♭
)

is a finite set of transition rules such that ♭ is always present at the bottom of the stack
and nowhere else (thus whenever ♭ is read, it is pushed back). Note that we make this
assumption also about the various pushdown automata we use later. The set C0 ⊆ Conf
is a finite set of initial configurations, ρ1 : AP → 2Q×Γ♭ and ρ2 : Nom → C0 are labeling
functions associating respectively to each atomic proposition p a set of top configurations in
which p holds and to each nominal exactly one initial configuration. Finally, Env ⊆ Q×Γ♭

specifies the set of environment configurations. The size |S| of S is |Q|+ |∆|+ |Γ|.



8 A. FERRANTE, A. MURANO, AND M. PARENTE

The OPD moves in accordance with the transition relation ∆. Thus, ((q,A), (q′, γ)) ∈
∆(α) implies that if the OPD is in state q and the top of the stack is A, it can move
along with an α–transition to state q′, and substitute γ for A. Also note that the possible
operations of the system, the labeling functions, and the designation of configurations as
environment configurations, are all dependent only on the current control state and the top
of the stack.

An OPD S induces a moduleMS = 〈Ws,We,W0, R, L〉, where:

• Ws ∪We = Conf , i.e. the set of pushdown configurations, and W0 = C0;
• We = {c ∈ Conf | top(c) ∈ Env}.
• ((q,A · γ), (q′, γ′ · γ)) ∈ R(α) iff there is ((q,A), (q′, γ′)) ∈ ∆(α);
• L(p) = {c ∈ Conf | top(c) ∈ ρ1(p)} for p ∈ AP ; L(o) = ρ2(o) for o ∈ Nom.

The hybrid graded (µ-calculus) pushdown module checking problem is to decide, for a given
OPD S and an enriched µ–calculus formula ϕ, whether MS |=r ϕ.

4. Tree Automata

4.1. Two-way Graded Alternating Parity Tree Automata (2GAPT). These au-
tomata have been introduced and deeply investigated in [BLMV06]. In this section we just
recall the main definitions and results and refer to the literature for more details. Intu-
itively, 2GAPT are an extension of nondeterministic tree automata in such a way that a
2GAPT can send several copies of itself to the same successor (alternating), send copies
of itself to the predecessor (two-way), specify a number n of successors to which copies of
itself are sent (graded), and accept trees along with a parity acceptance condition. To give
a more formal definition, let us recall some technicalities from [BLMV06].

For a given set Y , let B+(Y ) be the set of positive Boolean formulas over Y (i.e., Boolean
formulas built from elements in Y using ∧ and ∨), where we also allow the formulas true
and false and ∧ has precedence over ∨. For a set X ⊆ Y and a formula θ ∈ B+(Y ), we
say that X satisfies θ iff assigning true to elements in X and assigning false to elements
in Y \ X makes θ true. For b > 0, let 〈[b]〉 = {〈0〉, 〈1〉, . . . , 〈b〉}, [[b]] = {[0], [1], . . . , [b]},
and Db = 〈[b]〉 ∪ [[b]] ∪ {−1, ε}. Intuitively, Db collects all possible directions in which the
automaton can proceed.

Formally, a 2GAPT on Σ-labeled trees is a tuple A = 〈Σ, b, Q, δ, q0, F〉, where Σ is the
input alphabet, b > 0 is a counting bound, Q is a finite set of states, δ : Q×Σ→ B+(Db×Q)
is a transition function, q0 ∈ Q is an initial state, and F is a parity acceptance condition
(see below). Intuitively, an atom (〈n〉, q) (resp. ([n], q)) means that A sends copies in state
q to n + 1 (resp. all but n) different successors of the current node, (ε, q) means that A
sends a copy (in state q) to the current node, and (−1, q) means that A sends a copy to
the predecessor of the current node. A run of A on an input Σ-labeled tree 〈T, V 〉 is a
tree 〈Tr, r〉 in which each node is labeled by an element of T × Q. Intuitively, a node in
Tr labeled by (x, q) describes a copy of the automaton in state q that reads the node x of
T . Runs start in the initial state and satisfy the transition relation. Thus, a run 〈Tr, r〉
with root z has to satisfy the following: (i) r(z) = (1, q0) for the root 1 of T and (ii) for all
y ∈ Tr with r(y) = (x, q) and δ(q, V (x)) = θ, there is a (possibly empty) set S ⊆ Db × Q,
such that S satisfies θ, and for all (d, s) ∈ S, the following hold:

• If d ∈ {−1, ε}, then x · d is defined, and there is j ∈ N such that y · j ∈ Tr and r(y · j) =
(x · d, s);



ENRICHED µ–CALCULI MODULE CHECKING ∗ 9

• If d = 〈n〉, there are at least n + 1 distinct indexes i1, . . . , in+1 such that for all 1 ≤ j ≤
n + 1, there is j′ ∈ N such that y · j′ ∈ Tr, x · ij ∈ T , and r(y · j′) = (x · ij , s).
• If d = [n], there are at least deg(x) − n distinct indexes i1, . . . , ideg(x)−n such that for all

1 ≤ j ≤ deg(x)−n, there is j′ ∈ N such that y · j′ ∈ Tr, x · ij ∈ T , and r(y · j′) = (x · ij, s).

Note that if θ = true, then y does not need to have successors. This is the reason why
Tr may have leaves. Also, since there exists no set S as required for θ = false, we cannot
have a run that takes a transition with θ = false.

A run 〈Tr, r〉 is accepting if all its infinite paths satisfy the acceptance condition. In
the parity acceptance condition, F is a set {F1, . . . , Fk} such that F1 ⊆ . . . ⊆ Fk = Q and
k is called the index of the automaton. An infinite path π on Tr satisfies F if there is an
even i such that π contains infinitely many states from Fi and finitely many states from
Fi−1. An automaton accepts a tree iff there exists an accepting run of the automaton on
the tree. We denote by L(A) the set of all Σ-labeled trees that A accepts. The emptiness
problem for an automaton P is to decide whether L(P) = ∅.

A 2GAPT is a GAPT (i.e., “one–way”) if δ : Q × Σ → B+(Db \ {−1} × Q) and a
2APT (i.e., “non-graded”) if δ : Q×Σ→ B+({−1, ε, 1, . . . , h}×Q). As a particular case of
2APT , we also consider nondeterministic parity tree automata (NPT ) [KVW00]. Formally,
an NPT on Σ-labeled trees is a tuple A = 〈Σ, D, Q, δ, q0, F〉, where Σ, Q, q0, and F are
as in 2APT , D is a finite set of branching degree and δ : Q× Σ ×D → 2Q∗

is a transition
function satisfying δ(q, σ, d) ⊆ Qd, for each q ∈ Q, σ ∈ Σ, and d ∈ D. Finally, we also
consider Büchi acceptance condition F ⊆ Q, which simply is a special parity condition
{∅,F , Q}. Thus, we use in the following the acronym NBT to denote nondeterministic
Büchi tree automata on Σ-labeled trees.

The following results on 2GAPT will be useful in the rest of the paper.

Theorem 1. [BLMV06] The emptiness problem for a GAPT A = 〈Σ, b,Q, δ, q0,F〉 can be
solved in time linear in the size of Σ and b, and exponential in the index of the automaton
and number of states.

Lemma 1. [BLMV06] Given two GAPT A1 and A2, there exists a GAPT A such that
L(A) = L(A1) ∩ L(A2) and whose size is linear in the size of A1 and A2.

We now recall a result on GAPT and hybrid graded µ-calculus formulas.

Lemma 2 ([BLMV06]). Given an hybrid graded µ-calculus sentence ϕ with ℓ atleast sub-
sentences and counting up to b, it is possible to construct a GAPT with O(|ϕ|2) states,
index |ϕ|, and counting bound b that accepts exactly each tree that encodes a quasi-forest
model of ϕ.

4.2. Nondeterministic Pushdown Parity Tree Automata (PD–NPT). A PD–NPT
(without ε-transitions), on Σ-labeled full h-ary trees, is a tuple P = 〈Σ,Γ, ♭,Q, q0, γ0, ρ,F〉,
where Σ is a finite input alphabet, Γ, ♭, Γ♭, and Q are as in OPD , (q0, γ0) is the initial

configuration, ρ : Q × Σ × Γ♭ → 2(Q×Γ∗
♭
)h

is a transition function, and F is a parity
acceptance condition over Q. Intuitively, when P is in state q, reading an input node x
labeled by σ ∈ Σ, and the stack contains a word A · γ ∈ Γ∗ · ♭, then P chooses a tuple
〈(q1, γ1), . . . , (qh, γh)〉 ∈ ρ(q, σ,A) and splits in h copies such that for each 1 ≤ i ≤ h, a
copy in configuration (qi, γi · γ) is sent to the node x · i in the input tree. A run of P on a
Σ-labeled full h-ary tree 〈T, V 〉 is a (Q× Γ∗ · ♭)-labeled tree 〈T, r〉 such that



10 A. FERRANTE, A. MURANO, AND M. PARENTE

• r(ε) = (q0, γ0), and
• for each x ∈ T with r(x) = (q,A · γ), there is 〈(q1, γ1), . . . , (qh, γh)〉 ∈ ρ(q, V (x), A) such

that, for all 1 ≤ i ≤ h, we have r(x · i) = (qi, γi · γ).

The notion of accepting path is defined with respect to the control states that appear
infinitely often in the path (thus without taking into account any stack content). Then, the
notions given for 2GAPT regarding accepting runs, accepted trees, and accepted languages,
along with the parity acceptance condition, easily extend to PD–NPT . In the following, we
denote with PD–NBT a PD–NPT with a Büchi condition. We now recall two useful results
on the introduced automata.

Proposition 4.1 ([KPV02]). The emptiness problem for a PD–NPT on Σ-labeled full h-ary
trees, having index m, n states, and transition function ρ, can be solved in time exponential
in n ·m · h · |ρ|.

Proposition 4.2 ([BMP05]). Given a PD–NBT P = 〈Σ, Γ, Q, q0, γ0, ρ, Q〉 on Σ-labeled
full h-ary trees, and an NPT A = 〈Σ, Q′, q′0, δ,F

′〉, there is a PD–NPT P ′ on Σ-labeled full
h-ary trees, such that L(P ′) = L(P) ∩ L(A). Moreover, P ′ has |Q| · |Q′| states, the same
index as A, and the size of the transition relation is bounded by |ρ| · |δ| · h.

5. Deciding Hybrid Graded µ-calculus Module Checking

In this section, we solve the module checking problem for the hybrid graded µ–calculus.
In particular, we show that this problem is decidable and Exptime–complete. For the upper
bound, we give an algorithm based on an automata–theoretic approach, by extending an
idea of [KVW01]. For the lower bound, we give a reduction from the module checking
problem for CTL, known to be Exptime–hard. We start with the upper bound.

LetM be a module and ϕ an hybrid graded µ–calculus formula. We decide the module
checking problem forM against ϕ by building a GAPT AM×6|=ϕ as the intersection of two
automata. Essentially, the first automaton, denoted by AM, is a Büchi automaton that
accepts trees encoding of labeled quasi–forests of exec(M), and the second automaton is a
GAPT A 6|=ϕ that accepts all trees encoding of labeled quasi–forests that do not satisfy ϕ

(i.e, ¬ϕ is satisfied at all initial nodes). Thus,M |=r ϕ iff L(AM×6|=ϕ) is empty.
The construction of AM proposed here extends that given in [KVW01] for solving the

module checking problem for finite–state open systems with respect to CTL and CTL∗. The
extension concerns the handling of forest models instead of trees and formulas of the hybrid
graded µ–calculus. Before starting, there are a few technical difficulties to be overcome.
First, we notice that exec(M) contains quasi–forests, with labels on both edges and nodes,
while Büchi automata can only accept trees with labels on nodes. This problem is overcome
by using the following three step transformation

(1) move the label of each edge to the target node of the edge (formally using a new
propositional symbol pα, for each atomic program α),

(2) substitute edges to roots with new propositional symbols ↑αo (which represents an α–
labeled edge from the current node to the unique root node labeled by the nominal o),
and

(3) add a new root, labeled with a new symbol root , and connect it with the old roots of
the quasi–forest.



ENRICHED µ–CALCULI MODULE CHECKING ∗ 11

Let AP ′ = AP ∪ {pα | α ∈ Prog} ∪ {↑αo | α ∈ Prog and o ∈ Nom}, we denote with

〈T, V ′〉 the (2AP ′∪Nom∪{root})–labeled tree encoding of a quasi–forest 〈F, V,E〉 ∈ exec(M),
obtained using the above transformation.

Another technical difficulty to handle is relate to the fact that quasi–forests of exec(M)
(and thus their encoding) may not share the same structure, since they are obtained by prun-
ing some subtrees from the computation quasi–forest 〈FM, VM, EM〉 of M. Let 〈TM, V ′

M〉
the computation tree of M obtained from 〈FM, VM, EM〉 using the above encoding. By
extending an idea of [KVW01], we solve the technical problem by considering each tree

〈T, V ′〉, encoding of a quasi–forest of exec(M), as a (2AP ′∪Nom ∪ {root ,⊥})–labeled tree
〈TM, V ′′〉 (where ⊥ is a fresh proposition name not belonging to AP ∪Nom∪ {root}) such
that for each node x ∈ TM, if x ∈ T then V ′′(x) = V ′(x), otherwise V ′′(x) = {⊥}. Thus,
we label each node pruned in the 〈TM, V ′

M〉 with {⊥} and recursively, we label with {⊥} its
subtrees. In this way, all trees encoding quasi–forests of exec(M) have the same structure
of 〈TM, V ′

M〉, and they differ only in their labeling.
Accordingly, we can think of an environment as a strategy for placing {⊥} in 〈TM, V ′

M〉,
with the aim of preventing the system to satisfy a desired property while not considering
the nodes labeled with ⊥. Moreover, the environment can also disable jumps to roots. This
is performed by removing from nodes corresponding with environment states some of ↑αo
labels. Notice that since we consider environments that do not block the system, each node
associated with an environment state has at least one successor not labeled by {⊥}, unless
it has ↑αo in its label.

Let us denote by êxec(M) the set of all (2AP ′∪Nom ∪{root ,⊥})–labeled 〈TM, V ′′〉 trees
obtained from 〈F, V,E〉 ∈ exec(M) in the above described manner. The required NBT

AM must accept all and only the (2AP ′∪Nom ∪ {root ,⊥})–labeled trees in êxec(M). The
automaton AM = 〈Σ,D,Q, δ, q0,F〉 is defined for a module M = 〈Ws,We,W0, R, L〉 as
follows:

• Σ = 2AP ′∪Nom ∪ {root ,⊥}
• D =

⋃
w∈W |succ(w) \W0| (that is, D contains, for each state in W , the number of its

successors, but its jumps to roots).
• Q = (W ×{⊥,⊤,⊢})∪ {q0}, with q0 6∈W . Thus every state w ofM induces three states

(w,⊥), (w,⊤), and (w,⊢) in AM. Intuitively, when AM is in state (w,⊥), it can read
only ⊥, in state (w,⊤), it can read only letters in 2AP ∗∪ Nom, and in state (w,⊢), it can
read both letters in 2AP ∗∪Nom and ⊥. In this last case, it is left to the environment to
decide whether the transition to a state of the form (w,⊢) is enabled. The three types
of states are used to ensure that the environment enables all transitions from enabled
system states, enables at least one transition from each enabled environment state, and
disables transitions from disabled states.
• The transition function δ : Q× Σ ×D → 2Q∗

is defined as follows. Let x ∈ T be a node
of the input tree.
− if root ∈ V (x) then (let W0 = {w1, . . . , wm})

δ(q0, root ,m) = {〈(w1,⊤), . . . , (wm,⊤)〉},

that is δ(q0, root ,m) contains exactly one m–tuple of all the roots of the forest. In this
case, all transitions cannot be disabled;

− if root 6∈ V (x), let V (x) = w and succ(w) \W0 = 〈w1, . . . , wn〉 be the set of non–roots
successors of w, then we have



12 A. FERRANTE, A. MURANO, AND M. PARENTE

∗ for w ∈We ∪Ws and g ∈ {⊢,⊥} we have

δ((w, g),⊥, n) = {〈(w1,⊥), . . . , (wn,⊥)〉},

that is δ((w, g),⊥, n) contains exactly one n–tuple of all non–roots successors of w.
In this case, all transitions to successors of w are recursively disabled;
∗ for w ∈Ws and g ∈ {⊤,⊢} we have

δ((w, g), L(w), n) = {〈(w1,⊤), . . . , (wn,⊤)〉},

that is, δ((w, g), L(w), n) contains exactly one n–tuple of all non–roots successors of
w. In this case all transitions to successors of w are enabled;
∗ for w ∈ We and g ∈ {⊤,⊢} with L(w) ∩ {↑αo | α ∈ Prog and o ∈ Nom} = ∅ (i.e., w

has no jumps to roots or all of them have been disabled), we have

δ((w, g), L(w), n) = { 〈(w1,⊤), (w2,⊢), . . . , (wn,⊢)〉,
〈(w1,⊢), (w2,⊤), . . . , (wn,⊢)〉,

...
〈(w1,⊢), (w2,⊢), . . . , (wn,⊤)〉},

that is, δ((w, g), L(w), n) contains n different n–tuples of all non–roots successors of
w. When AM proceeds according to the i–th tuple, the environment can disable all
transitions to successors of w, except that to wi;
∗ for w ∈ We and g ∈ {⊤,⊢} with L(w) ∩ {↑αo | α ∈ Prog and o ∈ Nom} 6= ∅ (i.e., w

has at least one jump to roots enabled), we have

δ((w, g), L(w), n) = {〈(w1,⊢), . . . , (wn,⊢)〉},

that is δ((w, g), L(w), n) contains one n–tuple of non–roots successors of w, that can
be successively disabled.

Notice that δ is not defined when n is different from the number of non–roots successors
of w, and when the input does not meet the restriction imposed by the ⊤, ⊢, and ⊥
annotations or by the labeling of w.

The automaton AM has 3 · |W | + 1 states, 2|AP |·|R| + 2 symbols, and the size of the

transition relation |δ| is bounded by |R|(|W | · 2|R|).
We recall that a node labeled by either {⊥} or {root} stands for a node that actually

does not exist. Thus, we have to take this into account when we interpret formulas of the
hybrid graded µ–calculus over trees 〈TM, V ′〉 ∈ êxec(M). In order to achieve this, as in
[KVW01] we define a function f that transforms the input formula ϕ in a formula of the
hybrid graded µ–calculus ϕ′ = 〈0, α〉f(ϕ) (where α ∈ Prog is an arbitrary atomic program),
that restricts path quantification to only paths that never visit a state labeled with {⊥}.
The function f we consider extends that given in [KVW01] and is inductively defined as
follows:

• f(true) = true and f(false) = false;
• f(p) = p and f(¬p) = ¬p for all p ∈ AP ∪Nom;
• f(x) = x for all x ∈ V ar;
• f(ϕ1∨ϕ2) = f(ϕ1)∨f(ϕ2) and f(ϕ1∧ϕ2) = f(ϕ1)∧f(ϕ2) for all hybrid graded µ–calculus

formulas ϕ1 and ϕ2;
• f(µx.ϕ(x)) = µx.f(ϕ(x)) and f(νx.ϕ(x)) = νx.f(ϕ(x)) for all x ∈ V ar and hybrid

graded µ–calculus formulas ϕ;



ENRICHED µ–CALCULI MODULE CHECKING ∗ 13

• f(〈n, α〉ϕ) = 〈n, α〉(¬⊥ ∧ f(ϕ)) for n ∈ IN and for all atomic programs α and hybrid
graded µ–calculus formulas ϕ;
• f([n, α]ϕ) = [n, α](¬⊥∧f(ϕ)) for n ∈ IN and for all atomic programs α and hybrid graded

µ–calculus formulas ϕ.

By definition of f , it follows that for each formula ϕ and 〈T, V 〉 ∈ êxec(M), 〈T, V 〉
satisfies ϕ′ = 〈0, α〉f(ϕ) iff the 2AP ′∪Nom–labeled forest, obtained from 〈T, V 〉 removing
the node labeled with {root} and all nodes labeled by {⊥}, satisfies ϕ. Therefore, we
solve the module checking problem of M against an hybrid graded µ–calculus formula ϕ
by checking (for its negation) that in êxec(M) = L(AM) does not exist any tree 〈T, V 〉
satisfying ¬ϕ′ = [0, α]f(¬ϕ) (note that |f(¬ϕ)| = O(|¬ϕ|)). We reduce the latter to check
the emptiness of a GAPT AM×6|=f(ϕ) that is defined as the intersection of the NBT AM with

a GAPT A 6|=f(ϕ) accepting exactly the 2AP ′∪Nom∪{root ,⊥} trees encodings of quasi–forests
not satisfying f(ϕ). By Lemma 2, if ϕ is an hybrid graded µ–calculus formula, then A 6|=f(ϕ)

has O(|ϕ|2) states, index |ϕ|, and counting bound b. Therefore, by Lemma 1, AM×6|=f(ϕ)

has O(|W |+ |ϕ|2) states, index |ϕ|, and counting bound b. By recalling that the emptiness
problem for a GAPT can be decided in exponential-time (Theorem 1), we obtain that the
module checking problem for hybrid graded µ–calculus formulas is solvable in exponential-
time. To show a tight lower bound we recall that CTL module checking is Exptime–hard
[KVW01] and every CTL formula can be linearly transformed in a modal µ–calculus formula
[Jur98]. This leads to the module checking problem w.r.t. modal µ–calculus formulas to be
Exptime–hard and thus to the following result.

Theorem 2. The module checking problem with respect to hybrid graded µ–calculus formulas
is Exptime–complete.

6. Deciding Hybrid Graded µ-calculus PD-module Checking

In this section, we show that hybrid graded pushdown module checking is decidable and
solvable in 2Exptime. Since CTL pushdown module checking is 2Exptime–hard, we get
that the addressed problem is 2Exptime–complete. For the upper bound, the algorithm
works as follows. Given an OPD S and the module MS induced by S, by combining and
extending the constructions given in [BMP05] and Section 5, we first build in polynomial–
time a PD–NBT AS accepting each tree that encodes a quasi–forest belonging to exec(MS).
Then, given an hybrid graded µ–calculus formula ϕ, according to [BLMV06], we build in
polynomial–time a GAPT A 6|=ϕ (Lemma 2) accepting all models that do not satisfy ϕ, with
the intent of checking that none of these models are in exec(MS ). Then, accordingly to the
basic idea of [KVW01], we check that MS |=r ϕ by checking whether L(AS) ∩ L(A 6|=ϕ) is
empty. Finally, we get the result by using an exponential–time reduction of the latter to the
emptiness problem for PD–NPT , which from Proposition 4.1 can be solved in Exptime.
As a key step of the above reduction, we use the exponential–time translation from GAPT
into NPT showed in Lemma 5.

Let us start dealing with AS . Before building the automaton, there are some technical
difficulties to overcome. First, notice that AS is a PD–NBT and it can only deal with
trees having labels on nodes. Also, quasi–forests of exec(MS) may not share the same
structure, since they are obtained by pruning subtrees from the computation quasi–forest
〈FMS

, VMS
, EMS

〉 ofMS . As in Section 5, we solve this problem by considering 2AP
′∪Nom∪



14 A. FERRANTE, A. MURANO, AND M. PARENTE

{root ,⊥}–labeled trees encoding of quasi–forests 〈F, V,E〉 ∈ exec(MS), where AP ′ = AP ∪
{pα | α ∈ Prog} ∪ {↑αo | α ∈ Prog and o ∈ Nom}.

Another technical difficulty to handle with is related to the fact that quasi–forests of
exec(MS) (and thus their encodings) may not be full h–ary, since the nodes of the OPD
from which MS is induced may have different degrees. Technically, we need this property
since the emptiness problem for PD–NPT to which we reduce our problem has been solved
in the literature only for PD–NPT working on full trees. Similarly as we did for pruned
nodes, we transform each tree encoding of a quasi–forest of exec(MS) into a full h–ary
tree by adding missing nodes labeled with {⊥}. Therefore the proposition ⊥ is used to
denote both “disabled” states and “completion” states. In this way, all trees encodings of
quasi–forests of exec(MS) are all full h–ary trees, and they differ only in their labeling.

Let us denote with êxec(MS) the set of all 2AP ′∪Nom ∪ {root ,⊥}–labeled full h–ary trees
obtained from 〈FMS

, VMS
, EMS

〉 using all the transformations described above.
In [BMP05] it has been shown how to build a PD–NBT accepting full h–ary trees

embedded in an OPD corresponding to all behaviors of the environment. In particular, the
PD–NBT constructed there already takes into account the above transformation regarding
{⊥}–labeled nodes. By extending the construction proposed there in the same way the
construction showed in Section 5 extends the classical construction of AM proposed in
[KVW01], it is not hard to show that the following result holds.

Lemma 3. Given an OPD S = 〈Q,Γ, ♭, C0,∆, ρ1, ρ2, Env〉 with branching degree h, we can
build a PD–NBT AS = 〈Σ,Γ, ♭,Q′, q′0, γ0, δ,Q〉, which accepts exactly êxec(MS), such that

Σ = 2AP ′∪Nom ∪ {root ,⊥}, |Q′| = O(|Q|2 · |Γ|), and |δ| is polynomially bounded by h · |∆|.

Let us now go back to the hybrid graded µ–calculus formula ϕ. Using the function
f introduced in Section 5 and Lemma 2, we get that given an hybrid graded µ–calculus
formula ϕ, we can build in polynomial–time a GAPT A 6|=f(ϕ) accepting all models of ¬ϕ′ =
[0, α]f(¬ϕ) (as done in Section 5).

By using the classical Exptime transformation from GAPT to GNPT [KSV02] and
a simple Exptime transformation from GNPT to NPT , we directly get a 3Exptime

algorithm for the hybrid graded µ–calculus pushdown module checking. To obtain an
exponential–time improvement, here we show a not trivial Exptime transformation from
2GAPT to NPT . The translation we propose uses the notions of strategies, promises and
annotations, which we now recall.

Let A = 〈Σ, b,Q, δ, q0,F〉 be a 2GAPT with F = 〈F1, . . . , Fk〉 and 〈T, V 〉 be a Σ-labeled
tree. Recall that Db = 〈[b]〉∪ [[b]]∪{−1, ε} and δ : (Q×Σ)→ B+(Db×Q). For each control
state q ∈ Q, let index(q) be the minimal i such that q ∈ Fi. A strategy tree for A on 〈T, V 〉
is a 2Q×Db×Q-labeled tree 〈T, str〉 such that, defined head(w) = {q : (q, d, q′) ∈ w} as the
set of sources of w, it holds that (i) q0 ∈ head(str(root (T ))) and (ii) for each node x ∈ T
and state q, the set {(q, q′) : (q, d, q′) ∈ str(x)} satisfies δ(q, V (x)).

A promise tree for A on 〈T, V 〉 is a 2Q×Q-labeled tree 〈T, pro〉. We say that pro fulfills
str for V if the states promised to be visited by pro satisfy the obligations induced by str

as it runs on V . Formally, pro fulfills str for V if for every node x ∈ T , the following hold:
“for every (q, 〈n〉, q′) ∈ str(x) (resp. (q, [n], q′) ∈ str(x)), at least n + 1 (resp deg(x) − n)
successors x · j of x have (q, q′) ∈ pro(x · j)”.

An annotation tree for A on 〈T, str〉 and 〈T, pro〉 is a 2Q×{1,...,k}×Q-labeled tree 〈T, ann〉
such that for each x ∈ T and (q, d1, q1) ∈ str(x) the following hold:

• if d1 = ε, then (q, index(q1), q1) ∈ ann(x);



ENRICHED µ–CALCULI MODULE CHECKING ∗ 15

• if d1 ∈ {1, . . . , k}, then for all d2 ∈ {1, . . . , k} and q2 ∈ Q such that (q1, d2, q2) ∈ ann(x),
we have (q,min(d1, d2), q2) ∈ ann(x);
• if d1 = −1 and x = y · i, then for all d2, d3 ∈ {1, . . . , k} and all q2, q3 ∈ Q satisfing

(q1, d2, q2) ∈ ann(y) as well as (q2, d3, q3) ∈ str(y) and (q2, q3) ∈ pro(x), we have that
(t,min(index(q1), d2, index(q3)), q3) ∈ ann(x);
• if d1 ∈ [[b]] ∪ 〈[b]〉, y = x · i, and (q, q1) ∈ pro(y), then for all d2, d3 ∈ {1, . . . , k}

and q2, q3 ∈ Q such that (q1, d2, q2) ∈ ann(y) and (q2,−1, q3) ∈ str(y), it holds that
(t,min(index(q1), d2, index(q3)), q3) ∈ ann(x).

A downward path induced by str, pro, and ann on 〈T, V 〉 is a sequence 〈x0, q0, t0〉,
〈x1, q1, t1〉, . . . such that x0 = root(T ), q0 is the initial state of A and, for each i ≥ 0, it
holds that xi ∈ T , qi ∈ Q, and ti = 〈qi, d, qi+1〉 ∈ str(xi) ∪ ann(xi) is such that either (i)
d ∈ {1, . . . , k} and xi+1 = xi, or (ii) d ∈ 〈[b]〉 ∪ [[b]] and there exists c ∈ {1, . . . , deg(xi)}
such that xi+1 = xi · c and (qi, qi+1) ∈ pro(xi+1). In the first case we set index(ti) = d
and in the second case we set index(ti) = min{j ∈ {1, . . . , k} | qi+1 ∈ Fj}. Moreover, for a
downward path π, we set index(π) as the minimum index that appears infinitely often in
π. Finally, we say that π is accepting if index(π) is even.

The following lemma relates languages accepted by 2GAPT with strategies, promises,
and annotations.

Lemma 4 ([BLMV06]). Let A be a 2GAPT. A Σ-labeled tree 〈T, V 〉 is accepted by A iff
there exist a strategy tree 〈T, str〉, a promise tree 〈T, pro〉 for A on 〈T, V 〉 such that pro

fulfills str for V , and an annotation tree 〈T, ann〉 for A on 〈T, V 〉, 〈T, str〉 and 〈T, pro〉 such
that every downward path induced by str, pro, and ann on 〈T, V 〉 is accepting.

Given an alphabet Σ for the input tree of a 2GAPT with transition function δ, let Dδ
b

be the subset containing only the elements of Db appearing in δ. Then we denote by Σ′ the

extended alphabet for the combined trees, i.e., Σ′ = Σ× 2Q×Dδ
b×Q × 2Q×Q × 2Q×{1,...k}×Q.

Lemma 5. Let A be a 2GAPT running on Σ–labeled trees with n states, index k and
counting bound b that accepts h-ary trees. It is possible to construct in exponential-time an
NPT A′ running on Σ′–labeled h-ary trees that accepts a tree iff A accepts its projection on
Σ.

Proof. Let A = 〈Σ, b,Q, q0, δ,F〉 with F = 〈F1, . . . , Fk〉. By Lemma 4, we construct A′ as
the intersection of two NBT A′, A′′, and an NPT A′′′. In particular, all these automata have
size exponential in the size of A. Moreover, since each NBT uses as accepting all its states,
it is easy to intersect in polynomial-time all of them by using a classical automata product.
These automata are defined as follows. Given a Σ′-labeled tree T ′ = 〈T, (V, str, pro, ann)〉,

(1) A′ accepts T ′ iff str is a strategy for A on 〈T, V 〉 and pro fulfills str for V ,
(2) A′′ accepts T ′ iff ann is an annotation for A on 〈T, V 〉, 〈T, str〉 and 〈T, pro〉, and
(3) A′′′ accepts T ′ iff every downward path induced by str, pro, and ann on 〈T, V 〉 is ac-

cepting.

The automaton A′ = 〈Σ′,D′, Q′, q′0, δ
′,F ′〉 works as follows: on reading a node x labeled

(σ, η, ρ, ω), then it locally checks whether η satisfies the definition of strategy forA on 〈T, V 〉.
In particular, when A′ is in its initial state, we check that η contains a transition starting
from the initial state of A. Moreover, the automaton A′ sends to each child x · i the pairs
of states that have to be contained in pro(x · i), in order to verify that pro fulfills str. To
obtain this, we set Q′ = 2Q×Q ∪ {q′0}, D′ = {1, . . . , h} and F ′ = {∅, Q′}. To define δ′, we



16 A. FERRANTE, A. MURANO, AND M. PARENTE

first give the following definition. For each node x ∈ T labeled (σ, η, ρ, ω), we set

S(η) = {〈S1, . . . , Sdeg(x)〉 ∈ (2Q×Q)deg(x) such that
[for each (q, 〈m〉, p) ∈ η there is P ⊆ {1, . . . deg(x)} with |P | = m + 1
such that for all i ∈ P, (q, p) ∈ Si] and
[for each (q, [m], p) ∈ η there isP ⊆ {1, . . . deg(x)} with |P | = deg(x)−m
such that for all i ∈ P, (q, p) ∈ Si]}

to be the set of all tuples with size deg(x), each fulfilling all graded modalities in str(x).

Notice that |S(η)| ≤ 2hn2

. Then we have

δ′(q, (σ, η, ρ, ω), deg(x)) =





S(η) if ∀ p ∈ head(η), {(d, p′) | (p, d, p′) ∈ η} satisfies δ(p, σ)

and [(q = q1
0 and q0 ∈ head(η)) or (q 6= q1

0 and q ⊆ ρ)]

false otherwise.

Hence, in A′ we have |Q′| = 2n2

, |δ′| ≤ 2n2(k+1), and index 2.
A′′ = 〈Σ′,D′′, Q′′, q′′0 , δ′′,F ′′〉 works in a similar way to A′. That is, for each node x,

it first locally checks whether the constraints of the annotations are verified; then it sends
to the children of x the strategy and annotation associated with x, in order to successively
verify whether the promises associated with the children nodes are consistent with the

annotation of x. Therefore, in A′′ we have Q′′ = 2Q×Dδ
b×Q × 2Q×{1,...,k}×Q, q′′0 = (∅, ∅),

F ′′ = {∅, Q′′}, D′′ = {1, . . . , h}, and for a state (ηprev, ωprev) and a letter (σ, η, ρ, ω) we have

δ′′((ηprev, ωprev), (σ, η, ρ, ω), deg(x)) =





〈(η, ω), . . . , (η, ω)〉 if the local conditions for the

annotations are verified

false otherwise.

Hence, in A′′ we have |Q′′| ≤ 2n2(|δ|+k), |δ′′| ≤ h · 2n2(|δ|+k), and index 2.
Finally, to defineA′′′ we start by constructing a 2APT B whose size is polynomial in the

size of A and accepts 〈T, (V, str, pro, ann)〉 iff there is a non accepting downward path (w.r.t.
A) induced by str, pro, and ann on 〈T, V 〉. The automaton B = 〈Σ′, QB , qB

0 , δB ,FB〉 (which
in particular does not need direction −1) essentially chooses, in each state, the downward
path to walk on, and uses an integer to store the index of the state. We use a special state
♯ not belonging to Q to indicate that B proceeds in accordance with an annotation instead
of a strategy. Therefore, QB = ((Q ∪ {♯})× {1, . . . , k} ×Q) ∪ {qB

0 }.
To define the transition function on a node x, let us introduce a function f that for each

q ∈ Q, strategy η ∈ 2Q×Dδ
b×Q, and annotation ω ∈ 2Q×{1,...,k}×Q gives a formula satisfied

along downward paths consistent with η and ω, starting from a node reachable in A with the
state q. That is, in each node x, the function f either proceeds according to the annotation
ω or the strategy η (note that f does not check that the downward path is consistent with
any promise). Formally, f is defined as follows, where index(p) is the minimum i such that
p ∈ Fi:

f(q, η, ω) =
∨

(q,d,p)∈ω

d∈{1,...,k}

〈ε, (♯, d, p)〉 ∨
∨

(q,d,p)∈η

d∈〈[b]〉∪[[b]]

∨

c∈{1,...,deg(x)}

〈c, (q, index(p), p)〉

Then, we have δB(qB
0 , (σ, η, ρ, ω)) = f(q0, η, ω) and

δB((q, d, p), (σ, η, ρ, ω)) =

{
false if q 6= ♯ and (q, p) 6∈ ρ

f(p, η, ω) otherwise.
.



ENRICHED µ–CALCULI MODULE CHECKING ∗ 17

A downward path π is non accepting for A if the minimum index that appears infinitely
often in π is odd. Therefore, FB = 〈FB

1 , . . . , FB
k+1, Q

B〉 where FB
1 = ∅ and, for all i ∈

{2, . . . , k + 1}, we have FB
i = {(q, d, p) ∈ QB | d = i − 1}. Thus, |QB | = kn(n + 1) + 1,

|δB | = k · |δ| · |QB|, and the index is k + 2. Then, since B is alternating, we can easily
complement it in polynomial-time into a 2APT B that accepts a tree iff all downward paths
induced by str, pro, and ann on 〈T, V 〉 are accepting. Finally, following [Var98] we construct
in exponential-time the desired automaton A′′′.

By applying the transformation given by Lemma 5 to the automaton A¬ϕ′ defined
above, we obtain in exponential time in the size of ϕ, an NPT that accepts all the trees
encoding of quasi–forests that do not satisfy ϕ. From Proposition 4.2, then we can build
a PD–NPT AS×6|=ϕ with size polynomial in the size of S and exponential in the size of
ϕ such that L(AS×6|=ϕ) = L(AS) ∩ L(A¬ϕ′). Hence, from Proposition 1 we obtain that
hybrid graded µ–calculus pushdown module checking can be solved in Exptime in the size
of S and in 2Exptime in the size of ϕ. Finally, from the fact that CTL pushdown module
checking is known to be 2Exptime–hard with respect to the size of ϕ and Exptime–hard
with respect to the size of S [BMP05], we obtain the following theorem.

Theorem 3. The hybrid graded µ–calculus pushdown module checking problem is 2Exptime–
complete with respect to the size of the formula and Exptime–complete with respect to the
size of the system.

7. Fully Enriched µ-calculus Module Checking

In this section, we consider a memoryless restriction of the module checking problem and
investigate it with respect to formulas of the Fully enriched µ-calculus. Given a formula ϕ,
a memoryless module checking problem checks whether all trees in exec(M), always taking
the same choice in duplicate environment nodes, satisfy ϕ. In this section, we show that
the (memoryless) module checking problem for Fully enriched µ-calculus is undecidable.

Fully enriched µ–calculus is the extension of hybrid graded µ–calculus with inverse
programs. Essentially, inverse programs allow us to specify properties about predecessors
of a state. Given an atomic program a ∈ Prog, we denote its inverse program with a− and
the syntax of the fully enriched µ–calculus is simply obtained from the one we introduced
for hybrid graded µ–calculus, by allowing both atomic and inverse programs in the graded
modalities. Similarly, the semantics of fully enriched µ–calculus is given, identically to the
one for hybrid graded µ–calculus, with respect to a Kripke structure K = 〈W,W0, R, L〉 in
which, to deal with inverse programs, we define, for all a ∈ Prog, R(a−) = {(v,w) ∈W×W
such that (w, v) ∈ R(a)}.

Let us note that, since the fully enriched µ–calculus does not enjoy the forest model
property [BP04], we cannot unwind a Kripke structure in a forest. However, it is always
possible to unwind it in an equivalent acyclic graph that we call computation graph. In
order to take into account all the possible behaviors of the environment, we consider all
the possible subgraphs of the computation graph obtained disabling some transitions from
environment nodes but one. We denote with graphs(M) the set of this graphs. Given a Fully
enriched µ–calculus formula ϕ, we have that M |=r ϕ iff K |= ϕ for all K ∈ graphs(M).

To show the undecidability of the addressed problem, we need some further definitions.
An (infinite) grid is a tuple G = 〈IN2, h, v〉 such that h and v are defined as h(〈x, y〉) =



18 A. FERRANTE, A. MURANO, AND M. PARENTE

〈x + 1, y〉 and v(〈x, y〉) = 〈x, y + 1〉. Given a finite set of types T , we will call tile on T a
function ρ̂ : IN2 → T that associates a type from T to each vertex of an infinite grid G, and
we call tiled infinite grid the tuple 〈G,T, ρ̂〉. A grid model is an infinite Kripke structure
K = 〈W, {w0}, R, L〉, on the set of atomic programs Prog = {l−, v}, such that K can be
mapped on a grid in such a way that w0 corresponds to the vertex 〈0, 0〉, R(v) corresponds
to v and R(l−) corresponds to h. We say that a grid model K “corresponds” to a tiled
infinite grid 〈G,T, ρ̂〉 if every state of K is labeled with only one atomic proposition (and
zero or more nominals) and there exists a bijective function ρ : T → AP such that, if wx,y

is the state of K corresponding with the node 〈x, y〉 of G, then ρ(ρ̂(〈x, y〉)) ∈ L(wx,y).

Theorem 4. The module checking problem for fully enriched µ–calculus is undecidable.

Proof. To show the result, we use a reduction from the tiling problem (also known as domino
problem), known to be undecidable [Ber66]. The tiling problem is defined as follows.

Let T be a finite set of types, and H,V ⊆ T 2 be two relations describing the types that
cannot be vertically and horizontally adjacent in an infinite grid. The tiling problem is to
decide whether there exists a tiled infinite grid 〈G,T, ρ̂〉 such that ρ̂ preserves the relations
H and V . We call such a tile function a legal tile for G on T .

In [BP04], Bonatti and Peron showed undecidability for the satisfiability problem for
fully enriched µ–calculus by also using a reduction from the tiling problem. Hence, given
a set of types T and relations H and V , they build a (alternation free) fully enriched µ–
calculus formula ϕ such that ϕ is satisfiable iff the tiling problem has a solution in a tiled
infinite grid, with a legal tile ρ on T (with respect to H and V ). In particular, the formula
they build can be only satisfiable on a grid model K corresponding to a tiled infinite grid
with a legal tile ρ on T . In the reduction we propose here, we use the formula ϕ used in
[BP04]. It remains to define the module.

Let {G1, G2, . . .} be the set of all the infinite tiled grids on T (i.e., Gi = 〈G,T, ρ̂i〉), we
build a module M such that graphs(M) contains, for each i ≥ 1, a grid models correspond-
ing to Gi. Therefore, we can decide the tiling problem by checking whether M |=r ¬ϕ.
Indeed, if M |=r ¬ϕ, then all grid models corresponding to Gi do not satisfy ϕ and, there-
fore, there is no solution for the tiling problem. On the other side, if M 6|=r ¬ϕ, then there
exists a model for ϕ; since ϕ can be satisfied only on a grid model corresponding to a tiled
infinite grid with a legal tile on T with respect to H and V , we have that the tiling problem
has a solution.

Formally, let T = {t1, . . . , tm} be the set of types, the module M = 〈Ws,We,W0, R, L〉
with respect to atomic programs Prog = {l−, v}, atomic propositions AP = T , and nomi-
nals Nom = {o1, . . . , om}, is defined as follows:

• Ws = ∅, We = {x1, . . . , xm, y1, . . . , ym} and W0 = {x1, . . . , xm};
• for all i ∈ {1, . . . m}, L(ti) = {xi, yi} and L(oi) = {xi};
• R(v) = {〈xi, xj〉|i, j ∈ {1, . . . ,m}} ∪ {〈yi, yj〉|i, j ∈ {1, . . . ,m}};
• R(l−) = {〈xi, yj〉|i, j ∈ {1, . . . ,m}} ∪ {〈yi, xj〉|i, j ∈ {1, . . . ,m}}

Notice that we duplicate the set of nodes labeled with tiles since we cannot have pairs
of nodes in M labeled with more than one atomic program (in our case, with both v and
l−). Moreover the choice of labeling nodes xi with nominals is arbitrary. Finally, from the
fact that the module contains only environment nodes, it immediately follows that, for each
i, the grid model corresponding to the infinite tiled grid Gi is contained in graphs(M).



ENRICHED µ–CALCULI MODULE CHECKING ∗ 19

µ-calculus Pushdown Single–Push Finite–State
extensions Model Checking Model Checking Model Checking
propositional Exptime–Complete [Wal96] Exptime–Complete UP ∩ co–UP [Wil01]
hybrid Exptime–Complete Exptime–Complete UP ∩ co–UP

graded 2Exptime 2Exptime Exptime

full ? Exptime–Complete UP ∩ co–UP

hybrid graded 2Exptime 2Exptime Exptime

full hybrid ? Exptime–Complete UP ∩ co–UP

full graded ? 2Exptime Exptime

Fully enriched ? 2Exptime Exptime

Figure 1: Results on Model Checking Problem.

8. Notes on Fully Enriched µ-calculus Model Checking

In this section, for the sake of completeness, we investigate the model checking problems
for Fully enriched µ-calculus and its fragments, for both pushdown and finite-states systems.

In particular, we first consider the model checking problem for formulas of the µ–
calculus enriched with nominal (hybrid µ–calculus) or graded modalities (graded µ–calculus)
or both, for pushdown systems (PDMC, for short) and finite states systems (FSMC, for
short), i.e. Kripke structures. In particular, we show that for graded µ–calculus, PDMC

is solvable in 2Exptime and FSMC is solvable in Exptime. Moreover we show that for
hybrid µ–calculus PDMC is Exptime–complete and FSMC is in UP ∩ co–UP, thus
matching the known results for (propositional) µ–calculus model checking (see [Wal96] for
PDMC and [Wil01] for FSMC), and that, for hybrid graded µ–calculus, PDMC is solvable
in 2Exptime and FSMC is solvable in Exptime.

By considering also µ-calculus enriched (among the others) with inverse programs,
we also consider PDMC w.r.t. a reduced pushdown system that, in each transition, can
increase the size of the stack by at most one (single–push system). To this aim, we define a
single–push system with three stack operations: for A ∈ Γ, sub(A) changes the top of the
stack into A, push(A) pushes the symbol A on the top of the stack, and pop() pops the top
symbol of the stack. Formally, a single–push system S is a pushdown system in which the
transition function is ∆ : Prog → 2(Q×Γ♭)×(Q×{sub,push,pop}×Γ). For consistency reasons, we
assume that if the top of the stack is ♭ then sub(A) = push(A) and pop() has no effect.

We call the model checking problem for single–push systems single–push model checking
(SPMC, for short). In this case, we show that for full hybrid µ–calculus (µ-calculus enriched
with inverse programs and nominals), SPMC is Exptime–complete and FSMC is in UP

∩ co–UP, and that for Fully enriched and full graded µ–calculus (µ-calculus enriched
with inverse programs and graded modalities), SPMC is in 2Exptime and FSMC is in
Exptime. In Figure 8 we report known and new results on model checking problems for
the Fully enriched µ–calculus and its fragments.

To prove our results, we simply rule out inverse programs and nominals from the input
formula. In particular, we first observe that, from a model checking point of view, checking
a formula with inverse programs on a graph (finite or infinite) is equivalent to check the
formula in “forward” on the graph enriched with opposite edges. That is, we consider
inverse programs in the formula as special atomic programs to be checked on the opposite
edges we have added in the graph. Note that this observation does not apply to PDMC.



20 A. FERRANTE, A. MURANO, AND M. PARENTE

Indeed, to transform previous configurations to inverse next configurations, we need to limit
the power of a PDMC to be single push. Thus, we obtain the following result.

Lemma 6. Let Xµ be an enrichment of the µ-calculus with inverse programs. Then a
SPMC (resp., FSMC) w.r.t. Xµ can be reduced in linear time to SPMC (resp., FSMC)
w.r.t. Xµ without inverse programs.

Proof. Here we only show the proof for FSMC since the one for SPMC is similar. Let
K = 〈W,W0, R, L〉 be a model that uses atomic programs from Prog, and let ϕ be a formula
of Xµ. Then, we define a new model K′ and a new formula ϕ′ as follows: K′ = 〈W,W0, R

′, L〉
uses atomic programs from the set Prog′ = Prog∪{â s.t. a ∈ Prog} (it doesn’t use inverse
programs) and has the transition relation defined as R′(a) = R(a) and R′(â) = R(a−) for
all a ∈ Prog. On the other side, ϕ′ is a formula of Xµ without inverse programs equal to
ϕ except for the fact that a− is changed into â for all a ∈ Prog. Thus it can be easily seen
that K |= ϕ iff K′ |= ϕ′ and this completes the proof of this lemma.

Furthermore, from the model checking point of view, one can consider each nominal in
the input formula as a particular atomic proposition. Thus we obtain the following result.

Lemma 7. Let Xµ be the µ-calculus enriched with nominals and possibly with graded modal-
ities. Then PDMC, SPMC and FSMC w.r.t. Xµ can be respectively reduced in linear time
to PDMC, SPMC and FSMC w.r.t. Xµ without nominals.

Proof. In this case too, we show the proof only for FSMC. Let K = 〈W,W0, R, L〉 be a
model that uses atomic propositions from AP and nominals from Nom, and let ϕ be a
formula of Xµ. Then, we consider the new model K′ = 〈W,W0, R, L〉 that uses atomic
propositions from the set AP ′ = AP ∪ Nom (K′ does not use nominals); moreover, let ϕ′

be the formula ϕ interpreted as a formula of Xµ without nominals on the set of atomic
propositions AP ′. Then, it is easy to see that K |= ϕ iff K′ |= ϕ′.

From Lemmas 6 and 7 and the fact that for propositional µ–calculus PDMC is Ex-

ptime–Complete [Wal96] and FSMC is in UP ∩ co–UP [Wil01], we directly have that
hybrid µ–calculus PDMC is Exptime–Complete, (full) hybrid µ–calculus SPMC is solv-
able in Exptime and (full) hybrid µ–calculus FSMC is in UP ∩ co–UP. Now, in [Wal96]
it has been showed that µ-calculus PDMC is Exptime–hard. The proof used there can be
easily adapted to handle single–push systems without incurring in any complexity blowup.
Thus, we obtain the following result.

Theorem 5. Hybrid µ–calculus PDMC is Exptime–Complete, (full) hybrid µ–calculus
SPMC is Exptime–Complete and (full) hybrid µ–calculus FSMC is in UP ∩ co–UP.

Finally, from Lemmas 6 and 7 we have that hybrid graded µ–calculus PDMC can be
reduced in linear time to graded µ–calculus PDMC, Fully enriched µ–calculus SPMC can
be reduced in linear time to graded µ–calculus SPMC (note that SPMC is a special case of
PDMC) and Fully enriched µ-calculus FSMC can be reduced in linear time to graded µ-
calculus FSMC. Since model checking is a special case of module checking, from Theorems
2 and 3 we have the following result.

Theorem 6. PDMC is solvable in 2Exptime for (hybrid) graded µ–calculus, SPMC is
solvable in 2Exptime for Fully enriched µ-calculus and FSMC is solvable in Exptime for
Fully enriched µ-calculus.



ENRICHED µ–CALCULI MODULE CHECKING ∗ 21

References

[AMV07] A. Aminof, A. Murano, and M.Y. Vardi, Pushdown module checking with imperfect information,
CONCUR ’07, LNCS, vol. 4703, Springer-Verlag, 2007, pp. 461–476.

[Ber66] R. Berger, The undecidability of the domino problem, Mem. AMS 66 (1966), 1–72.
[BLMV06] P.A. Bonatti, C. Lutz, A. Murano, and M.Y. Vardi, The complexity of enriched µ-calculi, ICALP

’06, LNCS, vol. 4052, 2006, pp. 540–551.
[BLMV08] , The complexity of enriched µ-calculi, To appear in Logical Methods in Computer Science

(2008), 1–27, http://www.na.infn.it/∼murano/pubblicazioni/journal-version-enriched.pdf.
[BMP05] L. Bozzelli, A. Murano, and A. Peron, Pushdown module checking, LPAR, 2005, pp. 504–518.
[BP04] P.A. Bonatti and A. Peron, On the undecidability of logics with converse, nominals, recursion

and counting, Artificial Intelligence 158 : 1 (2004), 75–96.
[BS06] J. Bradfield and C. Stirling, Modal µ-calculi, Handbook of Modal Logic (Blackburn, Wolter, and

van Benthem, eds.), Elsevier, 2006, pp. 722–756.
[CE81] E.M. Clarke and E.A. Emerson, Design and synthesis of synchronization skeletons using branch-

ing time temporal logic, Proc. of Work. on Logic of Programs, LNCS, vol. 131, 1981, pp. 52–71.
[CGP99] E.M. Clarke, O. Grumberg, and D.A. Peled, Model checking, MIT Press, Cambridge, MA, USA,

1999.
[FM07] A. Ferrante and A. Murano, Enriched µ–calculus module checking, FOSSACS’07, LNCS, vol.

4423, 2007, p. 183197.
[FMP07] A. Ferrante, A. Murano, and M. Parente, Enriched µ–calculus pushdown module checking,

LPAR’07, LNAI, vol. 4790, 2007, pp. 438–453.
[Hoa85] C.A.R. Hoare, Communicating sequential processes, 1985.
[HP85] D. Harel and A. Pnueli, On the development of reactive systems, Logics and Models of Concurrent

Systems, NATO Advanced Summer Institutes, vol. F–13, Springer–Verlag, 1985, pp. 477–498.
[Jur98] Marcin Jurdziński, Deciding the winner in parity games is in UP ∩ co-UP, Information Processing

Letters 68 (1998), no. 3, 119–124.
[Koz83] D. Kozen, Results on the propositional mu–calculus., Theoretical Computer Science 27 (1983),

333–354.
[KPV02] O. Kupferman, N. Piterman, and M.Y. Vardi, Pushdown specifications, LPAR, 2002, pp. 262–277.
[KSV02] O. Kupferman, U. Sattler, and M.Y. Vardi, The complexity of the graded µ–calculus, CADE ’02,

LNAI, vol. 2392, 2002, pp. 423–437.
[KV97] O. Kupferman and M.Y. Vardi, Module checking revisited, CAV ’96, LNCS, vol. 1254, Springer-

Verlag, 1997, pp. 36–47.
[KVW00] O. Kupferman, M.Y. Vardi, and P. Wolper, An automata–theoretic approach to branching–time

model checking, Journal of ACM 47 (2000), no. 2, 312–360.
[KVW01] , Module checking, Information & Computation 164 (2001), 322–344.
[QS81] J.P. Queille and J. Sifakis, Specification and verification of concurrent systems in cesar, 5th

Symp. on Programming, LNCS, vol. 137, 1981, pp. 337–351.
[SV01] U. Sattler and M.Y. Vardi, The hybrid mu–calculus, IJCAR ’01, LNAI, vol. 2083, 2001, pp. 76–91.
[Var98] M.Y. Vardi, Reasoning about the past with two–way automata, ICALP ’98, LNCS, vol. 1443,

1998, pp. 628–641.
[Wal96] I. Walukiewicz, Pushdown processes: Games and Model Checking, CAV ’96, LNCS, vol. 1102,

Springer–Verlag, 1996, pp. 62–74.
[Wal00] , Model checking ctl properties of pushdown systems, FSTTCS ’00, LNCS, vol. 1974,

Springer–Verlag, 2000, pp. 127–138.
[Wil01] T. Wilke, Alternating tree automata, parity games, and modal µ–calculus, Bull. Soc. Math. Belg.

8 (2001), no. 2.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.


	1. Introduction
	2. Preliminaries
	2.1. Labeled Forests.
	2.2. Hybrid Graded –Calculus.

	3. Hybrid graded -calculus module Checking
	3.1. Open Pushdown Systems (OPD)

	4. Tree Automata
	4.1. Two-way Graded Alternating Parity Tree Automata (2GAPT)
	4.2. Nondeterministic Pushdown Parity Tree Automata (PD–NPT)

	5. Deciding Hybrid Graded -calculus Module Checking
	6. Deciding Hybrid Graded -calculus PD-module Checking
	7. Fully Enriched -calculus Module Checking
	8. Notes on Fully Enriched -calculus Model Checking
	References

