
UNIVERSITA' DEGLI STUDI DI NAPOLI FEDERICO II

Dipartimento di Informatica e Sistemistica

Reverse Engineering of Web Applications

Porfirio Tramontana

Ph. D. Thesis

A. D. MCCXXIV

 - 1 -

Table of contents

Table of contents ..1

PART 1: INTRODUCTION ...6

Chapter 1: Introduction ..7

1.1 Aim of the Thesis ..8

1.2 Thesis Structure..8

Chapter 2: Background: Web Applications and Web Engineering......................................11

2.1 Web Applications ...11

2.1.1 A Classification...11

2.1.2 Architecture...12

2.1.4 Technology..13

2.2 Web Engineering..14

PART 2: MODELING WEB APPLICATIONS ...16

Chapter 3: Models describing Web Applications ...17

3.1 Web Application models...17

3.2 Conallen’s extensions to UML...22

3.3 The proposed model ...24

PART 3: REVERSE ENGINEERING WEB APPLICATIONS ...26

Chapter 4: The WARE approach...27

4.1 Introduction..27

4.2 Related works...27

4.3 Applying the Goals/Models/Tools paradigm ...29

4.3.1 Goals ...29

4.3.2 Models...29

 - 2 -

4.3.3 Tools..29

4.4 The WARE’s Reverse Engineering process ...30

4.4.1 Static Analysis...32

4.4.2 Dynamic Analysis ...32

4.4.3 Automatic Clustering of the Web Application ...33

4.4.4 Abstraction of UML diagrams ..33

Chapter 5: Web Application Clustering ..35

5.1 Introduction..35

5.2 Background on clustering approaches for software systems...36

5.3. A Clustering Methodology for Web Applications ...37

5.3.1 Web Application Connection Graph...38

5.3.2 Defining the coupling between Web Application components38

5.3.3 The clustering algorithm ...41

5.4 A clustering example..44

Chapter 6: The tool WARE...47

6.1 Introduction..47

6.2 Architecture of tool WARE...47

6.2.1 WARE Service Layer..48

6.2.2 WARE Interface Layer. ..50

6.3 Analysis of a Web Application with the tool WARE...52

Chapter 7: Experimenting the WARE Reverse Engineering Process59

7.1 Assessing the effectiveness of the WARE Reverse Engineering process............................59

7.2 Carrying out Static Analysis ..60

7.3 Carrying out Dynamic Analysis...61

7.4 Carrying out Clustering ...62

7.5 Discussion ..63

Chapter 8: Abstraction of Business Level Diagrams..67

8.1 Introduction..67

 - 3 -

8.2 Recovering Business Level Class Diagrams..68

8.2.1 Identifying candidate classes and their attributes ...69

8.2.2 Associating methods to classes ...72

8.2.3 Identifying relationships between classes ...74

8.3. Recovering UML Use Case and Sequence diagrams..74

8.3.1 Recovering Use Case Diagrams..74

8.3.2 Recovering Sequence Diagrams ...75

8.4. A case study...76

8.5 Future Works..82

Chapter 9: Concept Assignment for client pages..83

9.1 Introduction..83

9.2 A specialized conceptual model describing a Web Application ..84

9.3 Identifying the Concepts...85

9.3.1 Separating the Control Component from the Data Component87

9.3.2 Text Normalisation ...87

9.3.3 Computation of the Concept Weights...88

9.3.4 Concept Clustering..92

9.3.5 Selecting the Concepts ..94

9.4 The Web Concept Finder Tool ...94

9.5. Experimental results ...96

9.6 Future works ..98

Chapter 10: Recovering Interaction Design Patterns...99

10.1. Introduction...99

10.2. Background ...101

10.2.1 Characterization of Patterns’ features ...101

10.3. The approach ..104

10.4 The supporting environment ..106

10.5. An explorative experiment ..107

10.5.1 Feature Definition ...108

 - 4 -

10.5.2 Training Phase...108

10.5.3 Preliminary Identification Test ...109

10.5.4 Identification Test ...111

10.6 Future works ..112

Chapter 11: Identifying Cloned Components ...113

11.1 Software clones and clone analysis. ..113

11.2 Clones in Web Applications. ..114

11.3 Identifying clones ...115

11.3.1 Separation of the control component from the data component.115

11.3.2 Clone Detection...115

11.3.3 Techniques for detecting Inner Page Clones...117

11.3.4 Clone Validation. ..118

11.4. An experiment. ..118

11.5 Future Works..120

Chapter 12: Identifying Cross Site Scripting Vulnerabilities..122

12.1 Introduction..122

12.2. Background ...124

12.2.1 Related works..124

12.2.2 Cross site scripting (XSS) ...125

12.3. Detection of XSS vulnerabilities ...127

12.3.1 Assessing a server page XSS vulnerability by static analysis127

12.3.2 Vulnerability of a Web Application..132

12.3.3 Using dynamic analysis for assessing a Web Application vulnerability132

12.4 A case study..134

Chapter 13: A maintainability model for Web Applications...138

13.1 Introduction..138

13.2 A maintainability model for Web Applications ..140

13.2.1 The Oman and Hagemeister maintainability model ...140

13.2.2 Traditional Systems and Web Applications..142

 - 5 -

13.3 Adapting Oman and Hagemeister maintainability model to Web Applications143

13.4 Case Study..148

13.5 Future Works..151

PART 4: CONCLUSIONS AND FUTURE WORKS...152

Chapter 14: Conclusions ...153

14.1 Future Works..154

References ...156

 - 6 -

PART 1: INTRODUCTION

 - 7 -

Chapter 1: Introduction

Web Applications are complex software systems providing to users access to Internet contents

and services. In the last years they are having a large diffusion due to the growing of the diffusion

of World Wide Web: nowadays the quantity of information and services available on the Internet is

very remarkable.

Consequently, the diffusion of Web Applications in various different contexts is growing more

and more, and the way business processes are carried out is changing accordingly. In the new

scenario, Web Applications are becoming the underlying engine of any e-business, including e-

commerce, e-government, service and data access providers. The complexity of the functions

provided by a Web Application has also increased since, from the simple facility of browsing

information offered by the first Web sites, a last generation Web Application offers its users a

variety of functions for manipulating data, accessing databases, and carrying out a number of

productive processes.

The increased complexity of the functions implemented by Web Applications is now achieved

with the support of several different technologies. Web Applications generally present a complex

structure consisting of heterogeneous components, including traditional and non-traditional

software, interpreted scripting languages, HTML files, databases, images and other multimedia

objects. A Web Application may include both ‘static’ and ‘dynamic’ software components. ‘Static’

components are stored in files, whereas ‘dynamic’ components are generated at run time on the

basis of the user inputs. The Web Application components may reside on distinct computers

according to a client-server or multi-tier architecture, and may be integrated by different

mechanisms that generate various levels of coupling and flow of information between the

components.

The high pressure of a very short time-to-market often forces the developers of a Web

Application to implement the code directly, using no disciplined development process, and this may

have disastrous effects on the quality and documentation of the delivered Web Application. This

situation cannot be considered different from the one occurring for traditional software produced

using no disciplined development process, and without respecting software engineering principles.

Poor quality and inadequate documentation have to be considered the main factors underlying

ineffective and expensive maintenance tasks, burdened by the impossibility of applying more

structured and documentation-based approaches.

 - 8 -

Reverse Engineering methods, techniques and tools have proved useful to support the post

delivery life-cycle activities of traditional software systems, such as maintenance, evolution, and

migration. The software community is now seriously addressing the problem of defining and

validating similar approaches for Web Applications. Reverse Engineering allows to recover and

abstract documentation from an existing Web Application, to achieve comprehension, to assess

quality factors, and so on.

1.1 Aim of the Thesis

The Reverse Engineering of Web Applications is a complex problem, due to the variety of

languages and technologies that are contemporary used to realize them. Indeed, the benefits that can

be obtained are remarkable: the presence of documentation at different abstraction levels will help

the execution of maintenance interventions, migration and reengineering processes, reducing their

costs and risks and improving their effectiveness. Moreover, the assessment of the maintainability

factor of a Web Application is an important support to decision making processes.

The main aim of this Thesis is the proposition and the description of a Reverse Engineering

approach applicable to existing Web Applications.

In the following chapters, a Reverse Engineering approach, including several methods and

techniques addressing different aims, is proposed for Web Applications. Some tools developed to

automates the specific tasks to fulfil support the approach.

In particular, the approach defines:

o a reference conceptual model for Web Applications, needed to organize information

extracted and abstracted;

o a Reverse Engineering process for Web Applications;

o a set of tools supporting the execution of the process;

Some experiments have been carried out to verify and validate the effectiveness of the

approach.

1.2 Thesis Structure

The Thesis is subdivided in four main parts.

In the first part a general background is provided. Chapter 1 reports a discussion about the

nature of the Web Applications. In Chapter 2 a taxonomy of Web Applications is reported, the most

common architectures and technologies used to implement Web Applications are synthetically

described and a definition of Web Engineering is specified.

 - 9 -

The second part of the Thesis presents some of the main reference models and methods used in

the development of Web Applications. Chapter 3 reports a survey of such main models and

methods.

The third part of the Thesis reports the description of the proposed Reverse Engineering

approach, the adopted models, the supporting tools realized and the experiments that have been

carried out.

In Chapter 4 the proposed Reverse Engineering approach called WARE (Web Application

Reverse Engineering) is outlined. This approach follows the Goals/Models/Tools paradigm and it

defines the Reverse Engineering process needed to obtain a set of views of a Web Application at

different abstraction levels. These views are represented as UML diagrams. Techniques and

algorithms needed to perform this process are described in the following chapters.

In Chapter 5 the methodology defined to cluster the components of a Web Application in

subsets realizing a specific user functionality is presented. This method is based on the analysis of

the relationships between the pages of the Web Application. A heuristic algorithm has been defined

to realize it.

Chapter 6 describes the tool called WARE. This tool has been developed to support the

approach described in chapter 4, allowing the extraction of information from the source code of

Web Applications, the clustering of Web Application components and the abstraction of UML

models. A complete list of the functionalities of WARE is reported in Chapter 6 with some

examples of the use of WARE.

Chapter 7 reports the results of the experimentation of the Reverse Engineering process,

methods and tools on a number of medium sized Web Applications. A discussion of the results is

presented, where some development techniques needed to improve the understandability of the

application are proposed.

In Chapter 8 a method to recover UML diagrams at business level of a Web Application is

defined and described. Methods and heuristic algorithms to recover UML class diagrams, use case

diagrams and sequence diagrams at business level are described.

Some methods and techniques to provide automatic support to the comprehension of Web

Applications in order to reduce the human effort required for the task are reported in chapters 9, 10

and 11. In particular the problem of assigning a concept to the artefacts recovered by Reverse

Engineering is faced and addressed.

 - 10 -

In Chapter 9, a method providing automatic support in the assignment of concepts to documents

is presented. This method is based on both Information Retrieval principles and the text format of

Web pages browsed to users. The method defines some heuristic algorithms and includes a tool

realized to support it. Results of some experiments carried out to validate the method are also

reported in this chapter.

In Chapter 10 a method supporting the identification of Interaction Design Patterns in the source

code of Web pages browsed to users is presented. The method, the reference model, the supporting

tool that have been developed and the results of some explorative experiments are reported.

In Chapter 11 a method based on clone analysis techniques with the aim to identify Web

Application components with identical or similar structure is presented. Four techniques to measure

the degree of similarity have been defined and described. The results of some explorative

experiments are also reported.

In Chapter 12 a method is presented to assess the vulnerability of Web pages with respect to

Cross Site Scripting attacks. The method, based on some secure programming rules, exploits source

code analysis to verify that those rules are actually present in the code. A case study, based on a real

world Web Application is reported and discussed.

Chapter 13 presents a maintainability model for Web Applications. The model is an adaptation

of the one proposed by Oman and Hagemeister [Oma92] for traditional software systems. New

metrics have been defined while existing metrics have been adapted to Web Applications. These

metrics can be automatically evaluated from the information recovered by the Reverse Engineering

approach described in the previous chapters. A case study reporting the value of these metrics for

some Web Applications is discussed, with the aim to compare the maintainability of those

applications.

Conclusions and future works are presented in Chapter 14.

 - 11 -

Chapter 2: Background: Web Applications and Web
Engineering

In this chapter some basic definitions are reported. In particular, a definition of Web Application

by distinguishing between Web Applications and Web Sites is provided. Moreover, the main

architectures and technologies typically used for implementing Web Application are described as

well as a definition of Web Engineering is given.

2.1 Web Applications

A Web Application is a software product designed to be executed in the World Wide Web

environment.

A Web Application can be considered as an extension of a Web Site. A Web Site is a collection

of hypertextual documents, located on a web server and accessible by an Internet user.

Unlike a Web site that simply provides its users the opportunity to read information through the

World Wide Web (WWW) window, a Web Application can be considered as a software system that

exploits the WWW infrastructure to offer its users the opportunity to modify the status of the

system and of the business it supports [Con99b].

2.1.1 A Classification

A large number of taxonomies have been proposed to classify Web Application. Tilley and

Huang [Til01] proposed an interesting taxonomy for Web Applications. According to this

taxonomy, three classes of Web Applications with increasing complexity can be distinguished.

Class 1 applications are primarily static applications implemented in HTML, and with no user-

interactivity. Class 2 applications provide client-side interaction with Dynamic HTML (DHTML)

pages, by associating script actions with user-generated events (such as mouse clicking or

keystrokes). Finally, class 3 applications contain dynamic content, and their pages may be created

on the fly, depending on the user interaction with the application. A class 3 application is

characterised by a large number of employed technologies, such as Java Server Pages (JSP), Java

Servlets, PHP, CGI, XML, ODBC, JDBC, or proprietary technologies such as Microsoft’s Active

Server Pages (ASP).

 - 12 -

2.1.2 Architecture

Several architectures and technologies have been proposed to implement and deploy Web

Applications.

Figure 2.1 shows a general architecture for Web Applications. According to this architecture, a

user interacts with a Web Browser, generating a URL request. This request is translated by the

browser in a http request and it is sent to the Web Server. Web Server parses the http request and

retrieves the code of the server page corresponding to the requested URL. The server page is sent to

the Application Server. Application Server is an active component, usually located on the same

machine of the Web Server. It interprets the code of the server page, generating as output a Built

Client Page, that is a client page generated on fly and sent as response to the client. During the

interpretation of a server page, Application Server can communicate with a Database server through

Database Interface objects, or it can request services to a third part, such as a Web Service. Web

Server sends Built Client Page to client browser, packed in an http response message. Web Browser

comprehends some active plug-ins that are able to interpret code written using a client scripting

language, such as Javascript code, Java applet bytecode, Flash code, and so on. If the Built Client

Page has scripting code, then the result of its execution is shown to the user, else the Web browser

displays directly the result of HTML rendering.

Four conceptual layers may be recognized in a Web Application:

1. Presentation layer, that is responsible of the user interface;

2. Content layer, that is responsible of the textual part of the application;

3. Application layer, that is responsible of the business logic of the application:

4. Data and Service layer, that is responsible of the data exchanges between the application

and third parties, such as databases or service providers.

Often, it is difficult to separate these layers: as an example, client scripting code and server

scripting code, too, may provide business logic. Moreover, at the same time, server pages may

contain code related to each of the four layers. These situations must be avoided, because they make

very difficult to maintain the Web Application.

 - 13 -

Figure 2.1: Thick Web Server Architecture for Web Applications

2.1.4 Technology

The general architecture presented in the previous subsection can be realized using different

components, provided by different software houses, and the code of a Web Application may be

written using different languages.

The language that is universally used to code the hypertextual content of a client page is HTML.

HTML (HyperText Markup Language) is a tagged language, defined by W3C consortium as a

specialization of SGML (Standard Generalized Markup Language). A complete specification of

HTML syntax and semantic can be found at [Html]. HTML language is used to code hypertextual

documents and to describe guidelines for its rendering. HTML syntax is very simple, but HTML

parsing isn’t an easy task because HTML interpreters are syntax tolerant: there are many non-

standard extensions to HTML. Moreover, incorrect HTML pages are rendered anywhere by

browsers.

Client pages are usually written alternating HTML code with client script code. The most

common client scripting language is Javascript, but VBScript and Jscript are sometimes used.

Javascript is a simple language, with syntax similar to Java syntax, that allows executing simple

elaborations, interacting with user interface object and sending http requests to a URL. Javascript

provides dynamic behaviour to client pages, because their behaviour depends on the script

execution, instead of the rendering of static HTML code. In particular, client script code may be

used to modify properties of HTML objects, or to instantiate new objects. This characteristic makes

Client Page
Interpretation

Request

http request
Web

Browser
Web

Server

http response

Application
Server

Server Page
Interpretation

Request
Built
Client
Page

Server
Object

Database
Interface Database

Scripting
language

interpreter

Built Client Built Client
PagePage

Client
Object

Visualisation

Server

Client

DOM
Object

Pages

Page content request

Page content response

Request

Response

Back-end
Services

Request

Response

Visualisation

Client Page
Interpretation

Request

http request
Web

Browser
Web

Server

http response

Application
Server

Server Page
Interpretation

Request
Built
Client
Page

Server
Object

Database
Interface DatabaseDatabase

Scripting
language

interpreter

Built Client Built Client
PagePage
Built Client Built Client
PagePage

Client
Object

Visualisation

Server

Client

DOM
Object

Pages

Page content request

Page content response

Request

Response

Back-end
Services

Request

Response

Visualisation

 - 14 -

Web Applications flexible, but it makes them hard to analyse, because the structure of the pages

may vary during execution. Client scripting languages can also handle user events.

Client script languages support functions and classes, but their scope is limited to the execution

of the page. Two pages (or two different instances of a page) can share a variable using cookies.

Cookies are little data structures that can contain data and information about the session of the user

that wrote this data and the domain of the Web Application that wrote the cookies. Cookie values

can be read only during execution of pages belonging to the same domain.

A large number of technologies have been adopted on the server side of Web Applications.

Examples of server scripting languages are PHP, ASP, JSP, Perl, Python, .NET languages and so

on. Each of these languages has its peculiarities, but there are some fundamental common

characteristics:

- they are page-based languages: the fundamental component of the code is the page. A

server page is a component comprehending a main body and a set of functions and classes.

A server page can generate only an output client page, that is sent to the client at the end of

the execution;

- they usually are interpreted languages. As a consequence, the scope of variables, functions

and classes is limited to the page declaring them: this is a great obstacle for object oriented

programming of Web Applications with scripting languages;

Server script languages are used in conjunction with a connection-less protocol, such as http.

Since, it couldn’t be exchange of data between different pages or different instances of the same

page. To overcome this limitation, session variables are used on the server side of Web

Applications as global variables. They can be global application variables or they can be correlated

to a specific session of a specific user. However, when a great amount of data have to be saved,

database supports are used.

2.2 Web Engineering

Web Engineering is the discipline that studies processes, methodologies and techniques related

to the Engineering of Web Applications and Sites.

Several discussions took place in the last years to establish if Web Engineering must be

considered as a separate discipline or a specialization of Software Engineering. Former Web

Applications were collections of hypertextual documents, so they weren’t like traditional software,

because presentation aspects were predominant. In this period (when scripting languages hadn’t a

great diffusion), Web Engineering was considered as a separate discipline, whereas today Web

 - 15 -

Engineering is considered as a specialization of Software Engineering: Web Engineering processes,

models and techniques are adaptations of the Software Engineering ones. A discussion about the

nature of Web Engineering can be found in [Gin01].

Web Applications have some peculiarities that influence their life cycle and differentiate them

from traditional application. An indicative list of these peculiarities could be the following:

• The main purpose of a Web Application usually consist in data storing and browsing;

• Web Applications are always interactive applications: usability is a fundamental quality

factor for them;

• Web Applications are always concurrent applications and the number of contemporary users

may vary in unpredictable way: scalability is another fundamental quality factor;

• Web Application developers are usually low-skilled people, subject to a frequent turnover;

• Many technologies doesn’t encourage separation between logic layers: often peoples with

different skills must work together (i.e. programmers and graphic artists);

• Web Applications need a continue evolution, for technological and marketing reasons, too;

• Web Applications must be developed in a very short time, due to the pressing short time-to-

market.

This, incomplete, list of factors gives an idea of the problems related to Web Application

developing. Life cycles commonly adopted for Web Applications are incremental ones, and all

phases follow an iterative developing.

In the following chapter the problem of the adoption of a model describing the structure and the

semantic of a Web Application is addressed.

 - 16 -

PART 2: MODELING WEB APPLICATIONS

 - 17 -

Chapter 3: Models describing Web Applications

The fundamental starting point to address analysis, reverse engineering, comprehension and

quality assessment of Web Applications is the definition of an appropriate reference model.

In this chapter, a survey of the models proposed to describe Web Application structure and

behaviour is proposed. Each of these models shows a Web Application from a particular point of

view. For the purposes of this Thesis, detailed models are needed. In this chapter a model that can

describe appropriately the information extracted by means of reverse engineering processes is

presented.

3.1 Web Application models

During the development of Web Applications, modelling problems have been continuously

faced. Isakowitz et al. [Isa97] proposed RMM (Relationship Management Methodology), that is a

methodology supporting the development of Web Sites. RMM is based on RMDM (Relationship

Management Data Model), that is a language to describe the application domain and the

navigational mechanisms of a Web Site.

RMDM primitives and corresponding symbols are showed in Figure 3.1. There are three

categories:

- Entity Relationship Domain Primitives, which are the primitives of Entity-Relationship model.

They are needed to describe the informational domain of the application;

- Relationship Management Data Domain Primitives. This category comprehends the slice

primitive. Slice is used to group together attributes of different entities, which is shown

together to the user;

- Access Primitives, such as Links, Grouping, Conditional Index, Conditional Guided Tour,

Conditional Indexed Guided Tour primitives. These primitives define the navigational context

of the application.

RMM defines a seven-step design process. The steps are the following:

- E-R Design, in which a model based on E-R Domain primitives is produced;

- Slice Design, in which RMDM primitives are added to the model;

- Navigational Design, in which navigational functionalities are established;

- Conversion Protocol Design, in which abstract navigational structures are converted in

pages and other real navigational structures;

 - 18 -

- User-Interface Design, in which the graphical layout of the user interfaces is designed;

- Run-Time Behaviour Design, in which dynamic interactions are designed;

- Construction and Testing, in which the application is implemented and navigational

paths are tested.

Figure 3.1: RMDM primitives

The proposed methodology is applicable only to Web Applications with navigational and

information browsing purposes. So, other models have been proposed, such as OOHDM [Ros99].

OOHDM is the acronym for Object Oriented Hypermedia Design Method. It represents the first

 - 19 -

methodology that tries to match Object Oriented design and Web Application design. This

methodology is structured in four phases:

- Conceptual Design;

- Navigational Design;

- Abstract Interface Design;

- Implementation.

During Conceptual design phase, classic object oriented models are produced, describing the

domain of the application. During Navigational Design and Abstract Interface Design phases, the

navigational view of the application is described; some specific documents and diagrams are

produced, such as

o context diagrams, which show elements needed to realize a use case,

o specification cards, which list the characteristics of an elements,

o navigational class schemas, which show the structure of the application from the point of

view of an user.

The main limitations of this model are the following:

- great emphasis is set on the description of navigational aspects with respect to elaboration

aspects;

- models and methodologies are much different from common used models and methodologies

(such as UML).

Bangio et al. ([Ban00], [Com01]) proposed WebML, an XML-based modelling language for

Web Applications. WebML is a language, used for specification of a data-intensive Web

Applications. The main objective of WebML is the conceptual separation between data model,

architectural model and implementational solutions. As a consequence of this approach, many tools

have been developed to generate customized Web Applications from WebML specifications.

According to WebML approach, a Web Site has four views:

- Structural Model, that is an entity-relationship model;

- Hypertext Model, that describes the structure of the Web Site, in terms of pages and

navigational relationships between them. This model comprehends two views:

- Composition Model, that specifies pages and contents;

- Navigation Model, that specifies navigation relationships.

- Presentation Model, that describes the layout of the pages, independently from target output

device;

 - 20 -

- Personalization Model, that specifies specialization points of customized versions of the Web

Site.

Models are specified using WebML language, that is an XML-based language, which grammar

has been established by the authors. WebML approach has been used in industrial context with

good results, but it suffers for the same limitations of OOHDM:

- non-compliance with UML specifications;

- difficulties to adapt the approach to the description of a Web Application that isn’t data

intensive.

A model describing a Web Application in a more detailed way is the one proposed by Ricca and

Tonella ([Ric01], [Ric01b]) and reported in Figure 3.2.

Figure 3.2: The model of a Web Application proposed by Ricca and Tonella

This model reports the main components of a Web Application: HTML pages, server programs

(corresponding to server pages), frames, forms (with their input fields) and the main relationships

between components, such as links, submissions, redirections and frame loading relationships.

Ricca and Tonella propose models to depict the dynamic behaviour of Web Applications, too.

 - 21 -

Figure 3.3 reports an example of an implicit state diagram while Figure 3.4 reports an explicit

state diagram.

Figure 3.3: Web Application models proposed by Ricca and Tonella: implicit state diagrams

Figure 3.4: Web Application models proposed by Ricca and Tonella: explicit state diagrams

 - 22 -

State diagrams proposed by Ricca and Tonella are similar to UML statechart diagrams. State

diagrams have nodes corresponding to the entities of the model and transitions corresponding to

relationships of the model. In the explicit diagram, an entity can be represented by more than one

node. As an example, figure 3.3 reports a node labelled D, representing the class of the pages that

can be built by server page S. Vice versa, in Figure 3.4 nodes D1, D2, D3, D4 represents a set of

different client pages that can be built by the server page S.

3.2 Conallen’s extensions to UML

Jim Conallen [Con99] proposed a more general model to describe Web Applications. He tells

that the evolution of Web Application technologies make possible to realize complex distributed

application, so that a general modelling language is needed to describe structure and behaviour of

Web Applications. So, he proposed to adopt Unified Modeling Language (UML) to describe Web

Applications, too. Classical UML extension mechanisms, such as stereotypes, tagged values,

constraints and decorators (such as icons) have been used to take into account Web Application

peculiarities.

Figure 3.5 reports an excerpt of the model proposed by Conallen. This model is more detailed

than the ones previously described, and it comprehends server and client elements, too.

Conallen’s extensions to UML yield to reduce the semantic distance between UML and Web

Applications. Conallen’s extensions are used to trace design diagrams at a detail level of a Web

Application in a UML compliant way. According to Conallen, high-level design phases of a Web

Application are similar to those of a traditional application, and the same UML models can be used.

Class diagrams can describe static structural views of the application. In a class diagram server

pages and static client pages are depicted as static classes (classes with only one possible object).

These classes are characterized by stereotypes <<Server page>> and <<Client page>> or by an

appropriate icon. Local variables of these pages are depicted as private attributes of the respective

classes, while functions are depicted as private methods. These classes can have neither protected,

nor public attributes nor method.

Server pages can generate as output a client page that is sent to the client. This page isn’t a static

object: it isn’t stored anywhere. These pages are depicted as classes with the stereotype <<Built

Client Pages>>. They are specializations of client pages and it can have attributes and methods in

the same way of static client pages. Another fundamental stereotyped class is the Form. A Form is a

structure collecting input data. It is aggregated to a client page.

 - 23 -

Figure 3.5: Conallen’s model

Relationships between stereotyped classes are also stereotyped. Conallen’s model lists the

following categories of relationships, which are depicted as generic association:

- <<builds>> relationships, between a server page class and the class representing its built

client pages;

- <<link>> relationships, between a client page and another page;

- <<submit>> relationships, between a form and the server page to which data are sent;

- <<include>> relationships, between two pages or a page and a library module.

Conallen’s extensions can be used to depict the static architecture of the Web Applications (by

means of UML class diagrams) but also the dynamic behaviour (by means of UML sequence,

collaboration, activity, statechart diagrams).

Adoption of Conallen’s model presents the following advantages:

- Conallen’s model can describe Web Sites and Web Applications, too;

- Conallen’s model can be also useful during detail design phase;

- Conallen’s model is compliant with UML.

 - 24 -

Conallen’s model can be furtherly extended. In the following section, an extended model is

presented, allowing the description of Web Application at a greater granularity level.

3.3 The proposed model

In this section a model extending the Conallen’s model is described. This is the model that has

been adopted in the Reverse Engineering approach described in this Thesis.

UML class diagram can be used to model the main entities of a Web Application and the

relationships among them: each entity, such as a Page or a Page inner entity (like Forms or Scripts

included in the Page), will correspond to a class, while associations will describe the relationships

among Pages (or Page components); composition and aggregation relations are used to describe the

inclusion of an entity in another entity.

Figure 3.6 shows a UML class diagram that is assumed as the reference conceptual model of a

Web Application. In the diagram, each class represents one of the entities described above, while

the associations have been given a name describing the semantics of the association itself. As to the

composition and aggregation relationships, their multiplicity is always one-to-many, except for

those cases where the multiplicity is explicitly shown in the Figure.

The main entities of a Web Application are the Web Pages, that can be distinguished as Server

Pages, i.e. pages that are deployed on the Web server, and Client Pages, i.e., pages that a Web

server sends back in answer to a client request. As to the Client Pages, they can be classified as

Static Pages, if their content is fixed and stored in a permanent way, or Client Built Pages, if their

content varies over time and is generated on-the-fly by a Server Page. A Client Page is composed of

HTML Tags. A Client Page may include a Frameset, composed of one or more Frames, and in each

Frame a different Web Page can be loaded. Client Pages may comprise finer grained items

implementing some processing action, such as Client Scripts. A Client Page may also include other

Web Objects such as Java Applets, Images and Multimedia Objects (like sounds or movies), Flash

Objects, and others. A Client Script may include some Client Modules. Both Client Scripts and

Client Modules may comprise Client Functions, or Client Classes. A Client Script may redirect the

elaboration to another Web Page. In addition, a Client Page may be linked to another Web Page,

through a hypertextual link to the Web Page URL: a link between a Client Page and a Web Page

may be characterised by any Parameter that the Client Page may provide to the Web Page. A Client

Page may also be associated with any Downloadable File, or it may include any Form, composed of

different types of Field (such as select, button, text-area fields and others). Forms are used to collect

user input and to submit the input to the Server Page, that is responsible for elaborating it. A Server

 - 25 -

Page may be composed of any Server Script (that may include any Server Class or Server Function)

implementing some processing action, which may either redirect the request to another Web Page,

or dynamically build a Client Built Page providing the result of an elaboration. Finally, a Server

Page may include other Server Pages, and may be associated with other Interface Objects allowing

connection of the Web Application to a DBMS, a File Server, a Mail server, or other systems.

Figure 3.6: The reference model of a Web Application

This model differs from the one proposed by Conallen because it models a Web Application at a

more detailed degree of granularity, allowing those application items responsible for functional

behaviour to be better highlighted. Moreover, this representation explicitly shows the difference

between static client pages and dynamically built client pages, as well as the difference between

entities that are responsible for any processing (such as Client or Server scripts and functions) and

classes of ‘passive’ objects (such as images, sounds, movies). Finally, in this model, the presence of

interface objects (e.g., objects that interface the Web Application with a DBMS or other external

systems) is explicitly represented, too.

Further details about this model are reported in [Dil04]. Specializations of this model are

presented in the next chapters, supporting some specific Reverse Engineering methodologies.

Java

Multimedi Flash

Paramete

DB Mail
Interfac

Server File
Interfac

Server
Functio

Server

Interface
Object

Fram

Server

Fiel

Server

11

11

Client
Functio

Client

Client
Modul

**

Web

Downloadable

Framese

Web

1

*

1

*

* ** *

For 11

* *

**

**

HTML

{incomplete}

{incomplete}

Static Page

Java Applet

Multimedia
Flash Object

Parameter

DB Interface
Mail

Interface

Server File
Interface

Server
Function

Server Class

Interface

Objects

Built Client
Page

Frame

Server Script

Field

Server Page
* Include

*
11

*

11

Build

Client
Function

Client Class

Client
Module

**
Include

*

Web Object

Downloadable File

Frameset

1..*

Web Page

1

*

1

*

Load_In_Frame

* ** *Redirect

Form
11Submit

Client Script
1..* * * Include

**

* Redirect

Client Page

**

download
linkHTML Tag

{incomplete}

{incomplete}
1..*

*

*

* *

 - 26 -

PART 3: REVERSE ENGINEERING WEB APPLICATIONS

 - 27 -

Chapter 4: The WARE approach

In this chapter a methodology for Reverse Engineering Web Applications based on the

Goals/Models/Tools paradigm is presented. This methodology is called WARE (Web Application

Reverse Engineering). The Reverse Engineering process needed to obtain a set of views of a Web

Application is outlined in this chapter. The views are cast into UML diagrams. A survey of the main

approaches in literature to the reverse engineering of Web Applications is presented. The

methodologies adopted to realize the tasks of the process and the tool supporting them are

described in the next chapters.

4.1 Introduction

The Reverse Engineering is a fundamental activity needed to improve the quality of a software

system. Reverse Engineering is a set of theories, methodologies and techniques allowing the

reconstruction of the documentation of an existing software system.

As declared in Chapter 1, the main aim of this Ph.D. Thesis is the proposition and the

description of Reverse Engineering approaches applicable to existing Web Application.

In this chapter and in the following the problem of the Reverse Engineering of an existing Web

Application is faced and a general Reverse Engineering approach, named WARE (Web

Applications Reverse Engineering) is defined, described and the results of its experimentation are

reported and discussed.

4.2 Related works

In this section reverse engineering techniques and tools existing in literature are briefly listed.

They allow several kinds of information to be retrieved from the code of an existing Web

Application, including information about its structural organization, behaviour, and quality factors.

This information is usable for supporting various maintenance tasks: of course, depending on the

specific task to be accomplished, the maintainer will be in charge of selecting the most suitable

analysis tool and carrying out the necessary tuning activity that allows the selected tool to be

correctly integrated in the maintenance process to be carried out.

The problem of analysing existing Web sites and Web Applications with the aims of

maintaining, comprehending, testing them or assessing their quality has been addressed in some

recent papers. New analysis approaches and tools, as well as adaptations of existing ones to the field

of Web Applications, have been proposed. For example, Hassan and Holt [Has01] describe the

 - 28 -

modifications made to the Portable Bookshelf Environment (PSB), originally designed to support

architectural recovery of large traditional applications, to make it suitable for the architectural

recovery of a Web Application. Analogously, Martin et al. [Mar01] propose reusing the software

engineering tool Rigi [Mul88] as a means of analysing and visualising the structure of Web

Applications.

Other techniques and tools have been defined ad hoc for managing existing Web Applications.

Chung and Lee [Chu01] propose an approach for reverse engineering Web sites and adopt

Conallen’s UML extensions to describe their architecture. According to their approach, each page

of the Web site is associated with a component in the component diagram, while the Web site

directory structure is directly mapped into package diagrams. Ricca and Tonella ([Ric00], [Ric01])

present the ReWeb tool to perform several traditional source code analyses of Web sites: they use

the graphical representation described in the previous chapter and and introduce the idea of pattern

recovery over this representation. The dominance and reachability relationships are used to analyse

the graphs, in order to support the maintenance and evolution of the Web sites. Schwabe et al.

[Sch01] define a framework for reusing the design of a Web Application, by separating application

behaviour concerns from navigational modelling and interface design. Boldyreff et al. [Bol01]

propose a system that exploits traditional reverse engineering techniques to extract duplicated

content and style from Web sites, in order to restructure them and improve their maintainability.

Vanderdonckt et al. [Van01] describe the VAQUISTA system that allows the presentation model of

a Web page to be reverse engineered in order to migrate it to another environment.

Other approaches address Web Application analysis with the aim of assessing or improving the

quality of these applications. An analysis approach that allows the test model of a Web Application

to be retrieved from its code and the functional testing activity to be carried out is proposed in

[Dil02b]. Kirchner [Kir02] tackles the topic of accessibility of Web sites to people with disabilities,

and presents a review of some tools available for checking Web pages for accessibility. Tonella et

al. [Ton02] propose techniques and algorithms supporting the restructuring of multilingual Web

sites that can be used to produce maintainable and consistent multilingual Web sites. Paganelli et al.

[Pag02] describe the TERESA tool, that produces a task-oriented model of a Web Application by

source code static analysis, where each task represents single page functions triggered by user

requests. The resulting model is suitable for assessing Web site usability, or for tracing the profile

of the Web site users.

 - 29 -

4.3 Applying the Goals/Models/Tools paradigm

A reverse engineering process is usually run to extract and abstract information and documents

from existing software, and to integrate these documents and information with human knowledge

and experience that cannot be automatically reconstructed from software.

According to the Goals/Models/Tools (GMT) paradigm described in [Ben89], [Ben92], a

reverse engineering process is characterised by goals, models, and tools. Goals focus on the reasons

for the reverse engineering and they help to define a set of views of the applications to be reverse

engineered. Models provide possible representations of the information to be extracted from the

code, while Tools include techniques and technologies aiming to support the information recovery

process.

The Goals/Models/Tools has been adopted to define the reverse engineering process needed to

analyse existing Web Applications. In this section the concepts of Goals, Models and Tools are

specified for the reverse engineering of Web Applications.

4.3.1 Goals

In the field of Web Applications, possible goals of a reverse engineering process include

supporting maintenance of undocumented or poorly documented applications by extracting from

their code the information and documents needed to plan and design the maintenance intervention

correctly. Reverse engineering processes may ease the task of comprehending an existing

application, providing useful insights into its architecture, low-level design, or the final behaviour

offered to its users. Moreover, a reverse engineering process may aid assessment of the

characteristics of an existing application, in order to be able to evaluate its quality attributes,

including reliability, security, or maintainability [Off02].

4.3.2 Models

The choice of the information to be extracted from the code and the models to be reconstructed

will vary according to the specific goal to be achieved. In the previous chapter several models

proposed in the literature for representing a Web Application were briefly discussed and a specific

model, extending the Conallen’s model, were specified.

4.3.3 Tools

The recovery of information from an existing Web Application and the production of models

documenting its relevant features cannot be effectively accomplished without the support of suitable

 - 30 -

techniques and Tools that automate, or partially automate, the Web Application analysis. However,

the heterogeneous and dynamic nature of components making up the application, and the lack of

effective mechanisms for implementing the basic software engineering principles in Web

Applications, complicate this analysis and make it necessary to address specific methodological and

technological problems.

More precisely, heterogeneous software components developed with different technologies and

coding languages require techniques and tools implementing multi-language analysis to be used.

The existence of dynamic software components in a Web Application, such as pages created at run

time depending on user input, will impose the application of dynamic analysis techniques, besides

static analysis of the code, in order to obtain more precise information about the Web Application

behaviour. In addition, the absence of effective mechanisms for implementing the software

engineering principles of modularity, encapsulation, and separation of concerns, will make the use

of suitable analysis approaches, such as clustering (cfr. chapter 6), necessary in order to localise

more cohesive parts in the Web Application code.

According to the GMT paradigm, a reference approach for defining Web Application reverse

engineering processes will prescribe that as a preliminary step, the goals of the process be precisely

defined and hence the software views allowing these goals to be achieved be identified. After

accomplishing this step, the software models representing the required views of the application have

to be defined, and the techniques and tools needed for instantiating these models are selected or

defined ex novo. Finally, on the basis of the models and tools identified, the sequence of activities

composing the reverse engineering process, their input, output and responsibilities are precisely set

out.

4.4 The WARE’s Reverse Engineering process

In this section, an original reverse engineering process for Web Applications is described. This

approach has been called WARE (Web Application Reverse Engineering). This approach has also

been descripted in [Dil02] and [Dil04].

In the WARE approach, the GMT paradigm has been used to specify a reverse engineering

process aiming to support the comprehension and maintenance of an existing, undocumented Web

Application. In this case, the Goal of the process consisted of retrieving, from the source code of the

Web Application, all kinds of information that could then enable the maintainers to accomplish a

maintenance task more effectively. This information included the specification of all functional

 - 31 -

requirements implemented by the application (e.g., its behaviour), a description of the organization

of the application in terms of its relevant entities (such as Web pages, Client or Server scripts,

Forms in client pages, and other Web objects) and of their relationships and, moreover, an explicit

representation of the traceability relationship that enables simplified localisation of the set of

software entities that collaborate to implement the functional requirements of the application. The

information extracted are those presented in the model described in the previous chapter.

After defining the Goal, software models offering a suitable representation of the required

information had to be selected. As to the behaviour of the Web Application, UML Use Case

diagrams were chosen to specify the functional requirements in terms of use cases and actors. As to

the description of the organisation of the relevant entities of the Web Application, UML Class

Diagrams using Conallen’s extensions were adopted for representing it: in such Class Diagrams,

different types of Web pages and Web page entities (including scripts, forms, applets, etc.) can be

distinguished by means of stereotypes, and syntactic or semantic relationships among these items

can be represented by UML relationships (i.e., association, aggregation, composition and

specialisation relationships).

In addition, UML Sequence Diagrams were adopted to document the dynamic interactions

between Web Application items responsible for implementing the functional requirements of the

application. Each Sequence Diagram has to be associated with a specific use case, and a traceability

relationship is deduced between the use case and the Web Application items involved in the

Sequence Diagram.

In order to complete the reverse engineering process definition, techniques and tools able to

support the extraction and abstraction of the information required for reconstructing the selected

models had to be identified. Techniques of static and dynamic analysis of the source code were

taken into account. Finally, the specifications of the tools required to support these analyses could

be defined.

The Reverse Engineering process implementing the sequence of activities and tasks necessary to

obtain the selected models was defined accordingly. The process includes four steps: the first two

steps are devoted to Static Analysis and Dynamic Analysis of the Web Application, respectively,

the third one focuses on the Clustering of the Web Application, while the last one executes the

Abstraction of UML diagrams on the basis of the information retrieved in the previous steps. The

process is supported by a tool, named the tool WARE, that partially automates the execution of

most of the process tasks: this tool is described in Chapter 6. Figure 4.1 illustrates the process,

while additional details about each step of the process are provided below.

 - 32 -

Figure 4.1: The Reverse Engineering process in the WARE approach

4.4.1 Static Analysis

In the first step of the process, the Web Application source code is statically analysed in order to

instantiate the reference model of a Web Application, described in the previous section. In this

phase, all the information necessary to obtain the inventory of the Web Application entities, and the

static relations between them, is extracted from the code. According to the reference model adopted,

Web Application pages and inner page entities, such as forms, scripts, and other Web objects, are

identified, as well as the statements producing link, submit, redirect, build, and other relationships

are identified and localised in the code.

This kind of analysis can be carried out with the support of multi-language code parsers, that

statically analyse the code of the application, including HTML files, and scripting language sources

(such as Vbscript, Javascript, ASP and PHP source code), and record the results in a suitable

intermediate representation format simplifying further processing. Intermediate representation

forms may be implemented by using the XML eXtensible Markup Language, or the GXL Graph

Exchange Language, which enable the exchange of information derived from programs, which are

conveniently represented in a graph, or by using any tagged syntax format designed to represent the

necessary information efficiently.

4.4.2 Dynamic Analysis

In a dynamic Web Application, the set of entities making up the application can be significantly

modified at run-time, thanks to the facility offered by script blocks, of producing new code that is

enclosed in the resulting client pages, or exploiting the possibility of producing dynamic results

offered by active Web objects (such as Java applets or ActiveX objects). Therefore, in the second

step of the process, dynamic analysis is executed with the aim of recovering information about the

Static
Analysis

Dynamic
Analysis

Clustering UML
Abstractions

WA

Source
Code

WA in Execution Dynamic Relations

Class diagrams

Use case diagrams

Sequence diagrams

Static
Analysis

Dynamic
Analysis

Clustering UML
Abstractions

WA

Source
Code

WA Components and Direct Relations

Class diagrams

Use case diagrams

Sequence diagrams

Static
Analysis

Dynamic
Analysis

Clustering UML
Abstractions

WA

Source
Code

WA in Execution Dynamic Relations

Class diagrams

Use case diagrams

Sequence diagrams

Static
Analysis

Dynamic
Analysis

Clustering UML
Abstractions

WA

Source
Code

WA Components and Direct Relations

Class diagrams

Use case diagrams

Sequence diagrams

 - 33 -

Web Application that is not obtainable by static analysis of the code. For instance, dynamic analysis

is necessary to retrieve the actual content of dynamically built client pages (cfr. the class Client

Built Page in Figure 1), since this content can be precisely defined only by executing the code. In

addition, dynamic analysis may be indispensable for deducing links between pages, such as the ones

defined at run-time by script blocks included in server pages, or by active Web objects.

The dynamic analysis phase is based on, and uses, static analysis results. The Web Application

is executed and dynamic interactions among the entities described in the class diagram are recorded.

Dynamic analysis is performed by observing the execution of the Web Application, and tracing any

observed event or action to the corresponding source code instructions (and, consequently, to the

classes represented in the class diagram).

Analysis of the execution is a task that can be carried out either automatically, on the basis of

the application code, or manually, by observing the page execution by a browser and recording the

observed events (i.e., results of an execution including visualization of pages/frames/forms,

submission of forms, processing of data, a link traversal, or a database query, etc.) All the events

must be traced to the code and all the entities responsible for these events must be identified.

The dynamically recovered information can also be used to verify, validate and, if necessary,

complete the information obtained by static analysis.

4.4.3 Automatic Clustering of the Web Application

In the third step of the Reverse Engineering process the problem to group together set of

components collaborating to the realization of a functionality of the Web Application is addressed.

An automatic algorithm partitioning the components of the Web Application in a set of clusters,

on the basis of the information extracted during the first two steps of the Reverse Engineering

process, has been defined and is described in the following chapter.

The obtained clusters are analysed by a human expert in order to identify the functionalities that

they realize. This human intensive task can be partially automated. Methodology to recover,

automatically, valuable information supporting this task is described in chapter 9, 10 and 11.

4.4.4 Abstraction of UML diagrams

In the final step of this reverse engineering process, UML diagrams are abstracted on the basis

of the information retrieved in the previous steps.

 - 34 -

The Class Diagram depicting the structure of the Web Application is obtained by analysing the

information about the Web Application entities and relationships retrieved by static and dynamic

analysis. This Class diagram is drawn as an instantiation of the conceptual model presented in the

previous chapter and depicted in Figure 3.6, where each Web page and each inner page entity are

represented as a class, with a stereotype describing the type of entity (e.g., static client pages will

correspond to the stereotype <<Static Page>> classes, while the name of the class will correspond

to the name of the page in the application). Relationships among these stereotype classes are

represented, with names conforming to the ones presented in the previous chapter (such as link,

build, redirect, include, etc.). Moreover, according to Conallen’s notation, each class is

characterised by attributes corresponding to the variables it references, and by methods

corresponding to the functions and scripts included in it. Examples of the diagram recovered can be

found in Chapter 6.

Sequence and collaboration diagram are also abstracted, on the basis of the static information

extracted and of the information recovered by observing the execution of the application.

In Chapter 7 some examples of diagrams that have been abstracted with the described process

are reported.

A more complete comprehension of the Web Applications needs the recover of UML diagrams

at a greater level of abstraction, such as diagrams at business level (class diagrams, sequence

diagrams and use case diagrams). These diagrams are also abstracted by means of methodologies

and processes that are described in Chapter 8.

 - 35 -

Chapter 5: Web Application Clustering

In this chapter a method to cluster the components of a Web Application in subsets realizing a

specific functionality of the application is presented. This method is based on the analysis of the

connections between the components of the pages. A heuristic algorithm that is described in this

chapter supports the method. This algorithm has been implemented as part of the tool WARE. An

example of the application of the algorithm is also presented in this chapter.

5.1 Introduction

The abstractions obtained with the Reverse Engineering approach described in the Chapter 4 are

structural representations that are very useful as detailed views of the Web Application under

analysis. To address global maintenance intervention, such as reengineering interventions or

migrations, more abstract representations are needed. Further elaborations of the extracted

information are needed to recover these diagrams.

In this chapter a method to group together components collaborating to the realization of the

same functionality of the Web Application is proposed and described. In the following chapters the

obtained partition of the components of the Web Application in clusters is used to abstract business

level diagrams (cfr. Chapter 8). The problem of the identification of the functionality realized by a

cluster needs human intervention to be solved but it can be supported by the automatic

methodologies presented in Chapters 9, 10 and 11.

Clustering approaches for factoring Web Applications have been suggested in the literature.

Some of them collapse the graphical representations of an application around notable graph

components, such as dominators, strongly connected components, and shortest paths [Ric01]. Other

approaches exploit the directory structure of the application to recover logically related components

[Mar01].

A rich literature on software clustering has been produced in the past decades in the field of

traditional software systems ([Bas85], [Sch91], [Man98], [Man99], [Bal01], [Tze00a], [Tze00b]). A

valuable overview of cluster analysis and system remodularization is presented by Wiggerts in

[Wig97]. However, explorative studies, aiming to assess the portability of the proposed approaches

towards the web applications area, have not been conducted or described yet. Explorative studies

should preliminarily address the following issues: the choice of a model describing the web

application components adequately, the definition of a criterion establishing when a pair of

 - 36 -

components should be clustered into a cohesive unit, and the definition of a clustering algorithm to

be applied.

5.2 Background on clustering approaches for software systems

A number of clustering approaches exploit source code analysis techniques, trying to cluster

together files conceptually related. Anquetil et al. propose a different approach that exploits file

names analysis to extract concepts about an existing application [Anq98]. This approach is

grounded on the hypothesis that file names encapsulate domain knowledge, but this may not happen

with software applications, or web applications, whose source code is generated by automatic tools,

or by inexperienced developers that don’t follow any coherent convention on file names.

Other clustering criteria are based on the assumption that logically related components are

localized in the same file system directories, and analyse the physical paths of the files to discover

cohesive clusters. The effectiveness of this method depends on the approach the developer used for

distributing the application files in the file system. Unfortunately, web applications are not often

planned with a directory organization that mirrors the functional one. Besides, many tools

supporting web applications production (e.g.: Microsoft Front Page or Macromedia Dreamweaver)

encourage the designer to structure it according to the nature of the files, or to their access

properties (for instance, Front Page always creates a directory “images” and a directory “_private”).

More promising clustering approaches seem to be those based on the analysis of graphs

representing some kind of dependence between the application components. Some approaches have

proven useful for comprehending or factoring traditional software systems, but a tailoring activity is

needed in order to make them suitable for comprehending web applications. For instance, some

approaches need to be applied to acyclic graphs (cfr. the approaches based on the dominance

relationships [Hec77], [Cim95]), while the graph modelling the interconnections between web

application pages is often a strongly connected graph. To make the graph acyclic, all the backward

links due to hypertextual references from a page to the home page, or any index page, should be

identified and removed from the graph. This may be an expensive and difficult task, since it

requires analysing the semantic of every hypertextual link of the application.

A “mixed” clustering approach is that proposed in [Tze00b], which combines both pattern-

driven techniques based on the identification of library modules and omnipresent modules, and an

incremental clustering technique, named Orphan Adoption, for assigning the non-clustered files to

some sub-system. Of course, since the pattern-driven approach focuses on common structures that

frequently appear in manual decomposition of industrial software system, it should be adapted

according to the common structures of web applications.

 - 37 -

Finally, a heuristic method and a tool that treats clustering as an optimisation problem are

proposed in [Man98], [Man99]. The method exploits a global measure of quality of a clustering.

The space of possible partitions of a graph is explored (using genetic algorithms, or local optimum

search algorithms) looking for the clustering that maximizes the quality measure.

The method has been defined with respect to a dependence graph of a traditional software

application that models source code dependencies among the application files. This approach may

be ported in the field of web applications, provided that an adequate model of the dependencies

among Web Application components is defined.

5.3. A Clustering Methodology for Web Applications

The goal of the proposed clustering method is to group software components of a Web

Application into meaningful (highly cohesive) and independent (loosely coupled) clusters.

According to Anquetil et al. [Anq99], three issues must be considered to do clustering. The first

issue is to build a model in which the components to be clustered are adequately described. The

second one consists of defining when a set of components should be clustered into a cohesive unit,

and the third issue consists of selecting the clustering algorithm to be applied.

In the approach that is proposed, as far as the description of the components is concerned, the

reference Web Application model is the one described in section 3.3. As to the second choice, the

coupling between components is quantified on the basis of the direct relationships between them.

The more links between components, the stronger their coupling. Besides, for a finer tuning, a

strategy has been established to weight the links, assuming that the coupling depends on the type of

the link too.

Finally, the third choice is that of a clustering algorithm. There are many different clustering

algorithms in the literature [Wig97]. Some of them have been exploited in the field of software

remodularization [Sch91, Bas85], to support reverse engineering [Mul88], [Won94] or program

comprehension [Tze00a, Tze00b]. A possible taxonomy distinguishes between hierarchical and

non-hierarchical ones. Anquetil et al. [Anq99] experimented with several clustering algorithms, and

their results show that hierarchical clustering provides as good results as other ones. A hierarchical

clustering has been adopted in this approach, since it can be used to obtain different partitioning of a

system at different levels of abstraction.

 - 38 -

5.3.1 Web Application Connection Graph

The model of a Web Application provided in Chapter 3 can be analysed at a coarser degree of

granularity, such as that of the web pages, or at a finer one, such as that of the inner components of

the web pages.

The clustering approach proposed in this section considers the following components and

relationships of a Web Application: components include web pages, server pages, client pages,

framed client pages, client modules, and web objects (such as script blocks, images, applets, etc.).

Relationships comprise link, submit, redirect, build, load_in_frames, and include ones. The model

focusing these components and their relationships is provided in Figure 5.1 as a UML class

diagram.

Each Web Application can be represented by an instance of this conceptual model, that is called

the Web Application Connection Graph WAG = (N, E), where N is the set of the Web Application

components and E is the set of edges among components. Each graph can be obtained with the

support of reverse engineering tools, such as the WARE tool described in the previous chapter, that

extract the needed information from the source code of the application.

5.3.2 Defining the coupling between Web Application components

The choice of a metric for expressing the degree of coupling of a pair of components is strategic

for the success of a clustering algorithm. The proposed definition of coupling takes into account

some intuitive criteria deriving from the knowledge and expertise in Web Application development

and maintenance.

This expertise suggests that both the typology and the topology of the connections need to be

taken into account for expressing the degree of coupling between components. Therefore, it is

assumed that the considered relationships produce a different coupling between the connected

components. In particular, some specific assumptions concerning build, redirect, link, and submit

relationships are made. A build relationship between a server page and the built client page it

produces is assumed to produce the stronger degree of coupling among the Web Application

components, since the existence of the client page depends on the server page. A redirect

relationship between two pages produces a higher degree of coupling than a link relationship, since

a ‘redirect’ statement usually implicates the execution of an elaboration, by moving the control-flow

from the former to the latter page. Besides, a submit relationship between a client page and a server

page produces a higher degree of coupling than a link relationship, since a ‘submit’ statement

 - 39 -

usually implicates the request for an elaboration and a data-flow between the pages. Moreover, due

to the data-flow, a submit relationship are associated with a higher coupling than a redirect one.

Figure 5.1: The focused Web Application conceptual model

These hypotheses on the connection typologies are taken into account by assigning link, redirect

and submit relationships with the positive weights wL, wR and wS respectively, and by assuming the

following relations:

wRL = wR / wL

wSL = wS / wL

1< wRL < wSL

The ratios wRL and wSL are empirically assigned on the basis of the expertise. For instance, in

the experiments that have been carried out, good results have been obtained with wL=1, wRL =2.4

and wSL= 3.

The degree of coupling CA,B of two components, namely A and B, is therefore expressed by the

following metric:

CA,B= CAB + CBA

Client Page
with Frame

Client Module

Web Object

Web Page
0..n

0..n
0..n redirect

0..n
0..n

0..n

0..n

0..n

Load in Frame

Client Page

0..n0..n include

0..n0..n

0..n

0..n

0..n

0..n

link

Server Page
0..10..1 0..10..1 build

0..n0..n 0..n0..n

submit

0..n

0..n

0..n

include

0..n

 - 40 -

where CAB is a measure of the coupling produced by edges from A to B, and vice-versa CBA is a

measure of the coupling produced by edges from B to A.

The simplest way to measure CAB is that of counting the weighted edges outgoing from A and

going into B and, analogously, the simplest way to measure CBA is of counting the weighted edges

outgoing from B and reaching A. However, the coupling between the nodes A and B should be

considered intuitively stronger when A uniquely reaches the node B (or B is uniquely reached from

A), rather than when A reaches both B and other nodes (or B is reached both from A and from other

nodes). In order to take into account these different topologies differently, an additional weighting

strategy is adopted, assigning a weight wx
OUT to exiting edges, and a weight wx

IN to incoming edges.

The wx
OUT (assigned with each edge of type x exiting from the node) is defined according to the

fan-out of that node, while the wx
IN (assigned with each edge of type x coming into the node) is

defined according to the fan-in1 of the node.

This strategy assumes that each non-terminal node has a constant Outgoing Connection

Potential set to 1. Analogously, each node with incoming edges has a constant Incoming

Connection Potential (set to 1). Outgoing Potential (Incoming Potential) is distributed among

outgoing (incoming) edges proportionally to the fan-out (fan-in) of the node, and proportionally to

the edge weights wL, wR and wS.

Given a node A, the weights wLINK
OUT(A) of each link edge, wSUBMIT

OUT (A) of each submit

edge, and wREDIRECT
OUT(A) of each redirect edge exiting from A can be obtained by solving the

linear system shown below where NLINK (A) is the number of connections of link type outgoing the

node, NSUBMIT(A) is the number of connections of submit type outgoing the node, and NREDIRECT (A)

is the number of connections of redirect type outgoing the node.

1 Fan-in of a node is the number of edges entering the node, and Fan-out of a node is the number of edges leaving

the node.
















=

=

=⋅+⋅+⋅

RLOUT
LINK

OUT
REDIRECT

SLOUT
LINK

OUT
SUBMIT

OUT
REDIRECTREDIRECT

OUT
SUBMITSUBMIT

OUT
LINKLINK

w
Aw

Aw

w
Aw
Aw

AwANAwANAwAN

)(
)(

)(
)(

1)()()()()()(

 - 41 -

The weights wLINK
IN (B) of each link edge, wSUBMIT

IN (B) of each submit edge, and wREDIRECT
IN

(B) of each redirect edge coming into a given node B can be obtained by solving a similar linear

system.

Finally, the degree of coupling CA,B of two components are expressed as follows:

CA,B= CAB + CBA= pA B* pB A+ pB A* pA B

The first product pA B* pB A is an indicator of the cumulative strength of the connections from

A to B, while the second one is an indicator of the cumulative strength of the connections from B to

A. In general, given two nodes, namely X and Y, the term pX Y is an indicator of the strength of the

interconnections due to weighted outgoing edges from X to Y, while pY X indicates the strength of

the interconnections due to weighted incoming edges reaching Y from X.

The term pX Y is expressed as follows:

)()(

)()()()(

XwYXN

XwYXNXwYXNp
OUT
REDIRECTREDIRECT

OUT
SUBMITSUBMIT

OUT
LINKLINKYX

⋅→

+⋅→+⋅→=→

where NLINK (X→Y), NSUBMIT (X→Y) and NREDIRECT(X→Y) are the number of connections of link,

submit and redirect type from X to Y, respectively.

Analogously, the term pB A is expressed as the sum of weighted incoming edges reaching B

from A.

If the value of the product pA B* pB A is one, all edges outgoing from A reach B, and there is no

edge going into B that does not come from A. If the symmetrical condition for the product pB A*

pA B is also true, the degree of coupling CA,B will assume the maximum value, that is equal to two.

The minimum value of CA,B is zero, when the nodes are not directly connected.

5.3.3 The clustering algorithm

Agglomerative hierarchical clustering algorithms start from the individual items, gather them

into small clusters, which are in turn gathered into larger clusters up to one final cluster containing

everything. The result is a hierarchy of clusters.

 - 42 -

The proposed hierarchical algorithm is iterative, starts from a clustering with n clusters, each

one containing a single Web Application component, and produces new clusters based on four

clustering rules:

• R1: the cluster containing a built client page is merged with the cluster containing the server

page building the former;

• R2: if and only if all the pages referenced by the frame tags of a client page with frame belong to

the same cluster, the cluster including the latter page is merged with the former cluster;

• R3: if and only if all the pages including a client module or a server page belong to the same

cluster, the cluster including the former pages is merged with the latter cluster;

• R4: the pair of clusters whose coupling value is the maximum one is gathered into a new cluster.

The algorithm applies to the connection graph WAG=(N,E) of a web application. The

description of the algorithm is provided in Fig. 5.2, where n is the cardinality of the node set N, c

indicates a generic cluster in a given clustering, and x indicates any of link, redirect, and submit

relationships.
BEGIN with n clusters each containing one Web Application component;

DEFINE the wL, wRL and wSL values;

FOR EACH cluster containing a built client page component, APPLY rule R1;

WHILE (there is at least a couple of connected clusters) DO

 FOR EACH cluster containing a client page with frame component, APPLY rule R2;

 FOR EACH cluster containing a client module component, APPLY rule R3;

 FOR EACH cluster c, and for each x, COMPUTE wxOUT (c) and wxIN (c);

 FOR EACH pair of clusters, COMPUTE the couplings between them;

 APPLY rule R4;

OD

Figure 5.2: The clustering algorithm

This algorithm results in a hierarchy of clustering, each one containing a set of clusters.

However, in order to obtain a partition of the application components rather than a hierarchy, the

hierarchy can be pruned at an appropriate height and considering only the upper clusters. The

choice of the appropriate cut-height can be based on specific quality metrics. Possible metrics are

 - 43 -

those expressing the quality of a given clustering. Of course, the quality of a clustering is as good as

it supports the comprehension of the web application.

According to [Man98], [Man99], a good clustering includes clusters with high intra-

connectivity and low inter-connectivity. The intra-connectivity expresses the degree of cohesion

among entities of a web application, and the inter-connectivity can be interpreted as a coupling

measure among entities of a web application. Therefore, the Quality of a Clustering metric QoC is

introduced, that can be expressed as the difference between IntraConnectivity and InterConnectivity

of a clustering:

QoC= IntraConnectivity – InterConnectivity.

where:

In these expressions, NC is the number of clusters in the considered clustering configuration,

p0
i j is the pi j between two generic nodes i and j in the original Connection Graph of the web

application, CLUSTERk is the k-th cluster in the considered clustering, EOUT0
i is the number of

edges leaving the i-th node in the original Connection Graph of the web application, Card(x) is the

cardinality of the x-th cluster of the considered clustering.

The IntraConnectivity is a weighted mean of the cluster inner edges. Its values vary between 0

(when no cluster has got inner edges) and 1 (all clusters inner nodes are completely connected). The

InterConnectivity is a weighted mean of the edges among clusters. Its values vary between 0

(clusters not connected by edges at all) and 1 (every node in the clusters is connected to every other

node from the other clusters).

The QoC of a given clustering assumes values ranging from –1 to +1. The minimum value is

obtained with a clustering having each cluster with a single node and inter-connected with all the














=

>
⋅⋅

⋅

−⋅
=

−⋅

⋅

=

∑
∑ ∑

∑
∑

≠
∈

∈ ∈
→

>
∈

∈
→

 0 if 0

0 if
)()(2

2
)1(

1

)1)(()(

1

,

00

1)(

,

00

NC

NC
kCardhCard

EOUTp

NCNC
ctivityInterConne

kCardkCard

EOUTp

NC
ctivityIntraConne

hh
CLUSTERkh

CLUSTERi CLUSTERj
iji

kCard
CLUSTERk

CLUSTERji
iji

h k

k

 - 44 -

other ones. Besides, the maximum value is assumed either by a clustering with only one cluster

including all the nodes, or by a clustering with only isolated clusters that are completely intra-

connected.

The clustering obtained at each iteration of the proposed algorithm is characterized by a given

value of the QoC quality metric. The clustering exhibiting the maximum value of QoC is a

candidate to implement the best partition of the web application components. Therefore, the

hierarchy of clustering may be cut at the cut-height that is associated with the maximum QoC. The

clusters from this configuration are submitted to a validation process, with the aim of establish if the

cluster completely realizes a functionality of the system.

The problem of comprehending a Web Application can be addressed according to the following

structured approach:

1) Reverse engineering of the Web Application and production of the WAG;

2) Do clustering according to the proposed algorithm;

3) Find the Cmax clustering with the maximum QoC value;

4) Submit the Cmax clustering to a validation process.

The validation process is a human intensive process and it is needed to determine if each cluster

realizes a functionality of the Web Application. This process will be partially supported by the

Reverse Engineering techniques that are described in the Chapters 9, 10 and 11.

During the clustering validation process, clusters can be modified splitting one cluster in more

ones, or merging more clusters into one, or moving some components from a cluster to another one

to have valid clusters.

5.4 A clustering example

In order to illustrate how the proposed clustering algorithm works, in this section a small

exemplar Web Application is analysed in conformance with the clustering method.

The pages of the application are divided into two areas: a public area is accessible by all users

and a reserved area whose access is limited to registered users.

The application is composed of eight items, including five pages (labelled from A to E), two

server pages (labelled as F and G), and a built client page (namely H). The Web Application

representation is provided in Fig. 5.3-a, according to the notation presented in the previous chapter.

 - 45 -

Fig. 5.3: An example

The home page of the application (labelled A) includes two frames, the first one (B) providing

the access to pages of the public area (D and E, respectively), and the second one (C) containing a

form for accessing the reserved area (composed of G and H pages) through an authentication page

(F).

The clustering algorithm produced a hierarchy of clusters. At the first step, G and H pages were

merged into a cluster named GH, according to the Build rule. At the second step, C and F pages

were merged into a new cluster CF since their degree of coupling CC,F assumed the maximum value

(cfr. the coupling values listed in Fig. 5.3-b). The new cluster CF-GH composed of clusters CF and

GH was analogously obtained at the third step (cfr. the coupling values listed in Fig. 5.3-c). At the

final iteration of the algorithm, the sixth step, one cluster including all the application items was

obtained. The QoC values obtained at each iteration are reported in Fig. 5.3-d. The maximum QoC

value was obtained at the second step.

The clusters obtained at this step were analysed in order to assess their validity. Valid clusters

have been recognized, since each of them implemented a specific function. The GH cluster

H – Reserved
Area

A - Index

C – Main Page

B - Contents

Load_In_
Frame

Load_In_
Frame

D – Public page 1

E – Public page 2

G – Reserved
AreaF - LoginF - Login

Builds

Redirect

Redirect

LinkLink

Link
Link

Submit

pB → D= pB → E =1/2
pC → D= pC → E= 1/5
pC → F=3/5
pF → GH=1
pF → C=1/2

pC←F=1
pF ← C=1
pGH ← F=1
pD ← B= pE ← B= 1/2
pD ← C= pE ← C= 1/2

CB,D= CB,E =1/2*1/2=1/4
CC,D= CC,E=1/5*1/2=1/10
CC,F=3/5*1+1/2*1=11/10
CF,GH=1*1=1
QoC=0.132143

Step 2
pB → D= pB → E =1/2
pC → D= pC → E= 1/5
pC → F=3/5
pF → GH=1
pF → C=1/2

pC←F=1
pF ← C=1
pGH ← F=1
pD ← B= pE ← B= 1/2
pD ← C= pE ← C= 1/2

CB,D= CB,E =1/2*1/2=1/4
CC,D= CC,E=1/5*1/2=1/10
CC,F=3/5*1+1/2*1=11/10
CF,GH=1*1=1
QoC=0.132143

pB → D= pB → E =1/2
pC → D= pC → E= 1/5
pC → F=3/5
pF → GH=1
pF → C=1/2

pC←F=1
pF ← C=1
pGH ← F=1
pD ← B= pE ← B= 1/2
pD ← C= pE ← C= 1/2

CB,D= CB,E =1/2*1/2=1/4
CC,D= CC,E=1/5*1/2=1/10
CC,F=3/5*1+1/2*1=11/10
CF,GH=1*1=1
QoC=0.132143

Step 2

Step 1

pB → D= pB → E =1/2
pCF → D= pCF → E= 1/4.4
pCF → GH=0.545

Step 3
pGH ←CF=1
pD ← B= pE ← B= 1/2
pD ← CF= pE ← CF= 1/2

CB,D= CB,E =1/2*1/2=1/4
CCF,D= CCF,E=1/4*1/2=1/8
CCF,GH=0.545*1=0.545
QoC=-0.023889

pB → D= pB → E =1/2
pCF → D= pCF → E= 1/4.4
pCF → GH=0.545

Step 3
pGH ←CF=1
pD ← B= pE ← B= 1/2
pD ← CF= pE ← CF= 1/2

CB,D= CB,E =1/2*1/2=1/4
CCF,D= CCF,E=1/4*1/2=1/8
CCF,GH=0.545*1=0.545
QoC=-0.023889

wSL=3
wRL=2.4
wL=1

Parameters

wSL=3
wRL=2.4
wL=1

Parameters

The best QoC is for C=1.1

Step QoC
1 -0,11607
2 0,132143
3 -0,02389
4 0.127083

C

1,1
0,545
0,25

5 0.022778 0,5
6 0,055556 1

- a -

- b -

- c - - d -

 - 46 -

implements the visualization of reserved information to authenticated users, while the CF cluster

implements the user authentication function. The remaining clusters A and B implement

coordination functions, while D and E provide the visualization of two distinct groups of

information.

This first experiment provides encouraging results about the effectiveness of the methods, but

many other experiments have been carried out. The results of these experiments, based on real

world Web Applications, are presented in Chapter 7, while a tool supporting the execution of the

clustering algorithm is presented in the next chapter.

Further detail and examples about the proposed clustering method can be also found in [Dil02c].

 - 47 -

Chapter 6: The tool WARE

In this chapter a tool called WARE is presented. This tool supports the Reverse Engineering

process described in Chapter 4: it supports the extraction of information from the source code of an

existing Web Application and from the analysis of its execution, the abstraction of detailed UML

diagrams depicting the structure of a Web Application and the execution of the clustering algorithm

described in the previous chapter. This tool also supports metrics evaluation. Architecture,

functionalities and examples of the use of this tool are presented.

6.1 Introduction

The most part of the tasks of the Reverse Engineering process described in the previous chapters

may be carried out automatically: examples are the extraction of information from the source code

of Web Applications, the clustering algorithm and the abstraction of class diagrams depicting the

structural view of the Web Application. The automatization of these tasks reduces drastically the

effort related to the execution of the WARE Reverse Engineering process (experiments described in

the following chapter have confirmed this hypothesis). A tool, that is also named WARE, has been

designed and developed with the aim to support the WARE Reverse Engineering process.

In this chapter the architecture and the functionality of the tool WARE are described and an

example of how the tool can support the Reverse Engineering is reported. The results of a further

experimentation, based on a number of different Web Applications is reported in the following

chapter.

6.2 Architecture of tool WARE

The tool WARE has been designed as an integrated environment including several components

arranged in the software architecture shown in Figure 6.1. As the figure illustrates, the WARE tool

architecture have three layers: the Interface Layer, the Service Layer, and the Repository Layer. The

Interface Layer implements the user interface providing the access to the functions offered by the

tool and the visualization of recovered information and documentation both in textual and graphical

format. The Service Layer implements the tool services, and includes two main components: the

Extractors and the Abstractors. The Repository stores the information extracted and abstracted

 - 48 -

about the Web Application using intermediate format files and a relational database. Additional

details about WARE’s layers are provided in the following.

6.2.1 WARE Service Layer.

The Service layer of WARE includes both Extractor and Abstractor components: Extractors

directly retrieve relevant information from the source code of an application and store it in

intermediate format files, while Abstractors are able to abstract further information and documents

from the directly retrieved information.

Source code extractors included in WARE are implemented in C++ language, and the set of

analysable source code languages is constantly in evolution. The current version of the tool includes

extractors that analyse the HTML language (version 4.0) and some scripting languages, such as the

Javascript and VBScript languages usable at the client side of a Web Application, and ASP and

PHP scripts from the server side. These extractors do not recover an Abstract Syntax Tree from the

analysed code, but they just recognise and identify in the code the information needed to re-build

the required diagrams, by means of lexical and syntactical analysis. The difficulties involved into

the static analysis phase are due to the peculiarities of the scripting technologies. Often, the most

part of the grammar recognition problems are based on the fundamental hypothesis of correctness of

the code under analysis.

 - 49 -

Figure 6.1: Architecture of tool WARE

For Web Application domain, this hypothesis can be considered for server scripting code but it

cannot be guaranteed for client scripting code. In fact, it is possible that server scripting code or

client scripting code generate client code dynamically during execution. Moreover, a common

characteristic of the browser is the fault tolerance: for this reason the existence of Web pages

containing incorrect HTML code is quite common. So, an ad-hoc fault tolerant approach based on

authoms has been adopted to analyse the source code of Web Applications. This technique has been

detailed described in [Tra01]. Extractors are also able to recognise some lexical and syntactical

errors contained in the source files. Finally, parsers store the extracted information in an

Intermediate Representation Form (IRF) that is implemented as a tagged XML-like file (see [Dil02]

for more details); this file is then parsed by an IRF translator component that populates the

relational Database included in the Repository with the information produced by the Extractors.

Extractors Abstractors

Interface layer

IRF

DBR

Diagrams

Repository

HTML

Service Layer

WA
Source
Files

WARE
GUI

Graphical Visualizer

DottyVCG

ASP

VBS

PHP

JS

….

Clustering
Executor

Query Executor

UML Diag ram
Abstractor

Extractors Abstractors

Interface layer

IRF

DBR

Diagrams

Repository

HTML

Service Layer

WA
Source
Files

WARE
GUI

Graphical Visualizer

DottyVCG

ASP

VBS

PHP

JS

….

Clustering
Executor

Query Executor

UML Diag ram
Abstractor

Extractors Abstractors

Interface layer

IRF

DBR

Diagrams

Repository

HTML

Service Layer

WA
Source
Files

WARE
GUI

Graphical Visualizer

DottyVCG

ASP

VBS

PHP

JS

….

Clustering
Executor

Query Executor

UML Diag ram
Abstractor

 - 50 -

As to the Abstractors, a first one is the Clustering Executor, supporting the clustering algorithm

that is described in the next chapter. The Query Executor is the Abstractor that implements

predefined SQL queries over the database and retrieves data about the Web Application that may

aid Concept Assignment processes and dynamic analysis execution. Possible information provided

by the Query Executor includes the list of a Web page links, Web page inner items (such as Scripts

or other Objects), Form fields, Client/Server Functions activated in a Web page, and so on.

However, the tool supports customized queries, too. Finally, the UML Diagram Abstractors

implement several abstraction tasks supporting the recovery of UML diagrams, including the class

diagrams at different degrees of detail (e.g., providing only client pages, or static pages, or filtering

out the forms, etc.).

6.2.2 WARE Interface Layer.

The Interface Layer of WARE provides the user interface for activating WARE functions. The

user interface has been implemented with the Microsoft Visual Basic language, and allows a

friendly interaction of the user with the tool.

The main functions available to a user include:

• Automatic Static Analysis of a Web Application source code.

• Support to the recovery of the Dynamically Instantiated Elements, that allows a user to find

source code statements producing dynamically instantiated components or relationships,

which cannot be retrieved automatically with a static source code analysis. (This information

can be, therefore, stored in the repository using a specific user interface offered by WARE).

• Information Browsing, by means of which a user can browse information recovered about a

Web Application, such as the inventory of the Web Application components and their source

code. Moreover, the reachability relationship of a given component can be computed. WARE

allows each element of a page into the source code to be localized. Moreover, users may also

formulate customisable queries over the database, by choosing the type of application item,

relationship, or parameter to be searched for and displayed.

• Graphical Visualization. WARE is able to show the graphical representations of the following

models:

a. Class diagram of the Web Application, depicted according to the extensions defined

by Jim Conallen [Con99];

b. Web Application Connection Graph (WAG), showing the relationships between the

components of a Web Application (cfr. Subsection 5.3.1);

 - 51 -

c. Reachability Graph, showing the pages that can be reached from a given page of a

Web Application.

• Clustering functions. WARE automatically executes the clustering algorithm described in the

previous chapter. WARE produces different clustering configurations and therefore a user is

able to analyse each of them and to select the one that maximises cohesion between Web

Application components and minimises coupling between them. The user may associate a

descriptive name and a colour to each cluster or he can modify the chosen configuration.

WARE allows a user to know what are the relationships and the data exchanged between the

components inside a cluster and between the components inside a cluster and the remaining

components of the Web Application. These information may be very useful to validate a

cluster and to establish what is the user function implemented by each cluster.

Moreover, WARE allows the WA components to be grouped in subsets by using other simple

clustering criteria. A simple criterion implemented by WARE consists of grouping together

physical components of a Web Application (Client and Server pages, client modules,

multimedia components, etc.) contained in the same directory on the web server. However, a

user can create a subset of WA components by selecting them from the inventory list.

Currently, the graphical visualisation of the diagram is achieved using some freeware graph

displayers, such as VCG [Vcg], and Dotty [Dot]: this visualisation does not support the UML

notation style, but different shapes and colours are used to draw different kinds of entity and

relationship. As an example, a box is used for drawing a Static Page, a trapezoid for a Built Client

Page, a diamond for a Server Page and a triangle for a Form. However, export of the diagrams in

XMI format has been considered and is under developing.

Of course, WARE allows the visualization of customized graphs, reporting only some node

types and some edge types.

• Evaluation of Software Metrics. Some summary measures, such as the number of Web

Application pages, scripts, or the LOC count of a Web Application are automatically

computed by the tool and showed on demand to the user. An ad-hoc tool using information

extracted and abstracted by WARE calculates more complex metrics. These metrics are used

to estimate the maintainability of a Web Application in Chapter 13.

WARE is also provided with some wizards that guide users during the tool configuration phase

and creation of a new project. The user interface of WARE supports both Italian and English

languages.

 - 52 -

6.3 Analysis of a Web Application with the tool WARE

In this section the results of the submission of a real Web Application to the Reverse

Engineering process is reported. The case study introduced in this chapter is extended and discussed

in deep in the following chapters.

The selected Web Application supports the activities of undergraduate courses offered by a

Computer Science Department. It provides students and teachers with different functions, such as

accessing information about the courses, allowing a student to get registered to a course or to an

examination session, allowing a professor to manage the examination and student tutoring agendas,

allowing a registered student to download teaching material, and so on.

The application was developed using Microsoft ASP and VBScript languages on the server side

of the application, Javascript and HTML on the client side. It runs on Microsoft IIS Web Server.

Only the files constituting the source code of the Web Application are available, with no design

documentation.

The WARE tool has automatically realized static analysis. The results of the analysis have been

stored in text files according to the defined Intermediate Representation Form. Figure 6.2 reports an

example of the transformation from the HTML code (auth.htm on the left side of the figure) to the

IRF (auth.htm.irf on the right side of the figure) of a web page. The information contained in the

IRF files has been extracted and stored in a relational database by WARE, according to the model

presented in Chapter 3.

Inputs needed by WARE to correctly execute static analysis of a Web Application comprehend

also some information about the configuration of the web server on which the Web Application is

executed (e.g. what files extensions the web server associates to server pages, what tags are

interpreted as starting server script tag, etc.). WARE extractors produce also a log file reporting

some syntax errors recognized in source files (such as opening tags without needed closing ones,

closing tags without opening ones, tags without compulsory attributes, etc.). These errors aren’t

reported by browsers, which try to interpret also incorrect HTML pages. Figure 6.3 shows a list of

warnings reported for the Web Application under analysis. A code inspection revealed that these

warnings correspond to actual syntax errors in the web pages source code.

Dynamic analysis was therefore performed in the second step of the Reverse Engineering

process, with the aim of recover information about the Web Application that is not obtainable by

static analysis. For instance, this analysis is needed to retrieve the actual content of dynamically

built client pages, since this content can be precisely defined only executing the code.

 - 53 -

Line #

1
2
3
4
5
6
7
8

File auth.htm

<html>
<form name=auth method=post action="auth.asp">
Login:<input name=login type=text>
Password:<input name=pwd type=text>
<input type=submit>
<input type=reset>
</form>
</html>

File auth.htm.irf

<OPEN><FILENAME="\auth.htm"></OPEN>
<OPEN FORM> <LINE=2>
 <NAME=”auth”> <METHOD=”post”>
 <ACTION=”auth.asp”>
</OPEN FORM>
<INPUT> <LINE=3>
 <NAME=”login”> <TYPE=”text”>
</INPUT>
<INPUT> <LINE=4>
 <NAME=”pwd”> <TYPE=”text”>
</INPUT>
<INPUT> <LINE=5>
 <TYPE=”submit”>
</INPUT>
<INPUT> <LINE=6>
 <TYPE=”reset”>
</INPUT>
<CLOSE FORM><LINE=7> </CLOSE FORM>
<CLOSE> <LINE=8> </CLOSE>

Figure 6.2: An excerpt of the source code of a web page and its corresponding
Intermediate Representation Form

Error in /areastudenti.html Line:17 Warning: attribute PATH needed
Error in /main.html Line:21 Warning : attribute PATH needed
Error in /maindoc.html Line:21 Warning : attribute PATH needed
Error in /menudoc.html Line:17 Warning : attribute PATH needed
Error in /FormPreRicev2.asp Line:417 Warning: tag needed
Error in /VisListaRic.asp Line:327 Warning: tag needed
Error in /VisPreRic.asp Line:302 Warning: tag needed

Figure 6.3: Warning reported as result of the static analysis of the
Web Application

An example is reported in Figure 6.4, where the Information Browsing functionality of WARE

has been used to individuate an output statement in the server page check.asp (the response.write

instruction reported in the lower part of the figure). Analysing the semantic of this statement, it is

possible to establish that a Redirect operation from a client page built by check.asp and the client

page areadocente.html could be instantiated (by means of the javascript method window.open).

Some summary information about the components and relationships of the Web Application

under analysis can be evaluated automatically by WARE. Figure 6.5 reports both the count of

statically retrieved information, such as the number of server pages, client pages, scripts, forms,

functions, connections composing the Web Application, both dynamically obtained information.

Finally, the capability of WARE of producing automatically graphical views of the Web

Application was exploited during the working session. The current version of WARE produces

graphs that can be visualized with the tools VCG [Vcg] and Dotty [Dot]. As an example, in Figure

6.6 is reported the Class Diagram representing the web pages implementing the whole Web

Application. In this diagram different colours and shapes have been used to characterize different

types of components and connections: server pages have been depicted as diamonds, static client

pages with rectangles, built client pages with trapeziums and so on.

 - 54 -

Figure 6.4: Use of the Information Browsing functionality of WARE to detect a
Redirect operation that is dynamically instantiated

Statically retrieved information
Server Page 75
Static Client Page 23
Built Client Page 74
Client Script 132
Client Function 48
Form 49
Server Script 562
Server Function 0
Redirect (in Server Scripts) 7
Redirect (in Client Scripts) 0
Link 45
Dynamically Instantiated Elements
Link 0
Submit 0
Redirect (in Client Script) 0
Redirect (in Server Script) 7

Figure 6.5: Structural metrics of the Web Applications under analysis

 - 55 -

Figure 6.6: Class diagram reporting the pages of the Web Application and the
relationships between them (a zoom of a part of this diagram is shown in the lower frame

of the figure)

However, it is possible to modify colours and shapes of components and connections in the

produced diagrams. Edges represent connections between the components and they are labelled

according to the typology of that connection. Colours of the edges may be changed for a better

visualization.

When the static analysis of the WA code and the recovery of dynamic information have been

accomplished, the WA can be submitted to the clustering algorithm described in the previous

/areadocente.html

/check.asp

Redirect

/check.aspBuilds

/autenticazionedocente.html

Submit

/check.asp /check.asp/check.asp

Submit

/areadocente.html

/check.asp

Redirect

/check.aspBuilds

/autenticazionedocente.html

Submit

/check.asp /check.asp/check.asp

Submit

 - 56 -

chapter, in order to obtain a collapsed view of its structure. Clustering was therefore executed on the

subject WA, producing various clustering configurations.

The optimal clustering configuration proposed by the tool was submitted to a validation process,

in order to understand the functions implemented by the clusters and to validate them. The process

was carried out with the support of WARE, and by inspecting the code and observing the Web

Application execution.

The optimal clustering of the Web Application presented 49 Clusters, with an Average of 3.58

Pages per Cluster. Figure 6.7 shows the graph of this clustering, where each node represents a

cluster. The size of this graph is sensibly smaller than the WAG one, since it includes 49 nodes, that

is, less than 30% of the nodes of the original WAG (considering just the web pages).

Figure 6.7: Clusterized WAG

During the clustering validation phase, some clusters were modified splitting one cluster in

more ones, or merging more clusters into one, or moving some components from a cluster to

another one to have valid clusters. For the analysed WA 8 were merged to produce 3 new clusters.

The WARE Cluster Management User Interface (Figure 6.8) usefully supported these tasks,

allowing insertion, modification or deletion of clusters and showing tables and diagrams reporting

 - 57 -

relationships and exchanged data among the WA pages involved by each cluster. As an example,

Figure 6.9 shows the form reporting in the higher part of the figure the relationships among the

pages inside a cluster of the WA under analysis, while in the lower part data exchanged between

these pages are reported. Figure 6.10 reports a summary after the clustering configuration

validation.

Reachability tables and diagrams were used to establish if a cluster is connected to the

remaining part of the Web Application or not. Usually, isolated clusters represent obsolete parts of a

Web Application. As an example, Cluster #43, constituted by the server page insappello2.asp and

by its built client page cannot be reached by any other component of the Web Application.

Figure 6.8: Subset Management User Interface

 - 58 -

Figure 6.9: Relationships and data exchanged between the components of a cluster and
the remaining part of the Web Application

Number of initial clusters 49
Number of split clusters 0
Number of incomplete clusters 8
Number of valid clusters 41
Number of new clusters obtained from the subdivided ones 0
Number of new clusters obtained by merging incomplete clusters 3
Number of final valid clusters 44

Figure 6.10: Results from Clustering validation

Further details about the use of the tool WARE can be found in [Dil04f] and [Dil04g], while an

extended experimentation of the Reverse Engineering process will be reported and discussed in the

next chapter.

 - 59 -

Chapter 7: Experimenting the WARE Reverse Engineering
Process

In this chapter the results of the experimentation of the Reverse Engineering process presented

in the previous chapters, are reported. A discussion about the programming techniques needed to

improve the understandability of the application is reported.

7.1 Assessing the effectiveness of the WARE Reverse Engineering
process

The Reverse Engineering approach presented in Chapter 4 has been experimented with a

validation experiment. This experiment was conducted with a number of real Web Applications.

Software engineers who were expert users of Web Application technologies were enrolled in the

experiment. They were taught the reverse engineering process and tool facilities, and were asked to

use them to analyse existing Web Applications. Software engineers were grouped in teams

composed of 2 or 3 people, and each team was assigned a single application.

As to the experimental materials, six Web Applications with different characteristics and

implemented using ASP, Javascript, PHP, and HTML technologies, were selected. According to

Tilley and Huang’s classification (cfr. Section 2.2), three of them were class 3 applications

including dynamic client and server pages (hereafter these applications are called WA1, WA2, and

WA3). Two class 2 applications (WA4 and WA5) with dynamic functions just on the client side

were considered, along with a primarily static class 1 application (WA6).

As regards the domain of the Web Applications, WA1 supported the activities of an

undergraduate course (it has been presented also in chapter 5); WA2 provided functions for the

management of an Italian research network, WA3 and WA5 were two personal Web sites. Finally,

WA4 was an application supporting the activities of a society for historical studies, and WA6 was a

Web site providing the on line reference guide of a programming language.

While WA1 was developed without any automatic generator of HTML code, an automatic

generator was used for producing some presentation-related aspects of WA2, WA3, and WA4 (such

as table layout). For WA5, this tool was used to define the navigational structure, too, by

automatically generating navigational bars.

 - 60 -

The teams carried out the analysis of the Web Applications according to the prescriptions of the

reverse engineering process. The results they achieved at each step of the process are described

below. Further detail about this experiment can be found in [Dil02d] and [Dil04].

7.2 Carrying out Static Analysis

In the first step of the Reverse Engineering process, the teams carried out static analysis with the

support of the tool WARE, with the aim of detecting the Web Applications’ items and their

relationships. Table 7.1 reports a summary of the data collected about the applications: in the first

column, the type of the item or relationship is reported, while in the remaining columns, the count

of items/relationships retrieved for each Web Application analysed is shown. In this Table, the

name of the items corresponds to the name of the Web Application entities enclosed in the reference

model presented in Chapter 3.

Table 7.1: Statically retrieved data from the analysed Web Applications

Item type WA1 WA2 WA3 WA4 WA5 WA6

Server Page 75 105 21 0 0 0

Static Page 23 38 19 80 45 257

Built Client Page 74 98 20 0 0 0

Client Script 132 225 113 261 4 3

Client Function 48 32 60 68 1 4

Form 49 100 5 0 25 5

Server Script 562 2358 40 0 0 0

Server Function 0 11 0 0 0 0

Redirect (in Server Scripts) 7 0 0 0 0 0

Redirect (in Client Scripts) 0 0 41 0 0 0

Link 45 266 121 162 448 1508

Thanks to the automation of the analysis by the tool WARE, the human effort required to

accomplish this step was limited just to the activation of the tool parsers and of the IRF translator

that populates the Repository with the information extracted from the source code.

 - 61 -

These tasks were automatically executed by the tool, in a number of seconds (ranging from 14

seconds to 62 seconds) that depended on the size of the application analysed (cfr. Table 7.4 for

effort data).

7.3 Carrying out Dynamic Analysis

In the second step, class 2 and 3 applications were submitted to dynamic analysis, and

additional information about their composition could be retrieved.

As a first result, the existence of relationships between Web Application Pages that had not been

retrieved by static analysis was deduced. A first type of relationship was due to code instructions

not originally included in the HTML code, but produced at run time by output instructions in

server/client scripts (such as the ASP response.write, PHP print, and Javascript write) whose

arguments depend on input values. These output instructions were able to produce three different

types of relationship between items, such as the Link type between Web pages, the Submit type

between forms and server pages, and the Redirect relationship between a Client Script and a Web

Page (cfr. the Link, Submit, and Redirect associations in the Web Application model). Sometimes

the dynamic Link relationships were also defined by executing a Java applet implementing a menu

of hypertextual links. In this case, since the code of the applet was not included in the Web

Applications (likewise the code of any Flash or ActiveX object) and could not be parsed, only by

execution of the applications could the target pages of the links be identified. Moreover, server

scripts including response.redirect instructions were able to produce dynamic Redirect relationships

between a Server Script and a Server Page, whose destination depended on the input values.

Table 7.2 reports the count of relationships dynamically retrieved from the Web Applications

analysed. In the first column, the type of relationship is reported, while the remaining columns show

the count for each Web Application analysed.

Table 7.2: Dynamically retrieved relationships from the analysed Web Applications

Relationship type WA1 WA2 WA3 WA4 WA5 WA6

Link 0 1 9 0 27 0

Submit 0 32 0 0 0 0

Redirect (in Client Script) 0 0 27 0 0 0

Redirect (in Server Script) 7 0 0 0 0 0

 - 62 -

Unlike static analysis, dynamic analysis required greater intervention by the software engineers,

who preliminarily had to define the set of input values for executing the Web Applications and,

therefore, had to observe the resulting behaviour and record the obtained output. At the moment,

these tasks are not supported by the WARE tool. However, the tool can be used to limit the scope of

the dynamic analysis to those Web Pages including elements responsible for dynamic results: in

fact, these Pages can be detected by the static analysis performed by the tool, and retrieved by

querying the tool repository. The total effort (expressed in man hours) required to carry out dynamic

analysis for each Web Application is reported in Table 7.4.

The additional information retrieved was, finally, added to the tool WARE Repository

manually.

After accomplishing the first two steps of the reverse engineering process, a WAG representing

all the retrieved items and relationships could be instantiated for each Web Application. As an

example, the graph obtained for the first one, WA1, is reported in Chapter 5.

7.4 Carrying out Clustering

In this phase, the Web Application Connection Graphs (WAG, cfr. Chapter 5) were submitted to

the Clustering algorithm described in the previous chapter, so that hierarchies of clusterizations of

the components of the Web Applications were proposed and the best of those (according to Quality

of Clusterization factor defined in the previous chapter) were chosen and submitted to a validation

process.

The clusters identified by the algorithm are composed by strictly interconnected pages, such as

pages that actually cooperate in the implementation of a given functionality, or pages that are

strongly interconnected by many navigation links (i.e. links just used to make easier the user

navigation, such as the back links to go back a previous visited page or the cross links introduced to

make a short cut to a longer path, but not necessary to implement a given user functionality).

During the experiments, two applications, WA4 and WA5, that presented frequent navigation

links and mechanisms, such as navigation bars, were mainly characterized by loosely cohesive

clusters. These clusters were not very useful to support the comprehension of the Web Application

behavior. In the case of the WA6, the recovered clustering included more cohesive clusters, since

the links in the Web Application Connection Graph were mainly representative of semantic

relationships among the pages (i.e. relationships actually needed to implement a user functionality).

 - 63 -

The clustering algorithm allowed even the detection of groups of components isolated from the

remaining ones. The presence of isolated pages was essentially due either to the presence of

incorrectly resolved dynamic links between the pages, either to the presence of unreachable

obsolete pages. However, an isolated cluster may correspond to a separate functionality, accessible

by another/secondary Home page included in the cluster itself.

In the validation step, the proposed clusters of each Web Application were manually analysed in

order to validate them, by distinguishing valid clusters from invalid ones.

During the validation process, both static analysis and dynamic analysis was carried out. During

the static analysis, when the names of the source files of the application were meaningful, rather

than generic, or the files were contained in directories with a meaningful name, the software

engineer could more easily identify the concept associated with the cluster. During the dynamic

analysis, the presence of explicative labels associated with the anchors was useful for understanding

the interconnected pages behavior.

The results of the validation step are listed in Table 7.3, which reports, in the upper part, the

number of initial clusters proposed by the tool, and the number of spurious, split, incomplete, and

accepted clusters. In the lower part of the table, the number of clusters obtained by modifying the

ones originally proposed by the tool is listed too.

Table 7.3: Results from clustering validation
 WA1 WA2 WA3 WA4 WA5 WA6
Number of initial clusters 49 101 27 49 31 115
Number of spurious clusters 0 0 1 1 0 0
Number of split clusters 0 0 2 0 5 12
Number of incomplete clusters 8 15 3 0 0 0
Number of accepted clusters 41 86 21 48 26 103
Number of new clusters obtained from the spurious ones 0 0 1 2 0 0
Number of new clusters obtained from the subdivided ones 0 0 5 0 13 31
Number of new clusters obtained by merging incomplete clusters 3 7 1 0 0 0
Number of final clusters 44 93 28 50 39 134

7.5 Discussion

The experiment described in this Section was carried out with the aim of assessing the

feasibility and effectiveness of the proposed reverse engineering process. The feasibility of the

process was proved by the experiment, since the goal of reconstructing several models of the Web

Applications for documenting both their structure and their behaviour was achieved with respect to

applications with different characteristics, ranging from Class 1 static applications, to Class 3

dynamic ones.

 - 64 -

As to the effectiveness, both the adequacy of the reverse engineering results and the efficiency

of the reverse engineering process were assessed.

As regards adequacy, the recovered diagrams were submitted to the judgement of software

engineers who were expert in Web Application development and maintenance, in order to assess

whether the diagrams described the applications correctly or not. The experts decided the models

correctly described both the functional requirements and the structure of the analysed Web

Applications, so it is possible to conclude that the proposed approach is adequate.

As to the efficiency of the reverse engineering process, the distribution of the effort required to

carry out some steps of the process was evaluated. Table 7.4 lists the effort (in man hours) taken by

the experimenters to accomplish the tasks of static analysis, dynamic analysis, automatic clustering

and clustering validation, for each application analysed.

Of course, as data in Table 7.4 confirm, the most expensive steps are those requiring human

intervention (e.g., dynamic analysis and clustering validation) to analyse and understand the

meaning and the behaviour of Web Application items. However, in no case was the human effort

required considered to be unacceptable by the experimenters, so it is possible to conclude that the

process was also efficient.

Table 7.4: Effort data and computational times from the reverse engineering experiments

Task WA1 WA2 WA3 WA4 WA5 WA6

Static analysis (seconds) 14 52 19 30 22 62

Dynamic analysis (man hours) 1 6 4 0.5 2 0.25

Automatic clustering (seconds) 2 6 2 1 3 412

Clustering validation (man hours) 10 16 6 5 5 18

In addition, by observing and analysing the activities carried out by the experimenters during

the most expensive steps, it was possible identify some features that may negatively affect the

analysability of a Web Application. Consequently, some desirable features were identified that

programmers should include in the code to facilitate some analysis or comprehension tasks (carried

out both manually or automatically).

Some of the difficulties the experimenters encountered were due to Web Application items that

are dynamically produced during execution of the application. The analysability of the applications

increases when links to Web Pages are explicitly declared in the source code, rather than

dynamically generated, since the latter can be resolved only by an expensive dynamic analysis.

 - 65 -

Therefore, the use of static links, rather than dynamic ones, in the code of Web Applications, each

time it is possible, should be preferred.

Another difficulty that negatively affected comprehension and validation of the clusters was the

task of understanding the actual role of hyperlinks in Web Applications, distinguishing navigational

links from semantic links implementing a functional dependence between Web Application items.

Therefore, it was recognized that some annotation in the code explicitly describing the role of the

link would be useful. As an example, the HTML language provides the ‘name’ attribute for the

‘anchor’ tag implementing hyperlinks, that may be used to specify whether a link is a navigational

(cross or back) link or a semantic link. Figure 7.2 shows a fragment of HTML code including

examples of anchors described with the ‘name’ attribute. In the example, the ‘name’ attributes with

values ‘crossA’ and ‘crossC’ show that the first two anchor tags implement navigational links for

reaching the HTML pages ‘A.html’ and ‘C.html’ directly by a shortcut. The third ‘name’ attribute

with the value ‘backHome’ indicates that this anchor tag implements a shortcut to the Home page.

The last anchor tags do not include the ‘name’ attribute, and therefore implement a semantic link.

………..
<title> Argument B </title>
…
 Argument A
 Argument C
 Home Page

 Argument B.1
 Argument B.2
………

Figure 7.2: An example of HTML code including ‘named’ links

In addition, using a suitable internal documentation standard to annotate each main entity of the

Web Application would be another desirable programming practice, which would ease the

comprehension tasks. As an example, a brief description of the page meaning/behaviour, its

input/output data, and its interconnections with other Web Application components should be

introduced as a formatted comment in the page, as shown in Figure 7.3. This information could be

automatically captured by a static analyser, and provided to support any Concept Assignment

Process involving that page.

Of course, the experimenters also recognised that code analysis tasks were simplified when each

file of the application was associated with a self-explanatory name, instead of a cryptic and

anonymous one.

 - 66 -

<%@ Language=VBScript %>
<% Option Explicit
%>
<HTML>
<HEAD>
<TITLE> check </TITLE>
…………..
<META NAME="Purpose" CONTENT="This page checks Login and Password of a Teacher, then
it redirects to Teacher Home Page">
<META NAME = "Incoming Links from Pages:" CONTENT = "/autenticazionedocente.html">
<META NAME = "Outgoing Links to Pages:" CONTENT = "/autenticazionedocente.html,
/areadocente.html">
<META NAME="Input Parameters" CONTENT="login,password">
<META NAME="Output Parameters" CONTENT="">
<META NAME = "Session Variables" CONTENT = "loginOK, matricola">
<META NAME="Included Modules" CONTENT="">
<META NAME="Database" CONTENT="../basedatisito.mdb">
<META NAME="Images" CONTENT="bgmain.gif">
</HEAD>

<BODY>
……………..

Figure 7.3: An example of a web page with commented lines providing internal
documentation

Finally, the experimental results demonstrated the feasibility and effectiveness of the process for

reverse engineering Web Applications with different characteristics, including both purely static

Web Applications, and Web Applications with dynamic elements. Of course, the validity of such

experimental results is limited by the reduced number of applications considered, and the reduced

number of process variables observed during the experiment (i.e., adequacy and efficiency). Further

experimentation is, therefore, required in order to extend the validity of the experiment, by

investigating further research issues.

 - 67 -

Chapter 8: Abstraction of Business Level Diagrams

In this chapter a method to recover UML diagrams at business level of a Web Application is

described. Heuristic algorithms and methodologies to recover business level class diagrams, use

case diagrams and sequence diagrams are proposed. The results of the experimentation of the

method on a medium sized Web Application are reported.

8.1 Introduction

In the previous chapter, methods and techniques to recover diagrams representing the structural

view of a Web Application have been proposed and described and the results of a validation

experiment involving them have been reported. These representations are very useful supports to

carry out a maintenance intervention with a limited impact on the application, but they are less

useful in the case of a maintenance intervention involving a wider set of Web Application

components, such as a reengineering intervention or a migration. If these tasks must be faced, more

abstract representations may be needed.

Business level UML diagrams are typical products of the high-level development phase of a

software system. They describe conceptual components (business objects) from the domain of the

problem addressed by the application, their mutual relationships and the basic functionalities the

system must provide.

In literature, approaches extracting business level object oriented models from procedural

legacy systems have been used to migrate the systems towards object-oriented platforms with the

support of wrapping technologies [Del97]. Moreover, objects from an object-oriented conceptual

model have proved useful to support a systematic reuse, since each validated object represents a

reusable component that can be integrated in the production of new systems [Can96].

Further works in literature, addressing the recover of objects and object oriented models from

traditional software are described in [Can96], [Cim99], [Gal95], [Geo96], [Liu90], [Liv94],

[New95] and [Yeh95].

Defining and validating similar approaches in the context of Web Applications represent a

relevant research issue. The abstraction of business level diagrams of a Web Application is a very

difficult and expensive task. In particular, scripting languages used to implement Web Applications

are object-based languages, instead of effective object orient languages. So, the abstraction of object

oriented business level class diagrams is difficult.

 - 68 -

In this chapter a method to abstract business level UML class diagrams, use case diagram and

sequence diagrams is described. This method needs information extracted by the tool WARE (cfr.

Chapter 6).

8.2 Recovering Business Level Class Diagrams

In this chapter a method that is similar to the one proposed in the context of traditional software

in [Del97] and [Dil00] is described. That method is based on a Reverse Engineering process

including three main steps:

- Identification of candidate classes and their attributes;

- Association of methods to candidate classes;

- Identification of relationships between classes.

In the following the terms class and object are used as synonyms. In traditional software, the

identification of the candidate objects and of their attributes is made by looking for groups of

logically related data making up the state of objects. This search is usually based on those language

mechanisms that allow groups of related data implementing a relevant concept, either from the

domain of the application or from domain of the solution, to be defined in the code. These

mechanisms include those for the definition and use of data structures such as records, user data

types, and table schemas in databases. Moreover, the identification of object operations, i.e.,

methods, is centred on suitable pieces of code (such as programs, subroutines, slices) that can be

associated with the candidate objects according to specific coupling criteria. Finally, specific

heuristic criteria, such as those defined in [Dil00], can be used to define the relationships between

objects.

Several questions have to be addressed when trying to use these methods in the Web

Application context.

The first problem regards the identification of objects and objects’ attributes in a Web

Application, since the selection of the mechanisms that are generally used for implementing groups

of related data is not obvious for Web Applications. Most web technologies and languages (such as

HTML, ASP, PHP, VBS, JSP, etc.) provide syntactic constructs for declaring data groups like

RecordSets, or Collections, or Classes, but some of them are not used frequently. Moreover, since a

Web Application is usually implemented as a multi-tier system, with a database server

implementing one tier of the architecture, a simple Web Application code analysis may not allow

the identification of the persistent data stores and of the data store schemas. In this case, indeed,

such data store descriptions may be deployed on a different tier of the application, and may be

 - 69 -

inaccessible, such as in the case of a Web Application that makes the services of an existing

information system available on the net, implementing the front-end of the system.

A second question with Web Applications regards the identification of the chunks of code

implementing the object methods, since the pieces of code that are usually considered for traditional

software (e.g., programs, subroutines, slices, etc.) may not be meaningful for Web Applications. In

this case, possible functional units to be considered should include web pages, script blocks inside a

page, functions in a page, depending on the requested degree of granularity. Moreover, appropriate

criteria for electing these chunks of code to object methods and associating them with the correct

object should be accurately defined, as well as suitable rules for defining the possible relationships

between the recovered objects should be defined.

 In the following subsections, a technique to overcome these problems is proposed.

8.2.1 Identifying candidate classes and their attributes

A method identifying candidate classes from a Web Application is proposed. This method

includes two steps. The first step comprises the identification of relevant groups of data items from

the Web Application code; in the second step, an automatic procedure is executed to define the

candidate classes from the list of groups identified in the previous step.

The elements of interest for identifying the attributes of candidate classes in a Web Application

are groups of data items that are involved in the same user input/output operation (such as data

displayed in input/output HTML forms, or HTML tables), or in the same read/write operation on a

data store (such as an ASP Recordset, or an array of heterogeneous data in PhP language), or the

data set involved in a database query operation. In addition, data groups that are passed throw

distinct pages or instances of Classes used in the pages are taken into account.

The rationale behind this choice is that the set of data items that a user inputs by an input form,

or that are shown to a user by an output form, usually represents concepts of interest for the user in

the domain of the application. Analogously, data items that are read from, or written to a persistent

data store may be representative of meaningful concepts of the business domain.

In a preliminary step of the process, a static analysis of the Web Application source code is

required for retrieving these data groups and their references in the code. Each data item of each

group is associated with the identifier used to reference it in the code.

Therefore, the items from the groups are submitted to a refinement step aiming at solving the

problems of synonyms (i.e., identifiers with different names but the same meaning) and homonyms

(i.e., identifiers with the same names but different meanings). Synonym identifiers must be assigned

with the same unique identifier. Homonym identifiers must be associated with distinct names. In

addition, while carrying out synonyms & homonyms analysis a meaningful name, synthesizing the

 - 70 -

meaning of the data according to the rules of the business domain, is assigned to each data item. Of

course, both the definition of the names, and synonyms and homonyms analysis are based on code

reading and inspection of available documentation and are human intensive tasks.

At this point, each data group may be considered as the attributes of a potential class and a

validation should be carried out for distinguishing valid business classes, i.e. classes actually

associated with a concept from the business domain, from invalid ones. This validation is usually

accomplished manually.

In order to reduce the effort required by this analysis, the method exploits an automatic

procedure that analyses the data groups in order to identify the ones that are more likely to represent

meaningful classes. Only the selected data groups are, therefore, submitted to the validation

process. This procedure, called Produce_Candidate_Objects, is based on heuristic criteria and is

illustrated in Figure 8.1, where:

- GList is the list of data groups;

- g is the generic group in the GList;

- Card(g) is the cardinality of the g group;

- Nref(g) is the number of references to the g group;

- a is a generic data item in g;

- CAND is the list of candidate objects;

- C is a generic candidate object from CAND;

- SORT (A, K) is a function for sorting the list A according to the criteria described in K;

- TOP(A) is a function for accessing the top element of a list A;

- REMOVE(A, x) is a procedure for removing an item x from the list A;

- INSERT(A, x) is a procedure for inserting the item x in the list A;

- ADD(C, h) is the procedure for adding all the item of a group h in the C group.

The procedure Produce_Candidate_Objects analyses the input list Glist of data groups and

produces the output list CAND of candidate classes.

The first heuristic rule implemented by this procedure states that the more the references of a

same data group in the code, the greater the likelihood that it represents a meaningful concept. The

second heuristic rule establishes that groups with a small size may represent more simple and

atomic concepts than larger groups, and larger groups may represent more complex concepts made

up of joined smaller groups.

 - 71 -

According to these two rules, groups from the Glist are preliminarily arranged in descending

order with the number of references of each g group, and in ascending order with the cardinality of

each group. This order is produced by the procedure SORT whose output consists of the ordered list

‘OrdList’ of data groups.

Procedure Produce_Candidate_Objects (in: GList; out: CAND);

BEGIN
OrdList = SORT (Glist, Descending on Nref(g)AND Ascending on Card(g));
CAND = ∅;
WHILE (OrdList ≠ ∅ OR (∪i a ∈ Ci ≡ ∪i a ∈ gi))DO
 h=TOP(OrdList);
 IF (∃ a∈h: a∉C ∀ C ∈CAND) THEN
 IF (!∃ C∈CAND: C ⊆ h THEN
 INSERT(CAND, h)
 ELSE
 ∀ Ci ∈ CAND: Ci ⊆ h DO
 BEGIN
 k = h - ∪i Ci;
 ADD(C, k);
 END
 END IF
 END IF
 REMOVE (OrdList, g);
END WHILE
END

Figure 8.1: The procedure generating the list of candidate objects

Starting from the top group in OrdList, the procedure analyses each group and, if a group

comprises at least a new data item not yet included in any other group in CAND, it is inserted in the

CAND list of candidate objects. OrdList is examined until it includes at least a group, or until the

union set of all the data items of the candidate objects in CAND and the union set of all the data

items of the groups in Glist are equal.

When a group h from OrdList includes all the data items making up one or more groups Ci in

CAND, only the k data items in h that are not yet included in any group of CAND are added to the

Ci groups whose elements are all included in h. The reason is that the group h is likely to represent a

composite concept produced by a logical link among the Ci groups. The attributes that are added to

the Ci groups are necessary to record this link, which is used to deduce relationships between

objects, according to the method proposed in Section 8.2.3.

As an example of this case consists in a data group associated with a report showing information

about some distinct objects of the application domain.

At the end of the procedure, the CAND list will include the set of data groups that have been

selected as candidate objects. Each group in the CAND list will have to be assigned with a

meaningful name describing the concept it represents. The data items of each group will make up

 - 72 -

the attributes of the object, e.g., its state. The attributes that appear in more than one candidate

object are analysed in a successive step according to the method presented in the next Section 8.2.3.

For the sake of precision, CAND is the set of candidate classes from which business objects can

be instantiated.

As an example of the application of the proposed method, let’s consider the following OrdList:

OrdList = {G1=(a,b,c), G2=(d,e,f), G3=(a,b,c,d,e,f,g), G4=(a,b,c,m,n), G5=(a,b,q,r), G6=(d,f,s,t,u)}

The final CAND list will contain the following groups of candidate business objects:

CAND = {(G1,m,n,g), (G2,g), G5, G6}.

8.2.2 Associating methods to classes

The identification of methods to be associated with classes essentially depends on two factors:

the degree of granularity of the chunks of code to be considered as potential methods, and the

definition of a criterion for assigning a potential method to a class.

In a Web Application the search for class methods can be centred on chunks of code with fine

granularity levels, such as inner page components like scripts or modules included in pages, or on

coarse-grained components, like pages or groups of pages. Finer the granularity level, greater is the

effort required for extracting the component from the code, and reengineering it as an object

method.

The technique proposes to consider physical Web pages (e.g., Server pages, Client pages) as

potential methods to be associated with the candidate objects of the Web Application, rather than

inner page components. This choice allows a reduction of the effort required for the object oriented

reengineering of the Web Application.

As to the problem of defining a criterion for associating methods to objects, a technique that

aims to minimize the coupling between distinct objects is adopted.

Measures of coupling between pages and objects are computed based on the accesses of pages

to the candidate object. A page accesses a candidate object when it includes instructions that define

or use the value of some object attribute. It is assumed that accesses made to define the value of

some object attributes produce a greater coupling than accesses made to use some object attributes.

Therefore, minimization of the coupling between objects is achieved by associating each page to

the object it is most highly coupled with. In particular, if a page accesses exclusively one object, it

is assigned as a method of that object. If a page accesses more objects, it is assigned to the object it

 - 73 -

accesses prevalently. In this second case, the accesses of the page to the other objects can be

considered as messages exchanged from the object the page has been assigned with, to the other

objects.

To implement the criterion for associating pages to objects, the following definitions are

introduced:

- M={mi}, is the set of pages (e.g., potential object methods - in the following the terms page

and method are used as synonyms);

- c is the generic element from the CAND list of candidate objects;

- αdef is a positive number expressing a weight associated with each define access made to an

object;

- ause is a positive number expressing a weight associated with each use access made to an

object;

- αdef > αuse ;

- Ndef,m,c is the number of accesses of type define made by a page m to the object c;

- Nuse,m,c is the number of accesses of type use made by a page m to the object c.

Moreover, the function Acc(m, c) that expresses the weighted number of accesses made by m to

c is defined as:

Acc (m, c)= αdef * Ndef,m,c + αuse * Nuse,m,c (1)

Said MAX [X] a function that returns the maximum value from a set X of values, the following

criterion is used to assign a method m to a class c:

m is assigned to c ∈ CAND ⇔ Acc(m , c) = MAX cj ∈ CAND [Acc(m , cj)] (2)

that is, the page m is assigned, as a method, to the class c iff c is the class such that the number

of weighted accesses made by the page m to c is greater than all the other weighted accesses m

makes to other classes.

When the criterion (2) is satisfied by two or more classes, the intervention of a software

engineer is required to establish the correct assignment of m with one of the classes.

Pages that do not make access to any objects are considered as coordinating modules controlling

the executions of other methods (in a Web Application this page usually corresponds to home

pages, or pages that address the user navigation along the Web Application).

 - 74 -

8.2.3 Identifying relationships between classes

The candidate classes in the CAND list may include common attributes: these attributes will

indicate potential relationships among the involved classes. These relationships are depicted as

UML association relationships.

For each set of classes having common attributes, a UML association is established between

them. Each common attribute is assigned just to one class of the set, and all these classes are linked

by an association relationship. The software engineer intervention is required to establish the correct

assignment of the attributes to the object.

The case of pages accessing more than one class will originate additional relationships. More

precisely, the accessing page is assigned with the object it is most highly coupled with, according to

the criterion (2), while a relationship is defined between the class the page is assigned to, and each

remaining class the page accesses. Also this kind of relationships is depicted as UML association

relationships.

In a successive refinement step, the recovered association relationships may be analysed in

order to assess whether a class with specialization or any aggregation/composition relationship can

substitute them.

Finally, a UML Class diagram will represent the recovered classes, their attributes and methods,

and the relationships among them.

8.3. Recovering UML Use Case and Sequence diagrams

The Reverse Engineering methods proposed for recovering use cases and sequence diagrams

from the code of a Web Application are presented in the following.

8.3.1 Recovering Use Case Diagrams

The problem of recovering use cases from the source code of a Web Application is solved on

the basis of the results obtained with the clustering approach presented in chapter 5. That approach

provided a set of clusters validated by an expert. The expert has to identify the user functionality

each cluster is responsible for. As introduced in chapter 5, this task is a human intensive task,

because it needs a comprehension of the semantic of the components of the Web Application under

analysis. However, approaches to recover, automatically, information about the semantic of these

components has been proposed and described in the following chapters.

 - 75 -

Groups of validated clusters can be associated with potential use cases of the Web Application,

and a use case model can be reconstructed for describing the external behaviour offered by the

application to the end users.

In order to obtain a Use Case Diagram, relationships among use cases may be deduced

analysing the links between corresponding clusters (this functionality is also supported by the tool

WARE: cfr. Figure 6.9). As an example, if a cluster associated with a use case ‘A’ is linked to just

another cluster associated with the use case ‘B’, a candidate <<include>> relationship from use case

‘A’ to use case ‘B’ may be proposed; if a cluster is linked to more other clusters, a possible

<<extend>> relationship among the use case corresponding to the former cluster and the remaining

ones may have to be considered. However, these indications provide the reverse engineer just with

simple suggestions about how use case diagrams can be drawn. Finally, actors in the Use Case

diagram are linked to use cases associated to clusters including any page requiring data input from a

user (e.g., Web pages including forms), or database connections.

8.3.2 Recovering Sequence Diagrams

As to the UML Sequence diagrams abstraction, for each use case (i.e., validated cluster) it is

possible to produce a Sequence Diagram whose objects will derive from classes associated with

cluster’s pages, while interactions among objects are deduced from the accesses that a page

assigned as a method to a given Class makes to other Classes.

A process, based on heuristic criteria, obtains the recovering of a sequence diagram. This

process includes the following steps:

- Draw a sequence diagram for each identified use case;

- Identify the pages composing the cluster (or group of clusters) associated to a use case;

- For each page in the cluster, identify the class which the page was assigned to as a method:

for each identified class put an object in the diagram;

- If a page assigned to an object of the Class A makes accesses to other objects of the Classes

Bi, draw an interaction between the object of A and each object of Bi;

- Assign each interaction with a meaningful name (corresponding to the name of the invoked

method) and define the list of parameters exchanged between the objects (deduced by analysing the

data flow between the Web Application interconnected items);

- Draw an interaction between an object and an actor if that object was assigned to a page

including input or output forms;

 - 76 -

- If there is a relation between pages assigned to the same class, it is considered as a call

between methods of the same Class, and therefore a 'Message to self' is drawn on the object life-

line.

According to the UML notation, in a Sequence Diagram the correct temporal sequence of the

events (e.g., interactions between objects) can be deduced by reading the flow of interactions from

upside to downside in the diagram. In the recovered Sequence Diagrams, this temporal sequence

may be reconstructed by statically analysing the control flow in the source code. As a preliminary

result, the temporal sequence may correspond to the lexicographic statement sequence. Therefore,

dynamic analysis can be used to refine the statically defined temporal sequence.

8.4. A case study

In order to assess the effectiveness of the proposed techniques, several controlled experiments

were carried out involving some real-world Web Applications. An example of these experiments is

shown in this section, where the results obtained in a case study are presented and discussed.

In the case study, the Web Application, designed to support the activities of undergraduate

courses offered by a Computer Science Department analysed in Chapter 6, has been considered.

During the first step of the recovery process, the code was analysed for identifying data groups,

according to the method presented in Section 8.2.1. Groups of data items involved in I/O forms, in

read/write operations on persistent data stores, and so on, were looked for, and the number of their

occurrences in the code was evaluated. The WARE tool (cfr, Chapter 6), that statically analyses the

source code of Web Applications, was used to support this task. The analysis retrieved 128

references to data groups including a total of 485 data items.

Therefore, synonyms/homonyms analysis was carried out and each data item was assigned with

a meaningful name. This task was accomplished by reading and inspecting the code, and analysing

the Web Application during its execution. At the end of synonyms/homonyms analysis, just 43

different data groups including a total of 26 different data items were defined.

These data groups were submitted to the candidature procedure Produce_Candidate_Objects

that automatically selected 8 candidate classes, including a total of 38 attributes (of course just 26

were different attributes). The candidate classes are listed in Table 8.1, where the set of attributes of

each class is reported. Some candidate classes presented common attributes that were exploited to

identify the relationships among the classes in the third step of the process.

In the second step of the process, the accesses each page made to the candidate classes were

analysed. Twenty pages that did not reference any data group were detected, since they had only

presentational or navigational purposes.

 - 77 -

The remaining pages were assigned as methods of the candidate classes according to the method

described in section 8.2.2. More precisely, for each page the function Acc(m,c) was computed with

respect to all the accesses to all the classes the page made, and each page was assigned to a class

according to the criterion (2) in section 8.2.2.

For evaluating the function Acc(m,c), different values had to be defined for the αDEF and αUSE

weights. During the experiments carried out with different Web Applications, several values for

αDEF and αUSE were tried in order to detect the ones that produced the best results (i.e., the best

assignment of methods to classes, according to the judgment of an expert). The best results were

achieved for αDEF = 1 and αUSE = 0.6, and this couple of values were used in the case study too.

Table 8.1: Candidate classes produced by the Candidature Procedure

Candidate classes and corresponding attributes
Student (Student name, Student surname, Student code, Student email, Student phone

number, Student password)
Teacher (Teacher name, Teacher surname, Teacher email, Teacher phone number,

Teacher password, Teacher code)
Exam Session (Exam date, Exam time, Exam classroom)
Tutoring (Tutoring date, Tutoring start time, Tutoring end time, Course code, Course

name)
Course (Course code, Course name, Course academic year)
Tutoring Request (Student name, Student surname, Student code, Tutoring request date)
News (Course code, News text, News number, News date, Teacher code)
Exam
Reservation

 (Student code, Student name, Student surname, Course code, Exam date, Exam
reservation date)

In the third step of the process, associations between classes had to be defined. In a preliminary

phase, candidate classes were examined in order to find classes with common attributes. This task

was carried out with the support of an automatic procedure.

For each set of classes including a same attribute, an association between these classes was

established, and each common attribute was assigned to the class that was better characterized by

that attribute, depending on the experimenter’s judgment.

Other relationships between classes were defined on the basis of accesses to the attributes of

other classes that were made by a method assigned to a given class. A relationship was established

between the class the method was assigned to, and the remaining classes whose attributes were

referenced by this method.

Figure 8.2 shows the UML class diagram representing the resulting business object model of the

Web Application, while Table 8.2 reports the list of the Web Application pages assigned as

methods to each identified class.

 - 78 -

Figure 8.2: UML class diagram representing the resulting business object model of the Web
Application

Tutoring request
Date

Teacher
Name
Surname
E-mail
Phone number
Password
Code

Tutoring
Date
Start time
End time

News
Number
Date
Text

Student
Name
Surname
E-mail
Password
Code
Phone number

Exam
Date
Time
Classroom

Course
Academic year
Code
Name

Exam Reservation
Date

 - 79 -

Table 8.2: Web Pages implementing Class methods

Class Web Application pages assigned as Class methods
Student chiediPass.html, cancellareg1.asp, cancellareg2.asp, visualizzareg2.asp,

prenotatiapp3.asp, FormCancPreRicevimento.asp, PreRicev3.asp, iscrivicorsi.asp,
regstudente.asp, regstudente.html, autenticazionestudente.asp, checkStudente.asp,
modificaiscriz2.asp, modificastud.asp, modificastud2.asp

Teacher autenticazionedocente.html, check.asp, registradoccorso.html, registradocente.asp,
eliminadoc.asp, eliminadoc2.asp, FormPreRicevimento.asp, modificadoc.asp,
modificadoc2.asp

Exam
Session

listaappelli2.asp, listaappellistud.asp, cancellaapp2.asp, cancellaapp3.asp,
prenotatiapp2.asp, modappello2.asp, modappello3.asp, modappello4.asp,
prenotaesame2.asp, prenotaesame3.asp, prenotaesame4.asp, insappello.asp,
insappello3.asp

Tutoring CancPreRic.asp, CancRic.asp, CancRic2.asp, FormCancRicevimento.asp,
FormPreRicev2.asp, FormModRicevimento.asp, ModRic.asp, ModRic2.asp,
VisListaRic.asp, VisPreRic.asp, FormInsRicevimento.asp, insRicevimento.asp

Course aggiungicorso.asp, aggiungicorso.html, listaappelli.asp, visualizzaapp.asp,
FormVisBacheca.asp, FormCancAvviso.asp, cancellaapp.asp, cancellacorso.asp,
cancellacorso2.asp, cancellareg.asp, visualizzareg.asp, prenotatiapp.asp,
FormVisPreRicev.asp, sceltacorsi.asp, modappello.asp, prenotaesame.asp,
modificadcnz.asp, modificadcnz2.asp, modificaiscriz.asp, insAvviso.html,
regcorso.asp, registracorso.html.

Tutoring
request

-

News VisBacheca.asp, CancAvviso.asp, DelAvvisi.asp, modappmsg.html,
modappmsg1.asp, FormInsAvviso.asp, insAvviso.asp

Exam reserv. -

In order to abstract the use cases of the application, the clustering method proposed in Chapter 5

was applied. As a result of the automatic clustering, 44 valid clusters were recovered that were

submitted to a validation step. Table 8.3 reports the list of validated clusters.

The validated clusters were initially associated to use cases and a top use case diagram was

produced. Figure 8.3 reports an excerpt of this diagram, showing the <<extend>> and <<include>>

relationships between use cases that have been deduced using the criteria proposed in Section 8.3.1.

For each of these use cases, a Sequence Diagram was drawn.

As an example of these diagrams, Figure 8.4 reports the one derived for the use case ‘Course

insertion’, that inserts in the database a new Course taught by a given teacher. The cluster

corresponding to this use case includes two pages: the client page ‘aggiungicorso.html’ and the

server page ‘aggiungicorso.asp’, both assigned to the object Course. The former page includes a

form requiring input of data by a user, therefore an interaction of this page with an actor was drawn.

The page ‘aggiungicorso.html’ does not refer to any other object, but is linked to the page

‘aggiungicorso.asp’ by a submit operation: this was modeled in the sequence diagram by the self-

interactions on the Course object. The page ‘aggiungicorso.asp’ makes a reference to some

 - 80 -

attributes of the object Teacher, then an interaction between the Course and Teacher object was also

drawn.

Table 8.3: Validated clusters with their descriptions
Cluster Id. Description

1 Home page
2 Teacher login
3 Teachers function menu
4 Teacher area entry point
5 Teacher area frameset
6 Tutoring date insertion (available to teachers)
7 Tutoring date deletion (available to teachers)
8 Tutoring area entry point (available to teachers)
9 List of registered students for tutoring (available to teachers)

10 Teacher registration
11 Assign a course to a teacher
12 Teacher data deletion
13 Undergraduate course insertion
14 Teacher and course data update
15 Teacher and course management area entry point (available to teachers)
16 Course deletion (available to teachers)
17 Student data deletion (available to teachers)
18 Students enrollment area entry point (available to teachers)
19 List of enrolled students display
20 Exam schedule modification
21 Insertion of a new date in the exam schedule
22 Deletion of a date from the exam schedule
23 List of students registered to an exam (available to teachers)
24 Exam schedule area entry point (available to teachers)
25 Exam schedule list display (available to teacher)
26 Bulletin board area entry point
27 List the news in the bulletin board
28 News insertion in the bulletin board
29 News deletion from bulletin board
30 Students area entry point
31 Lost password request (available to students)
32 Student Enrollment Area entry point
33 Student data update (available to students)
34 Student course enrollment
35 Exam area entry point (available to students)
36 Exam schedule listing (available to students)
37 Register a student to an exam
38 Tutoring request area entry point (available to students)
39 Tutoring requests insertion (available to students)
40 Tutoring date deletion (available to students)
41 Tutoring date update (available to teachers)
42 Utility module ‘adovbs.inc’
43 Obsolete functionality (old version of Insertion of a new date in the exam schedule)
44 Work in progress page for not yet implemented functionalities

 - 81 -

Figure 8.3: An excerpt of the Use Case diagram recovered from the Web Application

Figure 8.4: The UML sequence diagram representing the interactions for the use case ‘Course
insertion’

Tutoring
Management

Teacher and Course
Management

Students’ Enrollment
Management

Examinations
Management

Bulletin Board
Management

Teacher Login

Teacher
management

Teacher
<<include>>

<<extend>>

<<extend>>

<<extend>>

<<extend>> <<extend>>

Course
Insertion

<<extend>>

Student
Management

Student

<<extend>>

<<extend>>

<<extend>>

Teacher :Teacher:Course

Get teacher code

Input course data (course
code, name, academic year)

Insertion OK

Insert new
Course

 - 82 -

All the recovered diagrams were validated by submitting them to the judgment of the software

engineers that had developed the Web Application. These diagrams were compared against the

original diagrams designed by the software engineers: no substantial differences were found

between the recovered diagrams and the original ones.

It was concluded that the recovered diagrams represented the same concepts and the differences

with the original ones were mainly due to implementation details. Similar results were obtained in

the other experiments that have been carried out: these results showed us the effectiveness of the

method.

Further details about the methods and the techniques presented in this chapter can be found in

[Dil03] and [Dil03b].

8.5 Future Works

In future work, the definition of criteria for a further automation of the model reconstruction

will be addressed, as well as the investigation on possible approaches for identifying UML

aggregation, composition, or generalization-specialization relationships between classes will be

carried out. A wider experimentation involving more complex Web Applications, implemented with

different technologies, will be moreover carried out, in order to extend the validity of the proposed

approaches.

 - 83 -

Chapter 9: Concept Assignment for client pages

In this chapter, a method providing automatic support in the assignment of concepts to Web

documents is presented. This method is based on Information Retrieval principles. Descriptions of

the heuristic algorithms defined and of the tool realized to support the method are provided in this

chapter with the results of some experiments carried out to validate it.

9.1 Introduction

The recovering of semantic information about the functionality realized by the components of a

Web Application cannot be addressed only analysing the structural information of its components

(i.e. Web pages, server and client script modules, etc.). In the experiment presented in the previous

chapters, human expert, without any automatic support, has addressed this task, and the effort of

clustering validation and concept assignment was the most expensive step of the Reverse

Engineering process (cfr. Table 7.4). So, in the following chapters techniques to recover,

automatically, information about the semantic of the components of a Web Application are

proposed.

In this chapter the textual information contained in these artefacts are analysed, with the aim to

propose a concept describing the contents of a client page.

The term concept assignment was introduced by Biggerstaff et al. [Big93] to describe the

problem of assigning a synthetic description regarding the computational intent of segments of

source code. A concept was defined as a description at a higher level of abstraction than the source

code. Several approaches to provide automatic support to the concept assignment process have been

proposed for traditional (i.e. not web based) applications, such as the one described in [Gol01]

where a hypothesis-based concept assignment method for COBOL programs is proposed.

Differently from traditional software applications, web based applications are characterised by a

large amount of textual information contained in the pages making up them; usually, this

information is displayed in the pages forming the user interface to improve the usability of the

application by describing possible uses of the application, available user functions, arguments

discussed in the page and so on. Moreover, special edit formatting (as bold, italics, underlined

characters) is usually used to highlight some piece of the displayed text related to the most relevant

information contained in the page.

 - 84 -

Both the text contained in the web pages, and the editing format used to display it, are a relevant

source of information that can be used in a concept assignment process involving a Web

Application. This method is exploited to automatically support the identification of concepts to be

associated with artifacts recovered by reverse engineering the Web Application. The motivation of

this choice is based on the fundamental hypothesis that the concept to assign to a web page

displayed to a user is contained inside the text of the page itself.

There are several solutions described in the literature to the problem of obtaining a synthetic

description of a given text document. In particular, Information Retrieval (IR) methods are based on

the analysis and elaboration of the textual content of the document in order to be able to extract few

relevant terms allowing the classification (i.e. a synthetic description) of the document. These IR

methods may be classified with respect to the granularity of the analysed piece of text. Some

methods consist of the analysis of each word of the document, determining an array of terms

[Har92] on which some appropriate elaborations are made to identify the terms usable to classify

the document. Some other methods consist of the analysis of single words and bi-grams (sequence

of two consecutive words in the text) [Ton03]. These methods may be useful to find index words

for a document, or to evaluate the statistic similitude between two documents.

9.2 A specialized conceptual model describing a Web Application

A conceptual model describing the components of a Web Application and the relationships

among them has already been reported in Chapter 3. In that model the attention was focused on the

structural aspects of a Web Application. In this chapter the part of the conceptual model describing

the textual content of the Web Application is focused.

Web pages contain the information to be shown/provided to/from a user, being the information

made up by text, images, multimedia objects, etc., embedded in the page itself, or retrieved/stored

from/in a file or database. Thus, in a Web page, it is possible to distinguish a control component

(i.e., the set of items - such as the HTML code, scripts and applets - determining the page layout,

business rule processing, and event management) and a data component (i.e., the set of items - such

as text, images, multimedia objects - determining the information to be read/displayed from/to a

user).

In particular, just the HTML code is considered as the control component while for the data

component are considered the pieces of text, i.e. any sequence of words included by two HTML

tags, that are displayed to a user using the text formatting defined by the HTML tags.

 - 85 -

Of course, a HTML tag in the Control Component may be nested into another one, as well as a

tag may have a list of attributes. Moreover, a word may have synonyms and may derive from a

stem (e.g. the masculine form of a word is the stem of a feminine one, the singular form of a word is

the stem of a plural word, the infinite tense of a verb is the stem of any other tense, and so on); in

addition a word may be a stopword, i.e. a word (such as articles, conjunctions, prepositions,

exclamations, pronouns) that does not provide any significant contribution to the meaning of the

sentence it belongs to.

Each piece of text from a page is characterised by its meaning and, therefore, can be associated

with a concept. Analogously, a Web page can be associated with a concept describing its meaning:

this concept can be selected from all the concepts associated with the pieces of text included in the

page.

These aspects of a Web page are represented by the UML class diagram shown in Figure 9.1,

providing the conceptual model of a Web Application considered in the remaining part of this

chapter.

9.3 Identifying the Concepts

The identification of the concept to assign to a Web page is based on the following hypotheses:

• Client Pages are used to allow the interaction of the users with the Web Application;

• Client Pages contain textual information to communicate the aim/scope/topic of the page to

the user;

• some special editing formats (e.g. bold, italics, underlined, character size, etc,) are used in

the page to highlight some pieces of the text (i.e. some words) that would summarise the

aim/scope/topic of the page;

• the pieces of text declaring the main aim/scope/topic of the page are, usually, at the top of

the page;

• the text format is defined by appropriate HTML tags and attributes.

Thus, the particular editing format and position of the text in a page represent information that

can be exploited to identify automatically those words that may describe conceptually a page, i.e.

the Concept to assign to a page.

 - 86 -

Figure 9.1: The Web Application’s reference conceptual model

A stepped process has been defined for accomplishing the task of assigning a concept to each

Web page. The input data of the process are the client pages, and for each client page the following

steps are executed:

1) separation of the control component from the data component of the page;

2) normalisation of the text making up the data component; each piece of normalised text is a

candidate concept;

3) computation of a relevance weight for each candidate concept;

4) clustering of similar candidate concepts and computation of a weight for each cluster of

concepts;

5) selection, among the candidate concepts, of the concept to assign to the page.

Built Client Page

Server Page

0..*

1

0..*

1

<<builds>>

Data Component

StopWord

Word

has synonym

has stem

Web Page

Static Client Page

Attribute

Name

Tag

Name
Weight

nested

0..*0..*

Control Component

0..* 0..*

Client Page

File name

1111

Text

Weight

0..*0..*

0..1

0..1

0..1

0..1

0..*0..1 0..*0..1

Concept 1

1

1

1

1

1

1

1

 - 87 -

9.3.1 Separating the Control Component from the Data Component

In the first step of the process, the code of each client page is parsed with the aim of separating

the HTML tags making up the control component from the pieces of text making up the data

component .

Let’s consider the following example:

<html>
Hello World
 <h6>I am here</h6>

</html>

The corresponding sequence of tags is the following:

<html> <h6> </h6> </html>

will form the control component, while the two sentences: 'Hello World’ and 'I am here’

will form the data component.

Also the text making up the values of some tag attributes have to be considered, such as the

value of the alt attribute of the IMG tag, because they could give a significant contribute to the

definition of the page concept.

The control and data component of each page and the relationships among them are stored into a

repository that stores all the information about a Web Application represented by the Web

Application’s conceptual model in Figure 9.1.

9.3.2 Text Normalisation

In this step, each piece of text belonging to a data components is analysed in order to:

• eliminate stopwords;

• substitute each word with its stem, when necessary;

• resolve synonyms, by substituting each word having one or more synonyms with a reference

synonym.

At the end of this step, each normalised text will correspond to a candidate concept.

The normalisation operation is needed in order to avoid that two or more text pieces including

synonym words, or using singular/plural or masculine/feminine forms are associated with different

concepts, while they actually represent the same concept.

 - 88 -

Just as an example, let us consider the following two sentences:

'At the party the actresses had on dark dresses'

'At the reception all the actors had on black suits'.

Both sentences are normalised as follows:

'party actor have dark suit'

since 'actor' is the stem for 'actors' and 'actresses', 'have' is the stem for 'had', 'suit'

is the stem for 'suits' and 'dresses', and 'party', 'dark' and 'suit' are the reference

synonyms for 'reception', 'black' and 'dress' respectively; moreover all the other words

('at', 'the', 'all', 'on') in the two sentences are stopwords and then they will not be included in the

normalised form. In this way, the normalised forms of the two sentences are actually associated

with the same concept.

The normalisation process is also needed to allow the successive step of concepts clustering to

be carried out.

9.3.3 Computation of the Concept Weights

In this step, a weight is computed for each candidate concept (i.e. each normalised text)

identified in a page, on the basis of both the editing format used to display the piece of text

associated to that candidate concept, and the position of the text in the page.

Different editing formats can be used to give more or less emphasis to text. Usually, editing

formats such as bold, italics, underlined characters, as well as a large size characters, are used to

give greater emphasis to text, while small size characters are used to reduce the emphasis of the

text.

In a client page, the text editing format is determined by the tags, and tag attributes, that enclose

the text itself. HTML tags that provide either no emphasis, or greater emphasis, or less emphasis to

text are distinguished by normal editing formatting.

For example, the tags and are used to display the enclosed text in bold format, while

the tags <SMALL> and </SMALL> are used to display the enclosed text with a reduced size of the

 - 89 -

character. Therefore, it is possible to classify the HTML tags according to the emphasis they give to

the text.

Table 9.1 shows an excerpt of the HTML tags classification that has been used in the proposed

method. The tags have been classified as:

• Neutral, i.e. no emphasis is given to the text,

• Medium, just a little emphasis is given to the text;

• High, a significant emphasis is given to the text;

• Very High, the maximum emphasis is given to the text;

• Low, to reduce the emphasis of the text;

• Very Low, to give the minimum of emphasis to the text.

A weight has been associated to each class of tags; the values of the weights shown in Table 1

are the ones that produced the best results in some experiments that have been carried out.

Similarly, a classification and a set of weights was defined for the tag attributes.

A particular consideration has to be done for the tag A (i.e. the tag specifying an anchor for a

hyperlink to another page): the effect of this tag consists of highlighting the hyperlink (usually by

underlining it), but the text associated with this tag, typically, provide a description (i.e. a concept)

of the target page of the hyperlink, rather than a description of the page containing it.

Since more tags may be applied to a text, their total effect on the text is given by their

cumulative actions; as an example, the following statement:

 <i> Hello World </i>

will display the sentence ' Hello World' both in bold and italic format.

To take into account the cumulative effects of tags, the Total Weight (TW) is considered. It is

computed as the product of the single weights of each tag involved in the cumulative set of Tags

applied to a piece of text:

 TW (TS(Ci)) = ΠT∈TS(Ci) W (T)

where TS is the set of tags cumulatively applied to the text forming the candidate concept Ci, T

is the generic tag in TS and W(T) is the weight associated to the single tag T.

 - 90 -

Table 9.1: Classification and weight of the HTML Tags

Tag Name Class Weight
S, DEL, A, SMALL, STRIKE, ………. Very Low 0,25
KBD, H6, CITE, CODE, … ……… Low 0,5
COL, COLGROUP, COMMENT, DD, H5, DEN, DIR, EMBED,
EM, THEAD, BUTTON, TFOOT, FIELDSET, FN, FONT,
FRAME, FRAMESET, TEXTAREA, DIV, ADDRESS, TT, U,
UL, VAR, WBR, XMP, SERVER, SHADOW, SIDEBAR, BODY,
ACRONYM, BR, HTML, ………

Neutral 1

B, OL, DL, STRONG, MENU, MARQUEE, H3, BLINK, BIG,
Q PRE, TH, TR, I, CENTER, CAPTION, FORM, ………

Medium 1,5

TITLE, H2, ……… High 2
H1 Very High 3

A similar computation is made for tag attributes, when they act in a cumulative way, and a Total

Attribute Weight (TAW) is defined as the product of the weights associated to the single attributes.

As an example, let us consider the HTML web page in Figure 9.2, where the boldface letters

between the HTML tags would represent any text to display to a user:

<title>a b c d e f</title>
<html>
a b c d
 <h6>x y z</h6>

<div>w x y</div>
<h1>a b c d g h i j k l
 <code>c d e f g</code>
</h1>
</html>

Figure 2: An example of a HTML Page

For the sake of brevity, the text represented by the boldface letters is considered as already

normalised; in this case the following six candidate Concepts, named C1…C6, have been identified:

C1={a,b,c,d,e,f}

C2={a,b,c,d}

C3={x,y,z}

C4={w,x,y}

C5={a,b,c,d,g,h,i,j,k,l}

C6={c,d,e,f,g}

 - 91 -

While the control component of the page is formed by the tag sequence:

<title> </title> <html> <h6> </h6> <div> </div> <h1>

<code> </code> </h1> </html>

According to the values in Table 9.1 the weights associated to each tag in the control component

are:

Tag H1 TITLE B DIV, HTML H6, CODE
W(T) 3 2 1.5 1 0.5

And the cumulative weights associated with each one of the six candidate concepts C1, …, C6

are:

 C1 C2 C3 C4 C5 C6
TW 2 1.5 0.75 1 3 1.5

The Position of a candidate concept in the page displayed to the user is the other feature to

consider to evaluate the emphasis given to the displayed text. Indeed, the text displayed at the top of

a page is read as soon as the page is displayed in the browser window, without scrolling it, and that

gives more emphasis to that piece of text. Vice-versa, the text at the bottom of the page has, usually,

a less emphasis and may require the scrolling of the page in order to allow the user to read it.

The Position of a candidate concept can be evaluated by considering a text string formed by all

the normalised text, making up the candidate concepts. These concepts are copied in the string with

the same sequence by which they are encountered in the source code of the page (i.e. with the same

sequence by which they are displayed). Let us say CS this string, LS the length of the string CS, and

Pos(Ci) the position in CS of the first character of the first word of the candidate concept Ci.

Position Weight (PW) must be computed to associate to each candidate concept Ci, as follows:

PW (Ci) = 1 - [Pos(Ci) / LS (CS)]

As an example, the position weights for the six candidate concepts of the page in Figure 9.2 are:

 C1 C2 C3 C4 C5 C6
PW(Ci) 1 0.80 0.68 0.59 0.5 0.16

 - 92 -

Finally, the Concept Weight (CW) to be associated with each candidate concept Ci of a page is

computed as:

CW(Ci) = TW(Ci) * TAW(Ci) * PW(Ci)

Of course, if no attribute value is considered it is TAW(Ci)=1.

The Concept Weight CW(Ci) takes into account both the editing format used when the

candidate concept Ci is displayed, and the position in the page where it is displayed.

As an example, the following table reports the CW(Ci) values computed for the six candidate

concepts of the page in Figure 9.2.

 C1 C2 C3 C4 C5 C6
CW(Ci) 2 1.21 0.51 0.59 1.5 0.24

9.3.4 Concept Clustering

Some particular cases are those where different candidate concepts contain the same words, or

two or more candidate concepts share all their words, or when all the words of a candidate concept

are included in another concept.

These cases may indicate those concepts may share any common sub-concept, or that some

concepts may be equivalent, or that a concept is composed by one, or more, other ones.

However, if a same group of words is included in more than one candidate concept, this group is

likely to be more representative of the actual concept to assign to the page.

This communality of words among different candidate concepts may be exploited to identify

and cluster common concepts, in order to reduce the number of candidate concepts of a page and to

built more significant concepts.

In this case, the proposed clustering criterion is based on a metric of similarity SD between

couples of candidate concepts, that is defined as follows:

SD(Ci, Cj) = | (FCi∩ FCj) | / Max(|FCi|,|FCj|)

where:

• Ci and Cj are two candidate concepts;

• FCi = {W1,…Wn} and FCj = {W1,…,Wm} are the sets of the words forming the candidate

concepts Ci and Cj respectively;

• |S| is the cardinality of the set S;

 - 93 -

Thus, if two candidate concepts share no words, the Similarity Degree (SD) is zero, while if

they share all their words SD is 1.

Two candidate concepts Ci and Cj are considered to be similar if the value of SD(Ci, Ci) is

equal or greater than a predefined threshold TH, so they can be clustered together according to the

following rule:

Ci is similar Cj iff SD(Ci, Ci) ≥ TH

Thus, each cluster will group the candidate concepts satisfying the above condition; among all

candidate concepts grouped into a cluster the Prevalent Candidate Concept (PCC) can be identified,

that is the candidate concept having the maximum value of CW(Ci), being Ci a candidate concept

belonging to the considered cluster. The PCC of each cluster is then considered as the concept

describing the cluster itself.

Finally weight has been computed for each cluster, called ClW, defined by the sum of all the

CW(Ci) of the candidate concepts in the cluster:

 ClW (CLi) = ΣCj∈CLi CW(Ci)

Table 9.2 shows the values of SD(Ci, Cj) for the six candidate concepts of the example HTML

page in Figure 9.2, while Table 9.3 reports the results of the clustering of those candidate concepts

by using TH=0,65, and Figure 9.3 shows a graphical representation of the resulting clustering where

the PCC of each cluster is shown by a boldface circle.

Table 9.2: The SD(Ci, Cj) values of the candidate

concepts of the example HTML page in Figure 9.2

SD(Ci,Cj) C1 C2 C3 C4 C5 C6
C1 1
C2 0,67 1
C3 0 0 1
C4 0 0 0,67 1
C5 0,4 0,4 0 0 1
C6 0,67 0,4 0 0 0,3 1

 - 94 -

Table 9.3: The results of the clustering with TH=0,65
 Composition PCC Concept Weight
CL1 {C1,C2,C6} C1 3.45
CL3 {C5} C5 1.50
CL2 {C3,C4} C3 1.10

Figure 9.3: A graphical representation of the clustering results in Table 3

9.3.5 Selecting the Concepts

The identified clusters are sorted in a descending order with the values of ClW(Cli): the

prevalent candidate concept of the cluster at the top of this list is proposed as the concept to assign

to the page from which the candidate concept was extracted.

For the example page in Figure 9.1, C1 is proposed as the concept of the page.

9.4 The Web Concept Finder Tool

In order to validate the proposed method, a tool named Web Concept Finder (WCF) that

supports the method, has been developed.

WCF tool is composed of a set of separate modules, written in Microsoft Visual C++ and

Microsoft Visual Basic languages. The architecture of the tool is shown in Figure 9.4.

The description of the WCF tool modules follows.

C1

C4

C5

C2

C6

CL1

CL3

CL2

C3

 - 95 -

• Control-Data Separator. This module implements a parser of HTML pages, and separates the

data component from the control component of each parsed page. Parsing results are stored in

the ConceptDB database.

• Word Finder. This module implements a pre-processing of the data component extracted by

each page, for extracting the single words and deleting punctuation. Output of this module is a

filtered version of the data component text, which is written in ConceptDB database.

• Stopword Eliminator. This module deletes stopwords from filtered Concepts.

• Stemmer. This module tries to transform words into their stems. Realization of the Stemmer

module depends on the language used in the data component of the pages. Most of the algorithm

solving stemming problem are base on the Porter algorithm [Por80], applicable to English

language. This algorithm consists in a set of transformation rules by which some affixes and

suffixes are deleted from words. This Porter algorithm cannot be used for languages such as

Romance languages (French, Italian, Spanish, Portuguese, etc.), because these languages have

more complex grammar rules, and many exceptions, than English language. More complex

algorithms are needed to stem words in these languages, such as those developed for the

Portuguese language [Ore01] and Spanish language [Hon00]). Because, the text of the analysed

Web Application was written in Italian language, a stemmer for Italian language has been

implemented. It exploits the grammar analysis and spell checking functionalities of Microsoft

Word 2000. A set of 177 transformation rules has been considered. The most of these rules are

applied to transform conjugate forms of verbs to infinitive forms. To reduce the effect of

incorrect stemming due to grammar exceptions, a spell checking of each stem is performed

before the substitution of the word with its stem.

• Synonym Tool. This module further reduces the size of the set of filtered text, by resolving

synonyms of the words. All the synonyms of a word are looked for within the set of filtered

text, and therefore they are substituted with the same word.

• Concept Weighter. This module calculates the Concept Weights, using the method described in

Section 9.3.3.

• Cluster Finder. This module executes the concept clustering algorithm described in Section

9.3.4. Candidate Concept Clusters, Prevalent Candidate Concepts and Cluster Weights are

identified and calculated. Results are reported in ConceptDB database.

• Page Concept Finder. This is the only module with a user interface. This module reports the

ranking of the Candidate Concepts, sorted in descending order with the Cluster Weights.

 - 96 -

Figure 9.4: The architecture of the Web Concept Finder Tool

9.5. Experimental results

The proposed method has been experimented on a number of medium-sized Web Applications

selected from real world. The aim of the experiment was to assess the effectiveness of the method to

support the comprehension of the applications. In order to evaluate the effectiveness, the concepts

assigned to the Web pages of the applications and proposed automatically by the method were

compared with those ones obtained by a 'manual' concept assignment process carried out by

software engineers who were unfamiliar with the applications.

A first experiment involving four primarily static web applications, i.e. applications whose

client pages are mainly implemented by HTML and with no user-interactivity, was carried out.

According to the classification proposed by Tilley and Huang (cfr. Section 2.2) they were Class 1

web applications. This type of applications has been selected since they usually have a large number

of client pages with a lot of text inside describing the topics the web site deals with. The goal of this

Web
site
Web
site

Concept
DB

Concept
DB

Control - Data Separator

Preprocessing Tools

Word Finder

Stopword Eliminator

Stemmer

Synonym Tool

Concept Weighter

Cluster Finder

Page Concept Finder

HTML Tidy

Web Concept Finder

Web
site
Web
site

Concept
DB

Concept
DB

Control - Data Separator

Preprocessing Tools

Word Finder

Stopword Eliminator

Stemmer

Synonym Tool

Concept Weighter

Cluster Finder

Page Concept Finder

HTML Tidy

Web Concept Finder

Concept
DB

Concept
DB

Control - Data Separator

Preprocessing Tools

Word Finder

Stopword Eliminator

Stemmer

Synonym Tool

Concept Weighter

Cluster Finder

Page Concept Finder

HTML Tidy

Web Concept Finder

 - 97 -

experiment was to verify that the concepts detected by the proposed method actually coincided with

the main topic addressed by each analysed page.

The first considered web application (namely WA1) consisted of the web site of an Italian

University, the second one (WA2) was a web site dealing with the Italian medieval history, the third

one (WA3) was a web site reporting touristic information about an Italian island, and the fourth one

(WA4) was the web site of an Italian research network.

Table 9.4 shows the total number of Client pages of each analysed application, together with the

total number of HTML tags and Data Components extracted after the execution of the first phase of

the process described in Section 3. The last row reports the average number of Data component for

client page.

Table 9.4: Some data about the analysed Web Applications

 WA1 WA2 WA3 WA4
Client Page # 104 62 58 31
HTML Tag # 23783 8121 13660 13515
Data Component# (DC#) 3446 1304 2322 2992
Average DC# for page 33.14 21.03 40.04 96.52

The text making up each element of the Data Component was normalised producing the

candidate concepts. A weight was computed for each candidate concept according to the formulas

presented in section 9.3.3. Therefore, the Concept Clustering step was executed and similar

candidate concepts were identified and grouped. Several different threshold values has been tried

for concepts clustering and, for all the applications; the best results have been obtained with a value

of Threshold of 0.8.

For each page, the concept clusters were sorted as described in section 9.3.4 by producing a

sorted list. The Prevalent Candidate Concept of the cluster at the top of each list was taken as the

Concept describing the page corresponding to that list.

The selected PCCs were compared with the ones produced 'by hand' by some software

engineers. The result of this analysis was that all the selected PCCs contributed to provide the right

concepts to the page but in most cases they did not provide the full page concept (according to the

ones provide by the software engineers) but just partially described it. Indeed, for WA1 only about

the 20% of the PCCs just provided the full page concept, while for WA2 about 43%, for WA3 31%

and about 65% for WA4. However, the full page concept could be obtained by merging the selected

PCC with the PCCs of the other clusters that immediately followed the first one in the cluster

ordered list. In particular, just considering the first 5 clusters (i.e. the first 5 PCCs) in each list, for

WA1 there are the 91% of successful cases, the 60% of successful cases for WA2, the 92% of

 - 98 -

successful cases for WA3, and 80% of successful cases for WA4. The percentage of successful

cases was greater than 93% by considering the first 10 clusters of each ordered list.

One of the reasons because the selected PCC was not able to fully describe the page was that in

many cases the PCC was derived from the main title of the page displayed to the user, while the

complete concept of the page was formed both by that title and one or more subtitles (represented

by a less weighted candidate concept due to the minor edit formatting evidence and the successive

position in the page).

Thus, it is possible to conclude that to obtain better results not just the PCC of the first cluster in

the list has to be considered, but also the ones that immediately follow it in the list. Indeed, in some

other experiments that have been carried out, considering the first three to six clusters in the list

resulted in an average percentage of successful cases greater than 70%.

These data confirmed the validity of the proposed method: in all the experiments, the selected

first PCC rightly described, even if partially, the actual page concept, while the PCCs that are in the

immediate successive position in the list are able to describe the page concept completely.

The method can be used to support the assignment of a meaning to software artefacts extracted

applying the Reverse Engineering process previously described. As an example, it allows to reduce

the human effort related to the association of a meaning to a cluster of pages.

Further details about this method can be found in [Dil04e].

9.6 Future works

Further work should be addressed in the context of Web Applications with large dynamic

content, whose pages can be created on-the-fly, depending on the user interaction with the

application.

The experiments highlighted some limitations of the method too, and possible solutions to these

limitations had to be explored. As an example, the results produced by the clustering algorithm used

in the final steps of the proposed method can be improved by considering also the relative position

of two candidate concepts in the page and defining new criteria to group two successive concepts.

Moreover, the combined usage of the proposed method together with 'traditional' Information

Retrieval methods should be analysed in order to obtain more effective results.

Future work will have to consider also the analysis of style sheets defining the edit formatting of

page content, as well as the analysis of other languages used for implementing Web Applications,

such as XML.

 - 99 -

Chapter 10: Recovering Interaction Design Patterns

In this chapter a method supporting the identification of Interaction Design Patterns in the

source code of Client pages of a Web Application is presented. The method, the reference model

and the supporting tool that have been developed are described in this chapter. The results of some

explorative experiment are also reported.

10.1. Introduction

In the previous chapter, the problem of the concept assignment of client pages has been

addressed. The proposed method recover concepts that describe the content of a client page, but not

the functionality it realizes. In this chapter a method is proposed to identify if a client page contains

a well-known Interaction Design Pattern. The presence of this pattern is a remarkable clue for the

human expert to individuate the functionality realized by the client page.

The concept of design pattern has been introduced in software engineering to produce more

flexible and reusable software systems. A design pattern provides a reusable solution to a problem,

and in object oriented systems it consists of a collection of related classes and objects [Gam95].

However, the applicability of the design pattern concept is not limited to the object oriented context.

Indeed, design patterns have been defined and catalogued in the context of Human Computer

Interaction to design User Interfaces (UI) ([Hill], [Hcip], [Bor01], [Tid98]), where a UI pattern

provides a common way for a user to interact with a software system.

Related to UI patterns are Web Interaction Design Patterns (WIDP) that provide a solution to

the classical interaction problems of Web Applications users. As an example, typical interaction

patterns in a Web Application include the ones allowing a user to search for an item on the Web, to

register at a web site, to participate to a user forum, etc. Specific Web UI patterns have been

proposed in the literature by [Duy02], [Gra03] and [Wel03]. In particular, van Welie in his Web site

[Wel04] provides a catalogue of interaction design patterns for Web Applications.

In van Welie’s catalogue, patterns are described in terms of the Problem addressed by the

pattern, the Context where it should be used, the Solution to use for solving the Problem and an

Example providing a screenshot and some additional text to explain the context of the particular

solution. As an example, Table 10.1 shows the description of the Login pattern as it is reported in

[Wel04].

 - 100 -

Table 10.1: The ‘Login’ Web Interaction Design Pattern description

Problem The users need to identify themselves so that stored data about/of them can be used in

the process they are in.

Context When users frequently return to a site that uses large amounts of data about or

belonging to the users, it is convenient to have users enter that information once and use it again for

future visits to the site. Usually the information that is stored is personal information and can

include name, age, gender, shipping addresses, stock portfolio, bank account numbers and credit

card numbers. In order to be able to access their data, users must complete their Registration first.

For many site types it can be convenient to store information of/about visitor. Often these are E-

commerce Site, Community Site or Web-based Application such as electronic banking applications.

Solution When needed, ask the users to login using a combination of a username and a

password

Example

Although the necessary degree of abstraction that characterizes a pattern description, a pattern

can be actually used if it is defined precisely, in order to allow a software engineer to find and apply

it. As an example, an effective definition of an interaction pattern can be given in terms of the UI

Model fragments it typically comprises.

Recovering the WIDPs implemented in existing Web Applications represents a viable solution

to detect components to be reused for developing new applications, or for comprehending an

existing application to be maintained, or evolved.

While several approaches for detecting recurrent design patterns from the code or the design of

object oriented systems have been proposed in the literature ([Ase02], [Bal03], [Ton99]), the

problem of reverse engineering a Web Application for detecting the WIDPs it implements has not

yet been addressed.

In this chapter is proposed a method for identifying the WIDPs implicitly implemented in a

Web Application that is based on the detection of the characteristic features (such as UI Model

fragments, or lexical terms) they include. The method requires that fragments that are characteristic

 - 101 -

of a given pattern must be preliminary identified. To reach this aim, a metric that expresses the

degree of characterization of a feature for a given pattern, with respect to a family of instantiations

of the pattern, has been defined.

Therefore, an interaction design pattern is identified in a Web page by recognizing the most

characteristic features of that pattern included in the page The method requires the reverse

engineering of the Web Application’s code in order to identify the code components implementing

the UI fragments.

10.2. Background

In the context of Web Design Interaction Patterns, although there may be many different ways

of implementing a solution to the same problem (i.e., there may be a family of instances of a same

pattern), some characteristic UI fragments in the different implementations can be found. As an

example, characteristic fragments of the ‘Login’ pattern shown in Table 1 will include a form with

two input fields, a submit button and ‘login’ and ‘password’ texts labeling the input fields.

Generally, an interaction pattern in a Web page is characterized both by the UI graphical items

it includes (such as tables, forms, grids, input fields, etc.), both by lexical items i.e., text that is

shown to the user, and that describes the interaction function (such as login, poll, site map etc.).

Hereafter a feature may be defined as the occurrence of a UI graphical items or of a lexical items

included in a page of a Web Application. The occurrence of each feature in an existing Web

Application can be deduced automatically by analysing the code of the application.

These features can be used as clues for detecting interaction patterns in the code of existing Web

Applications. The features that are more effective to describe a given pattern are those that are

associated most frequently with the different instances of that pattern, and that are, at the same time,

specific of the pattern. A specific feature is the one that can be often found in a given family of

patterns, but rarely exists in other patterns.

The definition of characteristic features that can be associated with Web Interaction Design

Patterns and the problem of assessing the effectiveness of a feature to recognize a given pattern are

addressed in the following sub-section.

10.2.1 Characterization of Patterns’ features

Given a pattern P, in order to identify its most characteristic features, a set of client Web pages

has been selected, each one containing just an instantiation of a pattern P. This set of Web pages is

called Training Set (P), and the set of features they exhibit has been collected. Considered features

 - 102 -

include the UI model fragments reported in Figure 10.1 as a class diagram. The class diagram

represents the UI fragments that are usually included in a Web page and possible relationships

between them, which are considered as possible features of a WIDP. The model below is a

specialization of the conceptual model described in section 3.3.

Figure 10.1: User Interface Fragments Model

For each pattern P and feature F, let’s consider the frequency Freq(P, F) of the feature F in the

Training Set (P):

Freq(P,F) =∑wp∈TrainingSet(P)Occ(wp,F) /Card(TrainingSet(P)) (1)

Where:

• Occ(wp,F)=1 if the feature F is included in the wp Web page, elsewhere Occ(wp,F)=0

• Card(TrainingSet(P)) is the cardinality of the Training Set(P).

Text

Textarea

Password

Button

Submit

Reset

File

Radio

SelectCheckbox

Image

Hidden

Form

Input Field

Cell

Table

Row

Web Page

Image

Anchor l ink

link

UI Fragment Client Page

KeywordPage Text

 - 103 -

Of course, 0≤Freq(P,F)≤1, where Freq(P,F)=0 means that F is never used for implementing the

pattern P, while Freq(P,F)=1 means that F is used in every instantiation of the pattern P.

Besides the frequency of a feature, the specificity Spec of a feature for a given pattern P must be

considered. It is an indicator of how much a feature F is specific of a pattern P. The specificity of a

feature F for P can be evaluated with respect to a set of considered Patterns (e.g., all the patterns in

Welie’s catalog, or a subset of them) and by assessing frequency of the feature F in each pattern.

The set of considered patterns is called PatternSet.

The average value of the frequencies of the Feature F in each pattern of the PatternSet is called

Av(F) and it is expressed as it follows:

Av(F)=∑p∈PatternSetFreq(p, F)/ Card(PatternSet) (2)

Therefore Spec can be evaluated by the following formula:







 >−
=

Elsewhere

ifFAvFPFreq
FPSpec

0
(3)

Av(F)F)Freq(P,)(),(
),(

Of course, Spec(P,F) varies in the range [0,1[.

Spec(P,F)= 0 when Freq(P,F) ≤Av(F), that is, a feature F is less frequent in P than in the

complete set of considered patterns.

More frequently the feature F is encountered in the P pattern’s instantiations, and less frequently

in other patterns’ instantiations, the greater is the specificity of the feature F for the pattern P.

Finally, in order to evaluate how much a feature is characteristic of a given pattern, the

Characterization Weight CW(P,F) of a feature F for a pattern P is defined as it follows:

CW(P,F) = Freq (P,F) * Spec (P,F) (4)

CW(P,F) varies in the range [0,1[and it represents a combined index that takes into account

both Frequency and Specificity of a feature F for a pattern P. The most characteristic features for a

given pattern are those showing the greater values of CW.

 - 104 -

10.3. The approach

The approach proposed for searching patterns in existing Web Applications includes three main

phases: a training phase, a candidature phase, and a validation phase. The training phase is devoted

to the computation of the features’ Characterization Weights on a training set of instantiations of the

patterns to be searched for. The second phase exploits the computed Characterization Weights to

candidate possible patterns in a set of Web pages to be analysed. The third phase is devoted to the

validation of the candidate patterns.

Figure 10.2 illustrates the phases of the method and the main input and output of each phase.

Additional details about each phase are presented in the following.

Figure 10.2: Web Interaction Design Pattern Recovering Process

In the first phase, to obtain a training set, a number of Web pages with different characteristics

(such as language, domain of the application, purposes, producer, etc.) have to be taken into

account. Considered features in this sample will describe the occurrence of the typical UI fragments

included in a Web Application, and that are reported in the model shown in Figure 10.1. At the end

of this phase, Characterisation Weights CW(P,F) are obtained.

The second phase includes two main activities:

1) Likelihood evaluation for each Web page and pattern;

2) Identification of candidate patterns.

Training Set Training

CandidatureWeb pages Candidate
Pages with

Patterns

Validation
Validated
patterns

CW (Pattern,
Feature)

Training SetTraining Set Training

CandidatureWeb pagesWeb pages Candidate
Pages with

Patterns

Candidate
Pages with

Patterns

Validation
Validated
patterns

Validated
patterns

CW (Pattern,
Feature)

 - 105 -

To compute the likelihood that a pattern P is included in a Web page WP, let’s consider the

occurrence in the WP of the most characteristic features for that pattern. A likelihood index

L(WP,P) is therefore provided by the following ratio:

∑
∑

∈

∈=

)(

)(

),(

),(*),(
),(L

PFeatureSetf

PFeatureSetf

fPCW

fWPOccfPCW
PWP (5)

where:

CW(P,f) is the Characterisation Weight of a feature f for a pattern P;

FeatureSet(P) is the set of features f having CW(P,f)>0;

Occ(WP,f) =1 if the feature f is included in the WP Web page, elsewhere Occ(WP,f) =0.

In formula (5), the denominator has been introduced in order to make comparable the different

CW values, as the patterns vary. The values of L(WP,P) vary in the range

[0, 1]. L(WP,P) is 1 when all the features f having CW(P,f)>0 are contained in the WP page. Vice-

versa, L(WP,P) is 0 when no feature f having CW(P,f)>0 is contained in the WP page.

In the second step, the identification of candidate patterns in pages is obtained by comparing the

L(WP,P) with respect to a threshold, and assuming that a page WP includes a pattern P if L(WP,P)

is greater than the selected threshold.

The choice of the threshold of course impacts on the set of candidates: greater the threshold,

smaller the set of candidates, while lower the threshold, wider the set of candidates. The best

threshold values encountered in a validation experiment are discussed in Section 10.5.

The third phase requires that the candidate patterns detected in pages be submitted to a

validation phase aiming to assess that each page actually includes that pattern. The validation phase

is performed manually, by a software engineer with experience in developing Web Interaction

Design Patterns.

After the validation, validated patterns can be added to the training set samples, allowing the

CWs for the new training set to be recalculated.

 - 106 -

10.4 The supporting environment

The identification method described in the previous section is supported by the Web Interaction

Pattern Recovery integrated environment. This environment is composed of a number of tools

realized using Microsoft Visual C++ and Microsoft Visual Basic.

The environment supports the execution of the Training, Identification, Validation and Tuning

activities required by the pattern identification method and includes the following modules:

Reverse Engineering Tool. This tool extracts information from a web client page about any UI

feature included in the page. The extracted information is stored in the Web Application

Information Repository whose model is coherent with the information model described in section

10.2.1. This tool is an extension of the WARE tool described in Chapter 5.

CW Evaluator. This module has the responsibility to compute the Characterization Weight

values according to the formula (4). The computed values are stored in the Pattern Repository.

Likelihood Evaluator. This module computes the Likelihood values for each pattern and for

each page, according to formula (5), by querying the Web Application Information Repository and

the Pattern Repository.

Pattern Identifier. This module selects, for each page, the candidate interactions patterns

identified in that page by comparing the L(WP,P) values with a prefixed threshold.

Pattern Validator. The responsibility of this module is to present the candidate patterns to a

human expert that will validate them. Validated patterns may be used to extend the set of pattern

samples and to tune the CW values.

CW Tuner. This module recalculates CW values taking into account further pattern samples

and the validated patterns.

Figure 10.3 shows the architecture of the system (the Reverse Engineering Tool is reported

twice just for graphical reasons).

 - 107 -

Figure 10.3: Architecture of Web Interaction Design Pattern Recovery System

10.5. An explorative experiment

To validate the proposed method, an experiment aiming at assessing the effectiveness of the

method in the detection of patterns in Web pages of existing Web Applications has been carried out.

In the experiment, the following six Interaction Design Patterns selected from the catalogue

reported in [Wel04] have been considered:

• Guestbook, providing a view of the list of messages written by the visitors of a website;

• Login, consisting in an authentication module for inserting personal identification information

needed to access to private services;

• Poll, consisting in a module to insert a vote for a poll;

• Registration, consisting in a module to insert personal data needed to registrate to a service;

• Search, consisting in a module to insert keywords for a search on a search engine;

• Sitemap, consisting in a view of the map of the pages of a website.

The main steps of the experiment were the following:

• Feature Definition, where a set of features that are characteristic of WIDPs are defined.

• Training Phase, where the training set is selected and CW values are calculated;

Web pages

Pattern
Repository

WA
Information
Repository

Reverse
Engineering

Tool

Likelihood
Evaluator

Pattern
Validator

CW Tuner

Pattern
Identifier

Training
Set

Reverse
Engineering

Tool

CW Evaluator

Threshold

Validated
patterns

Web pagesWeb pages

Pattern
Repository

Pattern
Repository

WA
Information
Repository

WA
Information
Repository

Reverse
Engineering

Tool

Likelihood
Evaluator

Pattern
Validator

CW Tuner

Pattern
Identifier

Training
Set

Training
Set

Reverse
Engineering

Tool

CW Evaluator

Threshold

Validated
patterns

Validated
patterns

 - 108 -

• Preliminary Identification Test, where the candidature process has been executed for the

training set, obtaining a first evaluation of the effectiveness of the identification process;

• Identification Test, where the candidature process has been executed for a more significantly

test set, obtaining a more reliable evaluation of the effectiveness of the process.

10.5.1 Feature Definition

This preliminary phase has been executed to define the set of features to be taken into account

during the pattern identification process.

Selected features are those expressing the occurrence of a UI fragment (from the categories of

fragments shown in Figure 10.1) or the occurrence of a combination of these fragments. As an

example, the features that have been considered are related to the characteristics of a form - such as

the occurrence of one or more input fields in a form- or they are related to tables, that take into

account the occurrence of anchors, forms, input fields in cells/rows of tables, or they are lexical

features, taking into account the occurrence of some common textual expressions labeling form and

table features in web pages.

For instance, the experiment has shown that the occurrence of 2 or more select buttons in a form

is a good feature to identify the Poll pattern, while the occurrence of 2 or more anchors in a row is a

good feature to identify the Sitemap pattern (cfr. Table 3). Moreover, ‘login’ and ‘password’ words

have been found to be good features to identify a login pattern.

The proposed method considers synonyms and translations of each textual expression as

equivalent features. As an example, ‘username’ is considered as a synonym of ‘login’, while ‘nome

utente’ is considered as an Italian translation of ‘username’. If one of these features is found in the

analysed Web pages, the occurrence of the equivalent feature is also added.

The set of lexical features considered in the experiment comprehends 36 textual expressions that

are recurrent in the considered patterns. If more patterns are considered, more textual expressions

will have to be defined.

10.5.2 Training Phase

The Training phase has been devoted to the computation of the features’ Characterization

Weights on a training set of instantiations of the patterns to be searched for.

 - 109 -

The Training set was composed of 108 client pages, each of which implementing a single

pattern. Table 10.2 reports the number of samples selected for each Pattern.

Table 10.2: Training Sets
composition

Pattern Samples#
Guestbook 15
Login 25
Poll 13
Registration 14
Search 20
Sitemap 21

In order to have a meaningful set of samples, they have been extracted from different websites.

These websites were different as to the typology (portals, personal sites, e-commerce sites,

educational sites and so on), language (English and Italian), and graphical layout.

The Characterization Weights have been calculated for each Pattern and for each Feature of the

training set. Table 10.3 reports the list of features with the best values of Characterization Weight

for each Pattern.

10.5.3 Preliminary Identification Test

To test the effectiveness of the method a preliminary identification test has been conducted. The

input of this test is represented by the training set. This test was carried out to validate the

characterization features selected by the previous step.

Likelihood values have been calculated with respect to the Characterization Weights values

obtained by the training phase. The computed Likelihood values have been compared with a

threshold to identify the pattern included in the pages.

To assess the correctness of the results of the candidature phase, Recall and Precision metrics

have been adopted. Of course, the set of Patterns included in the training set was known, thanks to

an analysis performed by an expert software engineer. Recall and Precision have been defined in the

following way:

Recall: Number of correct candidate couples (web page, pattern) / Number of couples (web

page, pattern) to identify

 - 110 -

Precision: Number of correct candidate couples (web page, pattern) / Number of candidate

couples (web page, pattern)

Table 10.3: Features with CW > 0.2

Best Guestbook Features CW
Word ‘guestbook’ 0,8205128
Word ‘comment’ 0,5118095
Word ‘page’ 0,3888718
Word ‘at least’ 0,3510375
Word ‘none’ 0,3489927
Word ‘next’ 0,2917176
Word ‘email’ 0,2855873
1 anchor to an email in a cell 0,2334815
1 anchor to an email in a row 0,2334815
Word ‘message’ 0,2080847
Best Login Features CW
1 password button in a table 0,7565714
1 radio button in a form 0,7565714
1 password button in a cell 0,7108571
1 password button in a row 0,7108571
Word ‘password’ 0,7103174
Word ‘login’ 0,6575238
1 input text field in a cell 0,503619
1 input text field in a row 0,503619
1 input text field in a table 0,4972698
1 image field in a form 0,422
1 submit button in a row 0,3206838
1 submit button in a table 0,3206838
1 submit button in a cell 0,3104274
1 checkbox field in a form 0,231387
Word ‘username’ 0,2242125
Best Poll Features CW
Word ‘poll’ 0,5644125
2 or more select buttons in a form 0,4741561
Word ‘vote’ 0,4399831
Word ‘results’ 0,4216681
2 or more radio button in a table 0,3189687
1 radio button in a cell 0,3031277
Best Registration Features CW
Word ‘registration’ 0,7190476
2 or more images in a form 0,6937755
2 or more input text fields in a table 0,5951021
Word ‘last name’ 0,5912925
Word ‘email’ 0,5569841
Word ‘address’ 0,4179251
Word ‘none’ 0,3489927
1 input text field in a cell 0,2752494
1 input text field in a row 0,2752494
2 or more input text fields in a cell 0,2682993
2 or more input text fields in a row 0,2682993
Word ‘password’ 0,2270408
Word ‘all’ 0,2053288
Best Search Features CW
Word ‘search’ 0,5579731
1 text input field in a table 0,3880635
1 text input field in a row 0,2916826
1 text input field in a cell 0,2916826
Best Sitemap Features CW
Word ‘map’ 0,775873
2 or more anchors in a row 0,3103768
Word ‘search’ 0,2974975
2 or more anchors in a table 0,2941863
2 or more anchors in a cell 0,2801186
2 or more anchors to image in a table 0,2350997
2 or more anchors to image in a cell 0,2090476
2 or more anchors to image in a row 0,2011111

 - 111 -

Different candidate sets of patterns have been obtained by varying the threshold value, and

Precision and Recall has been measured for each of these threshold values. Table 10.4 reports

Recall and Precision values for 9 different threshold values, ranging between 0.1 and 0.9. A

satisfying trade-off was obtained with a threshold value of 0.6 (82% of Recall, 79% of Precision).

These results confirmed the adequacy of the choice of the set of features for the detection of the

selected set of patterns.

Table 10.4: Recall and Precision value in the Preliminary Identification Test
Threshold 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1
Recall 22/108 46/108 69/108 89/108 93/108 101/108 106/108 107/108 108/108
% 20% 43% 64% 82% 86% 94% 98% 99% 100%
Precision 22/22 46/49 69/75 89/112 93/135 101/174 106/234 107/325 108/487
% 100% 94% 92% 79% 69% 58% 45% 33% 22%

10.5.4 Identification Test

After the Preliminary Identification Test, another experiment has been executed on a wider set

including 208 Web pages. These pages have been selected in different web sites, belonging to

different domains. The analysis performed by an expert software engineer stated which and how

many patterns were included in the set of pages. The results of this analysis was that the Web pages

included:

9 Search Patterns

10 Registration Patterns

12 Login Patterns

9 Poll Patterns

8 Sitemap Patterns

7 Guestbook Patterns

Some of the web pages in the set did not include any pattern, while some other ones included

more than one pattern.

The evaluation of the Likelihood was executed for each page using the Characterization

Weights values obtained in the training phase. Also in this experiment the Recall and Precision

metrics were computed to assess the correctness of the results. The Table 10.5 reports Recall and

Precision values for 9 different threshold values, between 0.1 and 0.9. Also in this case a satisfying

trade-off was obtained with a threshold value of 0.6 (80% of Recall, 66% of Precision).

 - 112 -

Table 5: Recall and Precision value in the Identification Test
Threshold 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1
Recall 10/55 20/55 31/55 44/55 45/55 51/55 52/55 54/55 54/55
% 18% 36% 56% 80% 82% 93% 95% 98% 98%
Precision 10/11 20/24 31/39 44/67 45/112 51/171 52/229 54/347 54/590
% 91% 83% 79% 66% 40% 30% 23% 16% 9%

The results obtained by these two experiments showed us the validity of the proposed method,

as it allows a good identification of WIDP in web pages. However, further work is needed to

improve the quality of the results. Further details about the method described in this chapter can be

found in [Dil05].

10.6 Future works

Of course, a first improvement considers the definition of the characterising features for other

patterns and, as a consequence, the updating and refining of the Characterisation Weights CW(P,F).

A wider training set would improve the Recall and Precision degree, too.

Further improvements are obtained by considering not just the presence of single UI fragments

in a page, but considering the co-presence of an adequate group of them in a page, as the

implementation of a specific pattern is generally characterised by groups of features.

To reach this aim, a further analysis of a wider number of web pages is required: this goal will

be addressed as future work.

 - 113 -

Chapter 11: Identifying Cloned Components

In this chapter a method based on clone analysis techniques with the aim to identify Web

Application components with identical or similar structure is presented. Four techniques to

measure the degree of similarity among client pages are defined. The results of an explorative

experiment are also reported. Finally, a discussion about the combined used of the information

retrieved by the reverse engineering techniques based on Concept Assignment, Interaction Design

Pattern Identification and Clone Analysis is reported.

11.1 Software clones and clone analysis.

Addressing the problem of concept assignment, the information about the presence of

duplicated or similar components in the Web Application can reduce the effort of this expensive

task in a remarkable way. In fact, the semantics associated to duplicated components may be very

similar. Anyway, clone analysis can have other important applications, such as in the reengineering

of Web Applications or during dynamic analysis. In this chapter clone analysis techniques

identifying duplicated or similar components or portions of code in a Web Application is described.

Duplicated or similar portions of code in software artifacts are usually called clones, and clone

analysis is the research area that investigates methods and techniques for automatically detecting

them.

The research interest in this area was born in the ‘80s ([Ber84], [Gri81], [Hor90], [Jan88]) and

focused on the definition of methods and techniques for identifying replicated code portions in

procedural software systems.

The methods and techniques for clone analysis described in the literature focus either on the

identification of clones that consist of exactly matching code portions ([Bak93], [Bak95],

[Bak95b]), or on the identification of clones that consist of code portions that coincide, provided

that the names of the involved variables and constants are systematically substituted (p-match or

parameterised match).

The approach to clone detection proposed in [Bal99] and [Bal00] exploits the Dynamic Pattern

Matching algorithm [Kon95], [Kon96], that computes the Levenshtein distance [Lev66] between

fragments of code. The value of the Levenshtein distance is a measure of the similarity between two

vectors. It is defined as the minimum number of insertions, deletions and replacement of items

necessary to make two vectors equal. Levenshtein distance is also called edit distance if the

 - 114 -

operations are weighted in a equivalent way. A classical alternative metric to measure the distance

between two vectors is the Euclidean distance. To compute Euclidean distance, the distance

between two items is equal to one if the items are different, else its value is equal to zero.

Baxter [Bax98] introduced the concept of near miss clone, which is a fragment of code that

partially coincides with another one. Further approaches, such as the ones proposed in ([Kon97],

[Lag97], [May96], [Pat99]), exploit software metrics concerning the code control-flow or data-flow.

11.2 Clones in Web Applications.

In a Web page a control component and a data component can be distinguished (cfr. Chapter 8).

Focusing on software clones characterized by the same control component, two categories of

clones, with different degrees of granularity, can be taken into account. At a coarse grained level,

any duplicated or replicated static page of a Web Application can be considered as a software clone.

In particular, two types of replicated pages can be distinguished: static client pages having the same

HTML control component, i.e., pages composed by the same set and sequence of HTML tags, and

static server pages coded using a script language, such as the ASP, and including the same set of

ASP objects.

At a finer degree of granularity, inner components of a page that are replicated throughout the

Web Application can be also considered as clones. Examples of these components include, on the

client side of the application, script blocks, script functions, HTML forms, and HTML tables that

are replicated in the pages of the application. On the server side, script blocks, script functions, and

subroutines can be considered.

Table 11.1 reports the classification of Web Application software clones that are considered in

this chapter. The classification distinguishes the clones depending on their degree of granularity.

Table 11.1: A classification of software Clones.

Degree of granularity of a clone Type of clone
Client Page Web Page
Server Page
Script Block
Script Function
HTML Form

Client Page inner components

HTML table
Script Block Server Page inner components
Script Function

 - 115 -

11.3 Identifying clones

In this section, a clone analysis based process for identifying cloned components in a Web

Application is presented. The process focuses on software clones provided by artifacts showing the

same control component, and includes the following phases:

• Separation of the control component from the data component within Web pages.

• Clone Detection.

• Clone Validation.

11.3.1 Separation of the control component from the data component.

In the first phase of the process, Web pages are pre-processed in order to separate their control

component from the data component, and submit the control component to the next phase of the

process. As an example, the pre-processing of client pages is executed with the support of language

parsers that extract and store the sequence of HTML tags from HTML files, by separating them

from the list of attributes and data associated with these tags and determining the information to be

read/displayed from/to a user. This task is the same described in subsection 9.3.1.

11.3.2 Clone Detection.

In the second step of the process, clone analysis is used for detecting clones in Web

Applications.

Most clone analysis techniques compare distinct software artifacts on the basis of relevant

information extracted from them: this information may be either a sequence of symbols (from a

given alphabet) representing, for instance, the artifact control structure, or a set of software metrics

characterizing them. The extracted information is used to compute a similarity distance between

artifacts, such as the Levenshtein or the Euclidean distance: zero-distance items provide a software

clone, while quasi-zero-distance items provide near-miss- clones.

As to the identification of cloned Web pages, two classes of techniques have been used:

techniques that are based on the match between sequences of symbols (using the Levenshtein

distance), and techniques based on software metrics extracted from Web pages (using the Euclidean

distance). A list of possible techniques (and an explanation of the acronyms) is reported in Table

11.2. STH, and CTH techniques are applicable to client pages, while SOA, and AMA ones are

applicable to server pages.

 - 116 -

In the proposed process, all the techniques listed in Table 11.2 can be used for detecting cloned

Web pages, in order to combine their different output and obtain more precise final results. A

complete description of STH, CTH, and SOA techniques can be found in [Dil01], while the AMA

one is described synthetically in the following.

The AMA technique is a metric based technique that detects couples of cloned server pages

using a set of metrics extracted from pages including ASP script blocks. Each page is characterized

by an array of software metric values, and the Euclidean distance of the corresponding arrays will

compare couples of pages. Experiments have shown that the AMA technique detects clones more

effectively than the SOA technique [Fer02].

The set of considered metrics is shown in Table 11.3.

Table 11.2: Clone analysis Techniques.

Technique Description
STH Strings of HTML tags extracted from client pages are compared by the Levenshtein

distance.
CTH Counts of HTML tags extracted from client pages are compared by the Euclidean

distance.
SOA Strings of ASP built-in objects extracted from server pages are compared by the

Levenshtein distance.
AMA An array of software metrics extracted from ASP script blocks in server pages is used

to compare server pages by the Euclidean distance.

Before computing the first and last metric in Table 11.3, the AMA technique requires that a

preprocessing be made on the ASP pages. The preprocessing is executed for making the comparison

between script blocks independent on comment lines, writing style, and choice of identifier names

in the analysed code.

Table 3: Software metrics used by the AMA technique.

Software Metrics
Total Number of characters per page (NTC)
Total Number of lines of code per page (NTRC).
Total Number of ASP code blocks per page (NTBC).
Total Number of declarative statements per page (NTSD)
Total Number of conditional statements per page (NTSC)
Total Number of cyclic statements per page (NTSI)
Total Number of Functions per page (NTF).
Total Number of Subroutines per page (NTS).
Total Number of built-in ASP objects per page (NTOP).
Levenshtein distance of ASP code blocks (LDBC)

 - 117 -

In particular, in the ‘Separation of the control component from the data component’ phase, each

line of ASP block code is transformed into an intermediate format by removing blank characters

and comments from the line, and substituting each data element (such as constants, or identifiers)

by a dummy one. Moreover, consecutive blocks of ASP code are merged in a single comprehensive

block.

As an example, the consecutive ASP blocks of code shown in the following:

<% If HourPart>12 then %>

<% 'It is Afternoon %>

<% Response.write "Good Afternoon!” %>

<% Else %>

<% 'It is Morning %>

<% Response.write "Good Morning!" %>

<% Endif %>

is transformed as follows, by removing blank characters, substituting identifiers with DUMMY

names, and merging the different blocks into a single block:

<%IfDUMMY>DUMMYthen

Response.writeDUMMY

Else

Response.writeDUMMY

Endif%>

11.3.3 Techniques for detecting Inner Page Clones

On the client side of the application, candidate reusable components are provided by script

blocks, script functions (implemented in Javascript, VBScript or Jscript languages), HTML forms,

and HTML tables that are replicated in the pages of the application.

In order to localize cloned script blocks and script functions (potentially implementing reusable

functions), the STH technique based on textual string comparisons is used. As to the identification

of cloned HTML input Forms (representing reusable components implementing the function of data

input and the request for their elaboration to a server page), the same STH technique based on the

Levenshtein distance, comparing strings of HTML tags associated with each form, is used. Zero-

distance forms represent cloned forms, with the same HTML structure. A similar technique can be

used for finding cloned HTML tables, which represent a reusable output data structure.

 - 118 -

On the server side, cloned script blocks implemented in ASP, besides script functions, and

subroutines written in VBScript or Jscript language are looked for, since they potentially implement

reusable functional abstractions. The AMA technique is used for analysing single script blocks

written in ASP, while script functions and subroutines are analysed by comparing textual strings

extracted from the code, using the Levenshtein distance.

A tool, named CloneDetector, has been implemented which provides a unified framework for

executing clone analysis using different techniques. Once the user has selected the techniques of

clone detection to apply, the tool computes the Distance Matrix (whose items represent the distance

between each pair of artifacts from the Web Application). Clusters of clones are, therefore,

obtainable from this matrix.

11.3.4 Clone Validation.

The detected set of clones need to be submitted to a validation activity aiming at assessing if

they can be actually considered reusable components or not.

In the Validation phase, the detected clones are analysed as regard their meaningfulness (does

the considered clone implement a meaningful abstraction in the business domain, or in the solution

domain?), and their completeness (does the clone include all the lines of code necessary for

implementing a valid abstraction?). Meaningless clones are discarded, while incomplete clones may

have to be merged in order to obtain an actually reusable component.

Validated clones are associated with a description of the reusable abstraction they implement.

Business domain knowledge and experience in building Web Applications are required for carrying

out the validation activity.

11.4. An experiment.

In order to assess feasibility and effectiveness of the proposed method, several experiments

involving real Web Applications were carried out; the Clone Detector tool was used to support

them.

This Section provides the results of the experiments involving four Web Applications (hereafter,

WA1, WA2, WA3, and WA4), which were submitted to the process proposed in Section 11.3 for

detecting their clones.

The first three applications presented client pages written in HTML and script languages, and

server pages coded in ASP, while the fourth one just included ASP pages. WA1 implemented a

‘juridical laboratory’ with the aim of supporting the job of professional lawyers; WA2 was a Web

 - 119 -

Application designed to support the activities of undergraduate courses offered by a Computer

Science Department (this application has been also considered as case study in the previous

chapters), WA3 was an e-commerce Web Application for selling music CDs; WA4 was a Web

Application designed to manage an Internet discussion forum.

Table 11.4 reports the main experimental results obtained after the clone identification and

validation phases of the process: in the Table, just the exact clones that passed the validation phase

have been considered. For each category of considered artifact (e.g., Web page, script block, script

function, etc…), the number of artifacts in the Web Applications, the number of detected cloned

artifacts, and the number of clusters of cloned artifacts are reported. In particular, each cluster

gathers together the set of the same cloned items.

In the experiments, the STH textual string comparison technique was used to identify clones

among the client side components, while the AMA metric-based technique was used to identify

cloned items among the server side components. The total number of false positives (that is, clones

detected by the process which were not actually clones) is very low (less than 7%); and all the false

positive clones regarded server side items. With reference to client pages, there are about 25% of

cloned pages (33% for WA1, 8% for WA2, and 35% for WA3), while the average percentage of the

cloned server pages was about 9%.

As to the inner page components, there is also a higher percentage of cloned items for client

pages than for server pages. In particular, for the client functions the percentage of cloned items was

about 48%, while the cloning of server functions was only 2%.

This datum may indicate that exact cloning of client side items is a practice adopted more

frequently than cloning server side items; however, this datum may also depend on the fact that the

AMA metric-based technique, that has been used for finding clones on the server side, exploited a

Levenhstein based metric (cfr. LDBC metric in Table 11.3) that produced a relevant percentage of

near missing clones, composed by ASP code blocks computing the same functions but just differing

for the lexicographical order of some statements. Therefore, the precision of the AMA technique is

very high (i.e., all detected clones were actually validated), but the recall parameter (e.g., the

number of detected clones) may be improved (despite of the precision) by omitting the LBDC

metric from the metric array considered by the AMA technique.

Further details about this technique can be found in [Dil04b] and [Dil01]. In conclusion, the

method showed its effectiveness in detecting a significant percentage of clones.

 - 120 -

Table 4: Results from clone analysis

 WA1 WA2 WA3 WA4
HTML pages 55 23 23 -
cloned HTML pages 18 2 8 -
clusters of cloned HTML pages 3 1 4 -

scripts in client pages 3 12 10 -
cloned client scripts 3 4 2 -
clusters of cloned client scripts 1 2 1 -

functions in client pages 12 10 10 -
cloned client functions 12 4 2 -
clusters of cloned client functions 4 2 1 -

forms in client pages 1 8 10 -
cloned client forms 0 2 9 -
clusters of cloned client forms 0 1 3 -

tables in client pages 7 4 3 -
cloned client tables 0 0 0 -
clusters of cloned client tables 0 0 0 -

ASP pages 19 73 37 71
cloned ASP pages 2 15 3 2
clusters of cloned ASP pages 1 6 1 1

scripts in ASP pages 75 576 150 5341
cloned ASP scripts 4 0 36 0
clusters of cloned ASP scripts 2 0 3 0

functions/subroutines in ASP pages 5 0 3 165
cloned ASP functions/subroutines 0 0 0 9
clusters of cloned ASP functions/subroutines 0 0 0 3

11.5 Future Works

The adoption of the methods presented in chapters 9, 10 and 11 allow a reduction of the effort

related to the comprehension of the semantic of Web Application components.

The proposed techniques have been presented separately, but they can be also used in a

collaborative way. As an example, the rank of concepts proposed by the concept assignment process

may be considered as a further, good feature to the identification of Interaction Design Patterns.

Moreover, frequent cloned structures identified by clone analysis technique may be considered as

 - 121 -

possible Interaction Design Patterns. The results of concept assignment method and clone analysis

method may be used to classify similar Web pages in three categories:

• Pages with similar (or cloned) structure but different textual content. For these pages, a common

template could be extracted and they could be reengineered according to this template;

• Pages with similar textual content but different structure. These pages can be clustered together

according to the keyword clustering method proposed in [Ric04] and [Ton03];

• Pages with similar textual content and structure. They are probably cloned pages, obtained with

a ‘copy and paste’ operation. A reengineering of these components will surely improve the

maintainability of the Web Application.

 - 122 -

Chapter 12: Identifying Cross Site Scripting Vulnerabilities

In this chapter a method is presented to assess the vulnerability of the Web pages of a Web

Application with respect to Cross Site Scripting attacks. The method, based on some secure

programming rules, exploits source code analysis to verify that those rules are actually present in

the code. Moreover, a strategy to test the effectiveness of Cross Site Scripting attacks on vulnerable

pages is presented. A case study, based on a real world Web Application is discussed.

12.1 Introduction

In the last years, the problem of ICT security has been devoted an increasing interest from

industry, users and Public Administrations; a study conducted by Datamonitor [Dat03] shows that

the global ICT market revenue estimated in 2006 is 13.5 billion USD, while in 2002 it was 7 billion

USD.

Approaches to ICT security [Mai04] are mostly focused on:

- building perimeter defences around application;

- putting up reactive defence software or intrusion detection systems.

Therefore, the effort in implementation of security is mainly concentrated in buying specific

security systems (such as firewalls, or IDS) and software (such as antivirus or encryption software),

and taking organisational changes to business processes finalised to improve security.

However, as tools become more sophisticated and as corporate networks and applications are

more interconnected, open, and distributed, just defining and defending the perimeter may be

insufficient [Mai04]. More effective approaches require that the application security is achieved

building it inside the application’s code, that is using secure programming practices. However, the

application security is frequently overlooked. Main reasons for overlooking it are that the teams

involved in the development do not communicate with one another; also, developers do not build

security into their applications, based upon the false assumption that another area of security will

cover it (database, network, firewalls, etc.) [Sto03].

The problem of security is particularly relevant for Web Applications [Off02]. A possible

classification of security attacks affecting a Web Application distinguishes six basic categories

[Sto03]:

1. Parameter tampering

2. Hidden field manipulation

 - 123 -

3. SQL injection

4. Application design/business logic

5. Debug options

6. Common vulnerabilities

In the category of common vulnerabilities, Cross Site Scripting (XSS) is well known in the

Internet community from several years ([Cert00], [Itsd]). XSS is a vulnerability of a Web

Application caused by the failure of the application in checking up on user input before returning it

to client’s web browsers. Without an adequate validation, user input may include malicious

scripting code that may be sent to other clients and unexpectedly executed by their browsers, thus

causing a security exploit (cfr. subsection 12.2.2). XSS vulnerability is a relevant issue for the

following reasons:

- many web sites are vulnerable to this attack (e.g., Ohmaki says that 80% of Japanese e-

commerce sites are vulnerable to XSS [Ohm02]);

- the exploits are very simple to carry out, and no particular application knowledge or skill are

required;

- the attacks may bypass perimeter defences (e.g. Firewalls), cryptography, digital signatures

and site trusting;

- it may be very difficult for the victim to know which web application allowed the XSS

attack;

- it may be very difficult for the developer to know which element of the web application

allowed the XSS attack;

- evolution of hypertextual language characteristics and browser capabilities may make it

possible new attack strategies and make vulnerable a web application which was considered

invulnerable.

Several solutions have been proposed to defend an application from XSS attacks. A first

recommended solution for the users of Web Applications consists of disabling scripting languages

in their browsers, and avoiding promiscuous browsing on untrustworthy web sites. However, rather

than by users, the problem should be addressed by web page developers who should check up on

the input received by a page, and encode or filter the output returned to the user. More precisely, a

possible remedial action to avoid XSS vulnerability, would consist of introducing an input

validation function immediately after every input statement contained in a Web page. However,

only the input data that will affect output data will cause a XSS vulnerability. Therefore, an

 - 124 -

effective method for detecting XSS vulnerabilities in a Web Application requires that just input data

affecting output data must be analysed.

12.2. Background

12.2.1 Related works

The problem of vulnerability of software systems, and in particular, of their user interfaces, has

always been considered very important for traditional applications, but the importance is growing

quickly with the diffusion of web applications, in which a large amount of users may use the

application in nearly anonymous way. Several approaches have been proposed in the literature to

detect vulnerabilities in existing applications. In particular, several vulnerabilities are due to a lack

of validation of the user input of an application, like XSS. As an example, buffer overflow

vulnerability has been deeply studied, and different approaches have been proposed to detect and

fix it ([Lar01], [Sha01], [Flaw], [RATS], [ITS4], [Mops], [Cow98], [Cow01]).

Recently, [DaC03] addresses buffer overflow in C and C++ software, proposing an approach

based on static analysis to individuate the so-called FLF (Front Line Functions), that are functions

in which a validation test of input and/or output data is needed.

A general approach to the problem of detecting vulnerabilities in Web Applications can be

found in [Hua03]: this approach exploits fault injection and is based on a dynamic analysis of the

application in order to deduce the presence of vulnerabilities in the application.

Another detection technique is based on the installation of a software proxy between the web

application server and the network, which intercepts malicious strings in input and/or output

[Str02]. According to this approach, a commercial product has been realised, where the security

policy is written in an XML-based language, called SPML (Security Policy Markup Language).

Moreover, [Sco02a] and [Sco02b] describe a proxy-based approach to prevent XSS attacks,

which intercepts the http queries in input to a server page and the html response in output from a

server page. In this way, it is possible to simulate XSS attacks in order to verify if a web application

is vulnerable or not. This approach is promising, but requires knowledge of all the elements

potentially vulnerable of the application, and for this reason has been used only for web application

implemented with a specific language [Big01].

 - 125 -

12.2.2 Cross site scripting (XSS)

According to [Cgi], there is a Cross-Site Scripting attack when a client executes a page

containing script code that has been injected from other sources.

In [Idef03], details are provided about how XSS attacks may be carried out bypassing the

“traditional” defensive barriers coded by programmers.

A complete review on XSS attacks and defence techniques may be found in [Mic00], where also

a complete list of possible effects resulting after an XSS attack are described.

Some programming tricks that may be used during the development of Web Applications to

avoid XSS vulnerability are described in [Whe02].

In [Cert00], solutions that may be carried out directly by users are proposed. One of the

proposed solutions recommends to disable script execution by browsers. However, this solution is

often inapplicable because it reduces the functionality executable by the client side of the

application. Rather, an effective attack prevention must be implemented by the server side of the

application.

There are two basic techniques to accomplish a XSS attack. The first one requires that malicious

code is stored into a database, and therefore, once retrieved, it will finish to be executed by a client

browser.

The first technique [Cert00] is exemplified by the web application shown in Fig. 12.1. The

application implements a guestbook, in which a visitor may write a message (using the page

sign.html), which is stored into the database by the page sign.asp. The message may be displayed by

other users (using the guestbook.asp page), retrieving it from the database.

Sign.html
<form method="post" action="sign.asp">
 <textarea name="txtMessage"></textarea>
 <input type="submit" value="Sign!">
</form>

Sign.asp
<% Message=request.form("txtMessage")
 conn=OpenDBConnection
 set rs=server.createobject("Adodb.recordset")
 rs.open "Guestbook",conn,1,2,2
 rs.Addnew
 rs("Message")=Message
 rs.update
%>

 - 126 -

Guestbook.asp
<% conn=OpenDBConnection
 rs=server.createobject("Adodb.recordset")
 rs.open "SELECT Message FROM GuestBook" ,conn,3,3
%>
<table>
<% rs.movefirst
 while not(rs.eof)
 response.write (rs.fields("Message"))
 rs.movenext
 wend
%>
</table>
<% rs.close
 set rs=nothing
 conn.close
 set conn=nothing
%>

Figure 1: a Web Application implementing a guestbook

A XSS attack can be performed if an attacker submits a string like the one shown in Fig.12.2 to

sign.asp page: when a user will open guestbook.asp web page, values of its cookies are sent to the

attacker.

<script>location.URL= ‘http://www.attackersite.com/attacker.cgi?’ +
document.cookie </script>

Figure 12.2: A XSS attack string

The second technique [Cert00] requires that the victim unconsciously executes a link containing

itself malicious code (there are sophisticated techniques to hide the real content of a link to an

inexpert user). As an example, let us consider the link shown in Fig.12.3, where a user would query

the database to search for a word:

<A HREF=http://www.site.com/search.asp?Word= <script> malicious code </script> >

Figure 12.3: A link containing malicious code

The server page ‘search.asp’ (Figure 12.4), will send to the client the response to the query but

also the malicious code, which is executed by the user browser.

 - 127 -

<% word=request.querystring(“Word”)
 // find if Word is in db
 else
 response.write (“The word “+Word+” isn’t in the DB”)
 end if
%>

Figure 12.4: Server page search.asp

Since XSS vulnerability is due to a lack of validation of user input, preventing vulnerability of

an existing application would require that each input is submitted to a validation function. However,

for an effective approach just input data affecting output data should be analysed.

12.3. Detection of XSS vulnerabilities

In this section, a technique for detecting vulnerabilities in a Web Application that exploits both

static and dynamic analysis of the source code is presented. Static analysis is used to determine

whether a server page is vulnerable to a XSS attack. Dynamic analysis is exploited to verify

whether a Web Application with vulnerable server pages identified by static analysis is actually

vulnerable.

12.3.1 Assessing a server page XSS vulnerability by static analysis

Although a Web Application is composed both by client and server pages, its vulnerability is

due to server pages, since they are responsible for receiving the input data and outputting them.

In order to detect the vulnerabilities of a server page, let’s consider its Control Flow Graph,

CFG, and associate a label with the CFG nodes corresponding to statements performing input,

output, definition or use of data variables.

In particular, a CFG node is labelled as Input(v) if the corresponding statement assigns a value

to a variable v that depends on a user input, a cookie, a database field value, or a data value read

from a file.

In the same way, a node is labelled as Output(v) if the corresponding statement outputs the

value of the variable v in a file, a database, a cookie or a built client page.

As an example, possible Input nodes are those associated with statements performing input of

data from a HTML form, or reading the value of a query string, of a cookie, a database field, or any

 - 128 -

data from a file. Output nodes are associated with statements writing a database field, a file, a

cookie, or the built client page.

The server page is potentially XSS vulnerable if there are a variable v and two Input(v) and

Output(v) nodes that are connected by a CFG path. More precisely, a server page is vulnerable if

there are a variable v, and two Input(v) and Output(v) nodes, such that all the CFG paths leaving the

Input(v) node reach the Output(v) node, being def-clear with respect to v. Finally, a server page

including an input data item that does not affect any output is certainly invulnerable with respect to

that input.

Figure 12.5-a shows an example of a server page vulnerable with respect to the variable

‘Message’. Fig. 5-e represents the case of an invulnerable server page with respect to the variable

‘Message’.

Figures 12.5-b, 12.5-c and 12.5-d show three examples of potentially vulnerable pages, whose

actual vulnerability can be assessed by a further analysis of the source code. In particular, in Figure

12.5-b, an input (i.e. the variable ‘Message’) becomes an output with some intermediate redefinition

of the input; this case requires that the semantic of the statement redefining the input is analysed in

order to verify if it corresponds to an input validation.

Figure 12.5-c shows the case of a CFG with no intermediate redefinition of the input, but where

an input may affect an output or not, depending on a selection statement; also in this case, it’s

needed to verify if the selection statement implements an input validation.

Figure 12.5-d illustrates the case of a CFG where either an input affects an output (eventually

being redefined), or the input does not affects an output, depending on a selection statement; also in

this case a semantic analysis is needed to verify if any input validation is done.

Given a variable v of a server page P, and two CFG nodes I and O, where I is labelled as

Input(v) and O as Output(v), the following predicates are introduced in order to define some rules

for assessing the vulnerability of a server page:

A(v): There exists a path on the CFG between I and O nodes.

B(v): The O node postdominates I node.

C(v): Each path between I node and O node is a def-clear-path.

The following implications are verified, for each variable v:

B(v) => A(v)

C(v) => A(v)

 - 129 -

Figure 12.5-a: Server Page 1

Figure 12.5-b: Server Page 2

Figure 12.5-c: Server Page 3

nI

1

7

nF

…

…

Output
Message

Input
Message

Message

nInI

1

7

nFnF

…

…

Output
Message

Input
Message

Message

nI

1

2

8

nF

…

…

Input
Message

Def
Message

Output
Message

Message

Message

nInI

1

2

8

nFnF

…

…

Input
Message

Def
Message

Output
Message

Message

Message

nI

1

2

10

nF

…

Input
Message

Output
Message

…

3

Message

nInI

1

2

10

nFnF

…

Input
Message

Output
Message

…

3

Message

<%
‘Read Message from input form
Message=request.form("txtMessage")
. . . open DB connection . . .
rs.open "Guestbook",conn,1,2,2
‘Store Message into the DB
rs.Addnew
rs("Message")=Message
rs.update
%>

nI

1

5

6
7
8
nF

<%
‘Read Message from input form
Message=request.form("txtMessage")
. . . open DB connection . . .
rs.open "Guestbook",conn,1,2,2
‘Store Message into the DB
rs.Addnew
rs("Message")=Message
rs.update
%>

nI

1

5

6
7
8
nF

<%
‘Read Message from input form
Message=request.form("txtMessage")
‘Encode Message value
Message=server.HTMLEncode(Message)
. . . open DB connection . . .
rs.open "Guestbook",conn,1,2,2
‘Store Message into the DB
rs.Addnew
rs("Message")=Message
rs.update
%>

nI

1
2

6

7
8
9
nF

<%
‘Read Message from input form
Message=request.form("txtMessage")
‘Encode Message value
Message=server.HTMLEncode(Message)
. . . open DB connection . . .
rs.open "Guestbook",conn,1,2,2
‘Store Message into the DB
rs.Addnew
rs("Message")=Message
rs.update
%>

nI

1
2

6

7
8
9
nF

<%
‘Read Message from input form
Message=request.form("txtMessage")
‘Check for string “script” in Message
if instr(1,Message,“script")>0 then
response.write(“Forbidden”)

else
. . . open DB connection . . .
rs.open "Guestbook",conn,1,2,2
‘Store Message into the DB
rs.Addnew
rs("Message")=Message
rs.update

end if
%>

nI

1

2
3
4

8

9
10
11
nF

<%
‘Read Message from input form
Message=request.form("txtMessage")
‘Check for string “script” in Message
if instr(1,Message,“script")>0 then
response.write(“Forbidden”)

else
. . . open DB connection . . .
rs.open "Guestbook",conn,1,2,2
‘Store Message into the DB
rs.Addnew
rs("Message")=Message
rs.update

end if
%>

nI

1

2
3
4

8

9
10
11
nF

 - 130 -

Figure 12.5-d: Server Page 4

Figure 12.5-e: Server Page 5

Figure 12.5-f: Server Page 6
Figure 12.5-a,b,c,d,e,f – Examples of server pages with labelled Control Flow Graphs

nI

1

2

10

nF

…

Input
Message

Output
Message

…

Def
Message

3
…

Message

Message

nInI

1

2

10

nFnF

…

Input
Message

Output
Message

…

Def
Message

3
…

Message

Message

nI

1

nF

…

Input
Message

nInI

1

nFnF

…

Input
Message

nI

1

2

8

nF

…

…

Input
Message

Use Message,
Def EncodedMessage

Output
EncodedMessage

Message

Encoded
Message

nInI

1

2

8

nFnF

…

…

Input
Message

Use Message,
Def EncodedMessage

Output
EncodedMessage

Message

Encoded
Message

<%
‘Read Message from input form
Message=request.form("txtMessage")
‘Check for string “script” in Message
if instr(1,Message,“script")>0 then

‘Encode Message value
Message=server.HTMLEncode(Message)
. . . open DB connection . . .
rs.open "Guestbook",conn,1,2,2
‘Store Message into the DB
rs.Addnew
rs("Message")=Message
rs.update

else
response.write(“Malicious Request!”)

%>

nI

1

2

3

7

8
9
10

11
nF

<%
‘Read Message from input form
Message=request.form("txtMessage")
‘Check for string “script” in Message
if instr(1,Message,“script")>0 then

‘Encode Message value
Message=server.HTMLEncode(Message)
. . . open DB connection . . .
rs.open "Guestbook",conn,1,2,2
‘Store Message into the DB
rs.Addnew
rs("Message")=Message
rs.update

else
response.write(“Malicious Request!”)

%>

nI

1

2

3

7

8
9
10

11
nF

<%
‘Read Message from input form
Message=request.form("txtMessage")
. . . open DB connection . . .
rs.open "Guestbook",conn,1,2,2
‘Store a constant string into the DB
rs.Addnew
rs("Message")=“One message received”
rs.update
%>

nI

1

5

6
7
8
nF

<%
‘Read Message from input form
Message=request.form("txtMessage")
. . . open DB connection . . .
rs.open "Guestbook",conn,1,2,2
‘Store a constant string into the DB
rs.Addnew
rs("Message")=“One message received”
rs.update
%>

nI

1

5

6
7
8
nF

<%
‘Read Message from input form
Message=request.form("txtMessage")
‘Encode Message value in EncodedMessage variable
EncodedMessage=server.HTMLEncode(Message)
. . . open DB connection . . .
rs.open "Guestbook",conn,1,2,2
‘Store EncodedMessage into the DB
rs.Addnew
rs("Message")=EncodedMessage
rs.update
%>

nI

1

2
…
7

8
9
10
nF

<%
‘Read Message from input form
Message=request.form("txtMessage")
‘Encode Message value in EncodedMessage variable
EncodedMessage=server.HTMLEncode(Message)
. . . open DB connection . . .
rs.open "Guestbook",conn,1,2,2
‘Store EncodedMessage into the DB
rs.Addnew
rs("Message")=EncodedMessage
rs.update
%>

nI

1

2
…
7

8
9
10
nF

 - 131 -

These predicates can be used to characterize the vulnerability of the server page P by the

following conditions PV, V and NV:

PV) ∃v ∈ P: A(v) => P is potentially vulnerable with respect to v => P is potentially vulnerable

V) ∃v ∈ P: B(v) AND C(v) => P is vulnerable with respect to v => P is vulnerable

NV) ∃v ∈ P: NOT(A(v)) => P is not vulnerable with respect to v

With respect to the first five server pages reported in Figure 12.5, Table 12.1 shows the truth

values of the predicates A, B, and C, and of conditions PV, V, and NV with respect to the variable

‘Message’. These examples cover all feasible combinations of the predicates A, B, and C.

Table 12.1 : Predicates and Conditions values for Server Pages shown in Figure 12.5-a,b,c,d,e

Server Page Predicate values Condition Input variable
 A B C V PV NV
1 T T T T T F Message
2 T T F F T F Message
3 T F T F T F Message
4 T F F F T F Message
5 F F F F F T Message

The server page in Figure 12.5-f is an example of a page that is potentially vulnerable with

respect to the input variable Message, since the output variable EncodedMessage directly depends

on the input variable Message which has not been redefined before being assigned to the output

variable.

A five-step process allowing the vulnerability of a server page P to be assessed can be,

therefore, proposed:

• Identify the input and output nodes of the CFG of the page P;

• Identify all paths leaving the input nodes on the CFG;

• For each path leaving an input(v) node and reaching an output(v) node, verify if the path is def-

clear with respect to v;

• Evaluates A, B, and C predicates’ values with respect to v;

• Evaluate the vulnerability of page P, by the PV, NV, and V conditions.

 - 132 -

With reference to the second step of this process, in order to cope with the complexity of

identifying all paths leaving the input nodes on the CFG, the analysis can be limited to a set of

linearly independent paths extracted from the CFG.

12.3.2 Vulnerability of a Web Application

The vulnerability of a server page is a necessary condition for the vulnerability of a Web

Application, but it isn’t a sufficient condition.

For instance, a server page may send its output not directly to a client browser, but to another

server page or to a persistent data store, such as a file, or a database. In these cases, if the

components receiving the page’s output will validate it, the Web Application is protected from a

possible XSS attack. In this case, the vulnerability of the server page does not imply the

vulnerability of the Web Application.

As an example, let’s consider the XSS attack carried out according to the first technique

described in section 12.2.2. Vulnerability of that Web Application depends on: the vulnerability of

server page sign.asp, which stores user input messages in a database; on the vulnerability of server

page guestbook.asp, which sends messages retrieved in the database to a user; on the vulnerability

of the database. In fact, if database has a sanitization mechanism (e.g. an encoding method), Web

Application would be not vulnerable to a XSS attack carried out according to the first technique.

In these cases, assessing the vulnerability of a Web Application entails that not only the single

server pages, but all the software components that are interconnected with the pages are taken into

account. An effective method to detect the Web Application vulnerability may involve dynamic

analysis. In the next section, such a method is proposed.

12.3.3 Using dynamic analysis for assessing a Web Application
vulnerability

Even if static analysis is able to detect vulnerable, or potentially vulnerable server pages, it is

not able to establish whether the Web Application is actually vulnerable to a XSS attack. Indeed,

some security mechanisms implemented either by the web server of the application, or by other

software components, such as a software gateway, may make the Web Application invulnerable.

Dynamic analysis based on the design and execution of XSS attacks may be used to determine if

a Web Application is actually vulnerable. However, dynamic analysis cannot establish the

invulnerability of a Web Application, since there may be any XSS attack strategy revealing

vulnerability, which might not be taken into account in the test-case design.

 - 133 -

Two different dynamic analysis strategies are proposed to reveal vulnerability of Web

Applications with respect to the two different XSS attacks exemplified in section 12.2.2. Both

strategies exploit static analysis results in order to detect vulnerable or potentially vulnerable pages,

and input variables causing the vulnerabilities. Therefore, only these pages are submitted to a XSS

attack for each variable causing the vulnerability. A set of XSS attack strings, such as the ones

proposed in [Idef03], [Mic00], [Cert00], [Ohm02], [cgi], or published in bugtraq repositories, such

as [BugT1] or [BugT2] should be designed for each input variable and submitted to the Web

Application during dynamic analysis. Therefore, the results of the analysis are checked in order to

assess whether the attack is successful or not. A possible successful attack accomplishes the theft of

the values of the set of client cookies, which are sent to the attacker’s server. Another common

attack will cause the forced loading in the client browser of an attacker web page, which reproduces

a trustworthy web page, and where the user might insert private data that are submitted to the

attacker’s server.

The following algorithm describes the proposed testing strategy:
FOR EACH vulnerable or potentially vulnerable page P of the Web Application

 FOR EACH input field I of page P causing
 vulnerability
 Define a set S of XSS attack strings
 FOR EACH s ∈ S
 EXECUTE server page P with
 input field I=s
 Check for attack consequences

Vulnerabilities of the first type are more difficult to be detected, because a XSS attack will have

to inject malicious data that will not be directly provided to the user, but are stored in a persistent

data store. Therefore, effects of a XSS attack may be observed only if another functionality of the

Web Application will send the injected data to the final user. Consequently, after an attack has been

accomplished, all the Web Application functions that read data from a persistent data store should

be exercised in order to discover attack’s consequences. A test suite covering these functions may

be executed to reach this aim.

The following algorithm describes the proposed testing strategy:
FOR EACH vulnerable or potentially vulnerable page P of the Web Application

 FOR EACH input field I of page P causing
 vulnerability

 Define a set S of XSS attack strings
 FOR EACH s ∈ S
 EXECUTE server page P with
 input field I= s
 FOR EACH test case T from the test suite

 EXECUTE test case T
 Check for attack consequences

 - 134 -

This strategy may be supported by a Web Application testing tool that automatically executes

the test cases. Some tools have been proposed in the literature to support testing of Web

Applications, such as VeryWeb [Ben02], and TestWeb [Ric01]. The testing tool WATT (Web

Application Testing Tool) [Dil02b] has been used to carry out the vulnerability testing according to

the proposed strategy. This tool has been interfaced with a XSS Test Case Generator module, which

generates automatically XSS attack test cases, and stores them in the WATT Test Case Repository.

WATT has been used to execute the attacks, and therefore to exercise the Web Application with a

suitable test suite. The results of the test execution were checked in order to assess the success of

the attack.

 Figure 12.6 shows how the XSS test case generator, and the WATT tool can be used to

automatically support dynamic analysis.

Figure 12.6: XSS testing strategy

12.4 A case study

In order to assess the effectiveness of the proposed method, a number of web applications

implemented with server scripting languages, such as ASP and PHP, have been submitted to the

vulnerability analysis. Open source web applications with declared XSS vulnerabilities have been

searched for, in order to verify if the method is able to discover the declared vulnerability. Bugtraq

web sites, such as [BugT1] and [BugT2], have been queried to select suitable applications. As an

WATT

XSS Test Case GeneratorUser Input Fields

Output response

WATT
Test Case
Repository

Attacker
server

Stolen cookies End User
Browser

WATT

XSS Test Case GeneratorUser Input Fields

Output response

WATT
Test Case
Repository

Attacker
server

Stolen cookies End User
Browser

 - 135 -

example, the 3.4.03 release of the ‘Snitz Forum’ [SnF] application is declared as vulnerable to XSS

attacks of the first type, and therefore it has been considered for the experiment.

Snitz Forum implements a discussion forum providing several user functions. The search.asp

page, that interfaces the user and accepts his requests of searching for a word or a sentence among

the messages stored in the forum, was analysed. This page was vulnerable to the second type of

XSS attacks.

 During the experiment, this page has been submitted to the static analysis process described in

Section 12.3.1. The page resulted vulnerable with respect to the input variable Search that is read

and written by the statement reported in Fig. 12.7. Then, this page satisfies predicates A, B, and C

with respect to the variable Search.

Response.Write “<input type=""text"" name=""Search"" size=""40"" value=""" &
Request.QueryString("Search") & """>
" & vbNewLine

Figure 12.7: a fragment of server page search.asp (Snitz Forum 3.4.03)

The dynamic analysis confirmed that the Web Application was actually vulnerable with respect

to this variable. Table 12.2 reports the test case used to carry out the exploit: the input string

including the malicious script that showed the vulnerability is reported.

Table 12.2
Test
case

Input Variable Expected Output
Action

 Search
1 “><script>location.URL=

‘http://www.attackersite.com/attacker.cgi?’ +
document.cookie) </script>

Client Cookie
redirected to a
page of attacker’s
server

Static analysis revealed also two data variables causing potential vulnerability. Figure 8 reports

an excerpt of the page source code, and figure 12.9 shows the CFG of the page. The Input variable

causing potential vulnerability was the ‘rs’ recordset variable, which is assigned a value by the

statement at line 7. This variable includes two fields that affect indirectly, through the

allMemberData variable (assigned in line 11), the MembersMemberID variable that is defined at

line 20 and outputted in line 22, and the MembersMemberName variable, defined at line 21 and

outputted in line 22. On the CFG in figure 9 the data dependences between these variables have

been represented by dashed lines.

 - 136 -

This page is potentially vulnerable with respect to the input variable ‘rs’, since ‘rs’ satisfies the

A condition (i.e., there is a path between nodes 7 and 22). On the other side, B and C conditions are

not true (B is false since there are more paths from the input node 7 that do not reach the output

node 22, while C is false because ‘rs’ is redefined at line 11). The semantic analysis of the source

code shows that no effective validation of variables ‘rs’ and ‘MembersMemberID’ is implemented

in the code, so any malicious data from input will reach the output node. On the other hand, the

variable MembersMemberName is checked by the ChkString user function (cfr. line 22), that

implements an effective output validation, according to the semantic analysis of the code that has

been carried out.

Dynamic analysis was, therefore, carried out in order to assess the actual vulnerability of the

Web Application with respect to these two variables. Although the potential vulnerability, no attack

string succeeded, due to a security mechanism embedded in the DBMS, that accept only integer

values for the field whose value is assigned to the variable ‘MembersMemberID’.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

23
24

‚## Forum_SQL
strSql = “SELECT MEMBER_ID, M_NAME “
strSql = strSql & “ FROM “ & strMemberTablePrefix & “MEMBERS”
strSql = strSql & “ WHERE M_STATUS = “ & 1
strSql = strSql & “ ORDER BY M_NAME ASC;”
set rs = Server.CreateObject (“ADODB.Recordset”)
rs.open strSql, my_Conn, adOpenForwardOnly, adLockReadOnly, adCmdText
if rs.EOF then
 recMemberCount = “”
else
 allMemberData = rs.GetRows(adGetRowsRest)
 recMemberCount = Ubound(allMemberData,2)
 meMEMBER_ID = 0
 meM_NAME = 1
end if
rs.close
set rs = nothing
if recMemberCount <> “” then
 for iMember = 0 to recMemberCount
 MembersMemberID = allMemberData(meMEMBER_ID, iMember)
 MembersMemberName = allMemberData(meM_NAME, iMember)
Response.Write “<option value=””” & MembersMemberID & “””> “ &
ChkString(MembersMemberName,”display”) & “</option>” & vbNewline
 next
end if

Figure 12.8: a fragment of server page search.asp (Snitz Forum 3.4.03)

This second case of vulnerability was not declared by the Bugtraq sites (since it reports only

actually exploited vulnerabilities), while the proposed method was able to detect it. This was a

valuable result, since the potential vulnerability might become an actual one, if the type of the

involved database field was changed from integer to string.

 - 137 -

Figure 12.9: Labelled CFG of the fragment of search.asp in figure ff

As a further validation, the code of the search.asp page from the 3.4.04 release of the Snitz

Forum Web Application has been analysed. In this release, the code showed in Fig. 12.7 has been

corrected as it is reported in Figure 12.10. Static analysis revealed that predicates A and B were true

with respect to variable Search, while predicate C was false because the value of the output variable

was modified by functions trim and ChkString. The page was therefore potentially vulnerable,

according to this method, and the vulnerability depended on the ChkString validation function.

Dynamic analysis was not able to exploit the application.

Response.Write ” "<td bgColor=""" & strPopUpTableColor & """
align=""left"" valign=""middle""> <input type=""text"" name=""Search""
size=""40"" value=""" & trim(ChkString(Request.QueryString("Search"),"display"))
& """>
" & vbNewLine & _

Figure 12.10: a fragment of server page search.asp (Snitz Forum 3.4.04)
Further details about this technique can be found in [Dil04d].

1..6

7

8

nF

Input rs

119
Def allMemberData,
Use rs

nI

use rs

12 Use allMemberData

13..14

16

T F

Def rs

17 Def rs

18

19

20

21

22

T

T

F

Def MembersMemberID,
Use allMemberData,

Def MembersMemberName,
Use allMemberData,

Def MembersMemberName,
Output MembersMemberName,

MembersMemberID

rs

allMemberData

allMemberData

MembersmemberID

Membersmembername

1..61..6

7

8

nFnF

Input rs

11119
Def allMemberData,
Use rs

nInI

use rs

1212 Use allMemberData

13..1413..14

1616

T F

Def rs

1717 Def rs

1818

1919

2020

2121

2222

T

T

F

Def MembersMemberID,
Use allMemberData,

Def MembersMemberName,
Use allMemberData,

Def MembersMemberName,
Output MembersMemberName,

MembersMemberID

rs

allMemberData

allMemberData

MembersmemberID

Membersmembername

 - 138 -

Chapter 13: A maintainability model for Web Applications

In this chapter a maintainability model of a Web Application is presented. This model is an

adaptation of the one proposed by Oman and Hagemeister [Oma92] for traditional software

systems. New metrics have been defined while existing metrics are adapted to Web Applications.

These metrics can be automatically evaluated from the information recovered by the Reverse

Engineering approach described in the previous chapters. A case study reporting the value of these

metrics for some Web Applications under analysis is discussed, with the aim to compare the

maintainability of these Web Applications.

13.1 Introduction

As already discussed in this Thesis, technologies and development techniques that are used to

realize a Web Application make them harder to maintain (cfr. Chapter 7). To avoid a software crisis

for the Web Applications there is a strong need to urgently address the definition and the

experimentation of methodological approaches, techniques and tools supporting an effective

maintenance of existing Web Applications. Analogously, there is a strong need also for methods

and models to assess the maintainability of existing Web Applications in order to have a valuable

support to successfully estimate the effort of a maintenance intervention.

While dealing with Web Application’s maintainability assessment, the first step to achieve is the

definition of software attributes affecting maintainability; the related model for such Web

Applications is consequently carried out.

Web Applications are substantially different from traditional software systems; thus, models and

metrics defined for traditional applications cannot be ever applied to Web Applications, because

they could not fit well in describing those new features (such as the hyper-textual based structure, or

the usage of several technologies and programming languages to code web pages, or the dynamic

generation of HTML pages) characterizing Web Applications' and affecting Web Applications’

maintainability

Since a few years, Software Engineering Research Community has been dealing with problems

about Web Application metrics in order to estimate Web Application developing efforts and

evaluate some Web Application quality attributes.

In [Men01] some web metrics are defined and used to generate models for estimating, in the

early phases of development, the effort to design a Web Application. The problem to estimate web

 - 139 -

based software development and duration is discussed also in [Rei00], where new sizing metrics,

derived by metrics used for traditional software and adapted to the new Web Applications context,

are defined and used in an estimation model called WebMo, derived as an adaptation of the

CoCoMo II model [Boe00].

Jeff Offutt, in [Off02] discusses about the differences among traditional applications and Web

Applications and indicates the main quality attributes to be considered for Web Applications and

which are the main Web Application features that can affect them.

The maintainability is one of the critical aspects of a Web Application: Web Applications have

to be modified and evolve in a very fast way, then those features affecting it should be defined,

identified and evaluated in order to improve/reduce the ones that have a positive/negative impact on

the maintainability both during the development and maintenance process of a Web Application.

Unfortunately, there are a very few works in the literature addressing the problem of assessing

the Web Application maintainability, even if in [Bre98] web based applications were considered as

the 'next maintenance mountain'.

In this chapter a maintainability model for Web Applications is proposed. The model is derived

from the maintainability model proposed in [Oma92] by Oman and Hagemeister for traditional

systems. This model is adapted to Web Applications, considering architectural and structural

peculiarities that make Web Applications different from traditional systems. Proper metrics are

defined in order to carry out an estimation of Web Application maintainability that can be expressed

as a function of those metrics.

The current state of this research does let to compare maintainability of different Web

Applications, but evaluating the maintainability level of a Web Application from an absolute

viewpoint is not yet possible. Collecting and analysing data from appropriate experiments is needed

in order to defining exactly coefficients of each metric to compose the maintainability function.

This model doesn’t take into account all the aspects of maintenance, in terms of phases and

documentation. This is due, mainly, to the following reasons.

The major aim is to support decision-making: the model is just a prediction tool whose required

effort is neglectable.

Model is focused on the source code: in the most critical cases, it is the only available

documentation; in the usual web application lifecycle, the source code is the most handled

document.

 - 140 -

13.2 A maintainability model for Web Applications

Many papers discussing maintainability models for traditional software systems are present in

literature. Among these, the one proposed by Oman and Hagemeister seems to us the most

exhaustive and complete. It has been chosen as reference model for deriving a suitable one to define

the maintainability of a Web Application.

13.2.1 The Oman and Hagemeister maintainability model

In [Oma92], Oman and Hagemeister presented a maintainability model based on a hierarchical

tree structure comprehending 92 attributes affecting the maintainability of a software system. The

leaf nodes in the hierarchy represent an identified maintainability attribute and, for each of these,

attribute metrics are defined to evaluate that maintainability characteristic.

In Figure 13.1 the top level of the OHMM hierarchy is showed. At this level, three main

categories of factors are pointed out:

- Management: practices of management employed, and facts related with them;

- Operational environment: environment, in terms of hardware and software, involved in the

operation of the system under examination;

- Target Software System: the examined software system under maintenance, including the

source code and support documentation.

Oman’s work focuses mainly on the Target Software System; Figure 13.2 shows a detail of the

sub-tree concerning this category.

Three major categories can be identified in this sub-tree:

- Maturity Attributes: maintainability characteristics referring to the maturity degree of the

system under evaluation, relying on the aging, stability, reliability, number of defects; and number

of maintenance interventions, techniques of development used;

- Source Code: maintainability characteristics due to those ones of the source code;

- Supporting Documentation: maintainability characteristics due to the supporting

documentation; they are divided in two categories:

- Documentation Abstraction: characteristics related with content (completeness, correctness,

and descriptiveness) of supporting documents set;

- Physical Attributes: characteristics related with the form (readiness, modifiability) of

supporting documents set.

 - 141 -

Figure 13.1 The Oman and Hagemeister top level Software Maintainability hierarchy

(extracted from [Oma92])

Figure 13.2 The Target Software System subtree of the Oman and Hagemeister Software
Maintainability hierarchy (extracted from [Oma92])

The Source Code category is divided in three sub-categories, each divided in two sub-categories

(i.e. System and Component) in order to distinguish attributes characterizing either the overall

system or single components forming it.

 - 142 -

- Control Structure: it includes characteristics concerning the way either the system or the

program is decomposed (characteristics of the implementation, or code)

- System: characteristics concerning inter-modular control attributes, specifically referring to

the way system is decomposed in modules, the way modules are coupled, and the way in which

algorithms are implemented.

- Component: characteristics concerning attributes about intra-modular control flow and

module execution.

- Information Structure: includes characteristics concerning choice and use of data structures

and inter- and intra-modular data flow:

- System: characteristics of information regarding the memorization and flow of data in the

system, as global data types, global data structures, nesting of data structures;

- Component: characteristics of information, at the level of a single module, concerning the

memorization and manipulation of data within a system module, such as local data types, local data

structure, coupling.

- Code typography, naming and commenting: including characteristics about the

typographical layout, names and comments of the code:

- System: Characteristics related to typographical layout of source code and to comments

related to the overall system as general formatting of programs, conventions for the names, and

module separation.

- Component: characteristics concerning the typographical layout of source code and

comments, at level of a single module, such as vertical spacing, comments in the module, indenting

of statements.

The current work focuses on the category of the Source Code and, more specifically, on the sub-

categories of Control and Information Structure. Adaptation of attributes and metrics concerning

these categories to the case of Web Applications is discussed in the following.

These adaptations are influenced by and refer to components typically forming a Web

Application. Components forming a Web Application, and the main relationships among them, are

introduced and discussed in the next section.

13.2.2 Traditional Systems and Web Applications

The OHMM was developed with reference to traditional (Legacy) systems. These systems are

usually composed of a set of programs (or modules), linked by calling relationships and different

kinds of data coupling, and running just on one centralized computer. Moreover, the programs are

 - 143 -

usually coded just using one programming language (or at least very few different programming

languages) and they are executed in a static way (i.e. no program or code component is created at

run-time).

On the contrary, Web Applications are usually composed of different kinds of items coded with

different programming/scripting languages; Web Applications' components may be executed on

different computers in a distributed architecture, and some components can be generated at run-

time; among Web Applications' components may exist different kinds of relationships connecting

them.

13.3 Adapting Oman and Hagemeister maintainability model to Web
Applications

The differences between traditional systems and Web Applications have to be considered to

apply the OHMM to Web Applications: the original model has to be modified to be efficiently and

effectively used with Web Applications.

In the following the proposed modifications to apply to the OHMM for estimating the

maintainability of a Web Application are reported.

Table 13.1 Web Application Metrics at System Level

Metric Name Description

TotalWebPage# Total number of Web Application pages
TotalWebPage#= TotalServerPage# + TotalStaticClientPage#

TotalLOC# Total number of Web Application LOCs
TotalLOC# = TotalServerPageLOC# + TotalStaticClientLOC#

ServerScript# Total number of Web Application server scripts

ClientScript# Total number of Web Application client scripts

WebObject# Total number of Web Application web objects

InterfaceObject# Total number of Web Application Interface Object

TotalData# Total number of different data identifiers

I/OField# Total number of Web Application form fields + number of I/O data
from/to mass storage devices

TotalConnectivity# Total number of relationships among web pages
TotalConnectivity# = Link# + Redirect# + Submit# + Build# +Include#

TotalLanguages# Total number of programming/scripting languages used to implement
the Web Application

 - 144 -

Firstly, a set of simple metrics is defined. These metrics characterize a Web Application either

at system and component level, and then these metrics are used to evaluate the attributes. Table 13.1

and Table 13.2 report these metrics.

The metrics in the Table 13.1 aim to provide a structural size of the whole Web Application by

counting the total number of components it consists of. In the following some remarks about these

metrics are provided. When computing TotalWebPage# the Built Client Pages are not considered

because there is not a physical source file corresponding to them; the reason is because a maintainer

will operate on the source generating a built page. A problem exists about what has to be considered

a LOC in Web Application: is it correct to consider as a LOC the text data that is displayed by a

client page? In this work these lines of text have been counted too, because the idea is that they

contribute to make more complex the execution of a maintenance operation.

Table 13.2 Web Application Metrics at Component Level

Metric Name Description

WebPageTag# Number of tags in the page

WebPageScript# Number of scripts in the page

PageWeb Object# Number of web objects in the page

WebPageI/O# Number of form fields in the page + number of I/O data from/to mass
storage devices

WebPageRelationships# Number of relationships that page has with the other pages
WebPageRelationships#= PageLink# + PageRedirect# +
PageSubmit# + PageBuild#+PageInclude#

PageCodeSize Number of source LOCs forming the page

PageInterface# Number of Interface Objects referred in the page

WebObjectSize Number of source LOCs forming the web object
Note: This metric is used just only for those web objects whose
source code is available

WebPageData# The number of data different data identifiers in the Page

WebPageDataCoupling# The number of data exchanged with other Web Pages

InnerComponents# The number of inner components composing the page:
InnerComponents# = PageForms# + PageWebObjects# +
PageScripts# + PageFrames#

WebPageComplexity# The cyclomatic complexity of the page

WebPageControlStructures# The number of Control Flow Structures

PageLanguage# Number of programming/scripting languages used to implement the
page

ScriptSize Number of source LOCs forming the Script

 - 145 -

Moreover the web page count, the total number of scripts blocks have been considered (both

server and client side ones), web objects, and interface object because their number provides an

index of the Web Application general structural complexity (e.g. a greater number of scripts would

mean a greater algorithmic complexity). The TotalData# and the InputField# would provide the

Web Application complexity due to the data involved in the Web Application and to the user

interactions. The TotalConnectivity# would indicate the overall Web Application complexity due to

the control coupling among the Web Application pages. Finally the TotalLanguages# give us an

index of the Web Application complexity due to the usage of several different

programming/scripting languages.

The metrics in Table 13.2 aim to provide information about the structural complexity of a web

page both by its internal composition and when connected to other pages. In particular the

WebPageDataCoupling# and WebPageRelationships# metrics can provide an index of ripple effects

among the pages.

In the OHMM the main system basic unit is the module or program, that is mainly characterized

by its size in KLOC, the data it refers to, the number of control flow structures used to implement it,

the control and data coupling it has with the other modules or programs.

In a Web Application the basic unit is the Web Page that is mainly characterized by its inner

components (forms, scripts, web objects, and so on - these components are referred as page sub-

components in the following), its size in LOC, the tags and the control flow structures used to

implement it, the data it refers, the connections it has with other pages.

The common elements, the differences and the analogies existing between traditional systems

and Web Applications are used to adapt the OHMM to Web Applications. The present work has

been focused just on the Source Code Characteristics and in particular on the Control and

Information sub-characteristics.

The Tables 13.3 to 13.6 reports the considered attributes and the metrics needed to evaluate

them, for the Web Application Maintainability Model (WAMM).

In the Tables the new attributes have been highlighted writing (NEW) after the attribute name,

while the word 'SAME' in the description field means that the same definition of the OHMM is

used for the WAMM.

While adapting the OHMM to WAMM, 12 new attributes have been introduced, 2 ones have

been deleted (i.e. Encapsulation and Span of Control Structures) and all the others have been

adapted to the Web Applications by defining them using the simple basic Web Application metrics

in Tables 13.1 and 13.2.

 - 146 -

Table 13.3 Web Application Control Structure

Maintainability Attributes and Metrics at System Level

System Attribute Web Application System Metrics

Size (NEW) [TotalWebPage#, TotalLOC#, WebObject#, ServerScripts#, ClientScripts#,
TotalLanguages#]

Modularity [TotalWebPage#, Average PageCodeSize]

Complexity Total Cyclomatic Complexity

Consistency [Standard deviation of PageCodeSize, Standard deviation of
WebPageComplexity#

Nesting [Max number of InnerComponents#, Max depth of sub-components nesting,
Average of nested sub-components per page, % of nested components]

Control Coupling Total WebPageRelationships# / TotalWebPage#

Data Coupling
(NEW)

Total WebPageDataCoupling# / TotalWebPage#

Module Reuse Include# / TotalWebPage#

Control Flow
Consistency

Total number of dead relationships interconnecting Web pages

Table 13.4 Web Application Control Structure

Maintainability Attributes and Metrics at Component Level

Component Attribute Web Application Component Metrics

Size (NEW) PageCodeSize

Modularity [PageCodeSize, TotalWebPage#]

Complexity Web Page Cyclomatic Complexity

Use of Structured Constructs WebPageControlStructures#

Use of Unconditional Branching SAME

Control Structure Nesting SAME

Web Page InnerComponents (NEW) InnerComponents#

PageLanguages PageLanguage#

Density of Control Structures (NEW) WebPageControlStructures# / PageCodeSize

Control Coupling (NEW) WebPageRelationships#

Data Coupling (NEW) WebPageDataCoupling#

Cohesion SAME

 - 147 -

Table 13.5 Web Application Information Structure

Maintainability Attributes and Metrics at System Level

System Attribute Web Application System Metrics

Data Size (NEW) [TotalData#, Total number of data references]

Global Data Total number of global data/ TotalData#

Global Data Structures Total number of global data structures/
TotalData#

System Coupling Total WebPageDataCoupling#/ TotalData#

Data Flow Consistency Total number of anomalous data usage/
TotalData#

Data Type Consistency SAME

Nesting SAME

I/O Data (NEW) I/OField#

Density of Data (NEW) TotalData# / TotalWebPage#

I/O Complexity SAME

I/O Integrity SAME

Table 13.6 Web Application Information Structure

Maintainability Attribute and Metrics at Component Level

System Attribute Web Application System Metrics

Web Page Data Size (NEW) [WebPageData#, Total number of data
references in the Web Page]

Local Data Structures Total number of data structures in a Web Page

Data Coupling WebPageDataCoupling#

I/O Data (NEW) WebPageI/O#

Initialization Integrity SAME

Span of Data WebPageData# / PageCodeSize

The Maintainability of a Web Application, with reference to the Source Code Control and

Information Structure characteristics, may be expressed as a function of the 39 attributes described

in tables 13.3 to 13.6:

Web Application Maintainability = F(γi Ai), i=1 .. 39

where Ai is the value of i-th maintainability attribute and γi is the weight to assign to that

attribute according to how much the attribute affects the maintainability. The definition of the

values of such weights requires the availability and the analysis of (historical) data from several

 - 148 -

maintenance operations on different Web Applications. At the current state of the work there is not

yet a meaningful amount of such data to be able to define the γi values, this task will be a future

work for this research. However an initial analysis have been conducted for some Web Applications

from real world. For these applications the attributes of WAMM have been computed and some

simple experiments for a first validation of the effectiveness of the model have been carried out.

The initial results are presented and discussed in the next section.

13.4 Case Study

Four web applications with different features, and implemented using ASP, Javascript, and

HTML technologies, were selected for the case study. From here on, for sake of brevity, these

applications are named WA1, WA2, WA3, and WA4. Some of these applications have been also

considered in the case studies reported in the previous chapters.

WA1 is a source freeware application implementing a flexible discussion forum. WA2 is a

freeware application supporting the realization of a customisable portal. WA3 is an application

managing the on-line services provision for an undergraduate course. WA4 is a prototype of an e-

commerce application supporting the buying of mp3 files.

The metrics described in the previous tables have been computed and used for providing a

qualitative analysis of the Web Applications maintainability.

The most part of the metrics has been measured automatically by using the tool WARE and

another tool developed just to support the computation of some Web Application metrics. The tools

statically analyse the Web Application source code in order to compute the metrics. The remaining

part of the metrics was achieved in semi-automatic way based on the results provided by the two

tools: the cost for this kind of measuring was low, in terms of effort required and experience needed

for the measurer. Such analysis is mainly localized on the single lines rather than on the overall

structure of the application.

For sake of brevity in Tables 13.7 and 13.8 just some of the computed metrics are reported. This

is the reason why Component Level Metrics are neglected. However, notice that System Level

Metrics represent a synthetic expression of Component Level Metrics.

In this first case study then attention has been focused on some attributes, and related metrics,

that are supposed to affect the maintainability harder than other ones. In particular, the Size,

Complexity, Control and Data Coupling attributes have been considered.

In the following some remarks resulting by the analysis of the data in Tables 13.7 and 13.8 are

reported.

 - 149 -

When considering the System Size of a Web Application, all the items in 6-ple in Table 13.3

have to be taken into account. Indeed, the TotalWebPage# may not be significant if considered as a

whole and by alone, but it is more significant when specifying its composition in term of the server

and client pages, because these values provide an index on which side (server or client) the most of

the Web Application complexity is. Moreover it is more and more significant when considered

together other metrics. For example, let’s notice that WA3 and WA1, from Table 13.7 have a

similar TotalWebPage# then, from this perspective the two applications seem to be very similar. By

using also the TotalLOC# metrics for those Web Applications, the TotalLOC# Ratio is 1:2.7 and

the TotalServerPageLOC# ratio is 1:3.2. From this perspective, WA1 is much greater than WA3

and, moreover, harder to maintain, due to larger number of TotalPageLOC# and in particular for the

number of TotalServerPageLOC#.

Then it is possible to suppose that the maintenance’s effort is greater on the server side, where

the most of the business logic is usually implemented, than on the client side. In this perspective,

metrics concerning server side parts of Web Applications are good candidates for predictors of

effort for maintenance interventions.

The Complexity attribute evaluation provides an indicator about the effort of maintenance

intervention with specific regard to the business logic. From Table 13.7 it appears that WA1 is more

complex than WA2 according to Total Cyclomatic Complexity metric with a ratio of 4:3,

notwithstanding that the size of WA1 and Wa2 is almost the same in terms of TotalLOC#.

Consequently, as well as in traditional software, in web applications size and complexity are not

strictly related, but they have considered together to obtain useful information about the Web

Application maintainability.

A high Coupling may negatively affect the impact of maintenance interventions [Bri99].

In a Web Application the kind of connections and thus the kind of control coupling, entails

different consideration on the effort of maintenance intervention to implement. From Table 13.7 it

seems that WA1 gets much more connections than WA2, WA3 and WA4, but about the 80% of

WA1’s connections are hypertextual links, which rarely bring data and business logic: usually, they

are just used for navigation purposes. On the contrary, WA2 has a greater number of submit

connections, that may be more complex to be maintained than the previous ones, because usually

they are used to implement a user function and involve the exchange of data from a client page to

the server page that will elaborate that data.

As well as in traditional software, variables amount and reference frequency are further

indicators of the complexity of the information structure of a web application and its components.

From this perspective WA1 is the most complex one.

 - 150 -

Table 13.7 Web Application Control Structure Maintainability Measures at System Level

 WA1 WA2 WA3 WA4

Size TotalServerPage# 71 126 75 22

 TotalClientPage# 0 0 23 19

 TotalWebPage# 71 126 98 41

 TotalBuiltClientPages# 56 53 74 21

 TotalLOC# 21994 22062 8025 2689

 TotalServerPageLoc# 21994 22062 6895 2098

 TotalStaticClientPageLoc# 0 0 1040 600

 WebObject# 0 0 0 0

 TotalLanguages# 3 3 3 3

Modularity Average Page CodeSize 309,8 175,1 81,9 65,6

Complexity Total CYclomatic
Complexity

2936 2206 532 143

Consistency Standard deviation of
PageCodeSize

466,8 226,7 29,6 41,1

 Standard deviation of
WebPageComplexity

49,5 22,4 1,5 3,8

Control
Coupling

Total WebPage
Relationship# /
TotalWebPage#

17,6 5,4 1,1 3,6

 Link# 810 182 51 93

 Submit# 60 86 49 20

 Redirect# 117 17 8 32

Data
Coupling

Total WebPage
DataCoupling# /
TotalWebPage#

11,3 6,1 1,4 1,4

Module Reuse Include# / TotalWebPage# 3,7 5,4 0,6 0,4

Table 13.8 Web Application Information Structure Maintanability Measures at System Level

 WA1 WA2 WA3 WA4

Data Size TotalData# 1147 1088 613 146

 TotalDataReferences# 17102 11059 3153 788

System
Coupling

Total
WebPageDataCoupling#
/ TotalData#

0,7 0,7 0,2 0,4

Density of
Data

TotalData# /
TotalWebPage#

16,2 8,6 6,3 3,6

 - 151 -

By summarizing WA1 results the most complex application in terms of Size and Data while

considering the Control Coupling WA1 is the most complex one for the number of connections,

while WA2 is the most complex one for the kind of connections.

Further details about the maintainability model presented in this chapter can be found in

[Dil04c].

13.5 Future Works

Empirical studies are needed to evaluate if the model is effective to assess the degree of

maintainability of a Web Application. More specifically, a relevant goal is the evaluation of

applying WAMM on data about a Web Application’s story.

Metrics’ effectiveness in predicting effort is strictly dependent on the kind of intervention to

perform (i.e., intervention on user interface mainly regard client side pages). Referring to Web

Application Maintainability’s formula in section 13.2.3, the weight γi could be related to the

influence of the attribute Ai on the kind of intervention. Although, such considerations are

preliminary and need a further empirical validation, the WAMM’s set of metrics seems to furnish a

good quantitative support for building a theory in this direction.

 - 152 -

PART 4: CONCLUSIONS AND FUTURE WORKS

 - 153 -

Chapter 14: Conclusions

A Reverse Engineering approach has been described in this Ph.D. Thesis. The purpose of the

approach is the recovering of knowledge from the analysis of the source code of Web Applications,

supporting their maintenance and evolution.

A method to extract detailed information about the structure of the components of a Web

Application analysing the source code has been proposed and described in this Thesis. The

extracted information has been represented as a UML Class diagram, according to the model

presented in Chapter 3. The tool WARE, described in chapter 6, allows the browsing of the

recovered information in a very easy and intuitive way and provides a useful support to the process

of the comprehension of structure and behaviour of the Web Application components. So, it

provides a great help for the Engineer that has to carry out any maintenance intervention on the

Web Application.

The problem of recovering high-level abstractions has been addressed from several points of

view. A clustering technique to group the Web pages in subsets highly cohesive and loosely

coupled has been defined to identify the groups of Web pages implementing the provided user

functions. Moreover, a method has been defined to assign automatically a concept to a Web page or

a group of pages. This method can be also useful for developing a search engine or for migrating to

the Semantic Web.

Another problem that has been addressed is the automatic identification of Interaction Design

Patterns analysing the source code of Web pages. The identification of these patterns provides

further information to better and easier comprehend the functionality realized by Web pages.

Moreover, a technique has been proposed to recognize Web pages and components having identical

or similar structures. Applying this technique to the set of pages and components of a Web

Application, cloned components may be recognized. The presence of cloned components can be

due to a poor design of the software. So, a reengineering of the cloned components would improve

the quality of the application. Moreover, it is possible to detect plagiarism (comparing pages and

components of different Web Applications) and to compare different version of the same Web

Application. Another application of this technique consists of comparing the different client pages

that are built from the same server page, with the aim to recognize if the outputs of different

executions of a server page are the same.

Some other methods and techniques have been defined to abstract business level UML use case

diagrams, class diagrams and sequence diagrams. These diagrams show a set of views that are

 - 154 -

independent from the technological and architectural constraints due to the coding of the Web

Application with scripting languages.

Another method has been proposed, facing the problem of the assessment of the vulnerability of

the Web Application components to the Cross Site Scripting attacks. This method allows verifying

if the components of the Web Application are intrinsically vulnerable to this kind of attacks.

Finally, a maintainability model for Web Applications has been defined. The model includes

metrics that can be evaluated from the information extracted by the proposed Reverse Engineering

approach. A tool has been developed that automatically calculates these metrics. These measures

can represent a useful factor for decision-making processes.

14.1 Future Works

Future works are needed to better integrate the tools that have been realized and to better

integrate the produced results. Some of the future works have already been discussed in the

previous chapters. So, the focus of this subsection is limited to the future applications of the

proposed techniques to face other Web Engineering problems.

In this Thesis, the automatic extraction of information from the source code of Web

Applications is based on static analysis techniques. As a future work, the problem of the automatic

extraction of information from the analysis of the execution of a Web Application will be

addressed. Tools have to be developed to provide the needed automatic instrumentation of the

source code of Web pages (the information extracted with the static analysis can be a useful support

to this task) and to recover information from the execution of the instrumented Web Applications.

Future works will be addressed to the definition of methods and techniques to support the

migration or the integration of Web Applications to Web Services. Also in this case high-level

abstractions, recovered with the methods proposed in this Thesis, are a good starting point to define

transformation and migration processes.

Other future works will be devoted to the testing of Web Applications. The Reverse

Engineering approaches and tools presented in this Thesis have already been used to support the

testing of Web Applications [Dil02b]. Tool WARE supports the identification of the components to

be tested, while the other methods support the identification of the functionalities to test. Nowadays,

some testing tools are under developing, supporting the automatic testing of Web Application.

As regards the quality assessment, the methods and the tools presented in this Thesis will be

extended to assess the aging of a Web Application and to assess the efficacy of reengineering

maintenance intervention, as regards improving the maintainability of the applications.

 - 155 -

Finally, the problem of assessing the accessibility of a Web Application will be addressed too,

by defining methods and techniques based on the extracted information recovered by the proposed

Reverse Engineering approaches.

 - 156 -

References

[Anq98] N. Anquetil and T. Lethbridge, “Extracting concepts from file names; a new file clustering criterion”, Proc. of 20th

International Conference on Software Engineering, IEEE CS Press, Los Alamitos, CA, 1998, pp. 84-93.

[Anq99] N. Anquetil, T.C. Lethbridge, “Experiments with clustering as a software remodularization method”. In Proceedings

of 6th Working Conference on Reverse Engineering - 1999. IEEE Computer Society Press: Los Alamitos, CA, 1999; 235-
255.

[Ase02] A. Asencio, S. Cardman, D. Harris, E. Laderman “Relating Expectations to Automatically Recovered Design Patterns”,

Proceedings of the Ninth IEEE Working Conference on Reverse Engineering, 2002.

[Bal03] Z. Balanyi and R. Ferenc, “Mining Design Patterns from C++ Source Code”, Proceedings of the IEEE International

Conference on Software Maintenance, 2003

[Bal99] M. Balazinska, E. Merlo, M. Dagenais, B. Lagüe, K. Kontogiannis, “Measuring clone based reengineering

opportunities”, Proc. International Symposium on software metrics. METRICS’99. IEEE Computer Society Press, Nov
1999.

[Bal00] M. Balazinska, E. Merlo, M. Dagenais, B. Lagüe, K. Kontogiannis, “Advanced clone-analysis to support object-

oriented system refactoring”, Proc. Seventh Working Conference on Reverse Engineering, IEEE Comp. Society Press,
2000, pp. 98-107.

[Bal01] F. Balmas, “Displaying dependence graphs: a hierarchical approach”, Proc. of 8th Working Conference on Reverse

Engineering, IEEE CS Press, Los Alamitos, CA, 2001, pp. 261- 270.

[Bak93] B. S. Baker., “A theory of parametrized pattern matching: algorithms and applications”, Proc. 25th Annual ACM

Symposium on Theory of Computing, pp. 71-80, May 1993.

[Bak95] B. S. Baker, “On finding duplication and near duplication in large software systems”, Proc. 2nd Working Conference

on Reverse Engineering, IEEE Computer Society Press, 1995.

[Bak95b] B. S. Baker, “Parametrized pattern matching via Boyer-Moore algorithms”, Proc. Sixth Annual ACM-SIAM

Symposium on Discrete Algorithms, pp. 541-550, Jan 1995.

[Bas85] V. Basili, D. Hutchens, “System structure analysis: clustering with data bindings”, IEEE Transactions on Software

Engineering, 11 (8), 1985, pp. 749-757.

[Bax98] Baxter I. D., Yahin A., Moura L., Sant’Anna M., Bier L., “Clone Detection Using Abstract Syntax Trees”, Proc.

International Conference on Software Maintenance, 368-377, IEEE Computer Society Press, 1998.

[Ban00] A. Bangio, S. Ceri, P. Fraternali, ”Web Modeling Language (WebML): a modeling language for designing Web sites”,

in Proceedings of the 9th International Conference on the WWW (WWW9) - 2000. Elsevier: Amsterdam, Holland, 2000:
137-157.

[Ben89] P. Benedusi, A. Cimitile, U. De Carlini, “A reverse engineering methodology to reconstruct hierarchical data flow

diagrams for software maintenance”. In Proceedings of Conference on Software Maintenance - 1989. IEEE Computer
Society Press: Los Alamitos, CA, 1989: 180-189.

[Ben92] P. Benedusi, A. Cimitile, U. De Carlini, “Reverse engineering process, document production and structure charts”.

Journal of Systems and Software 1992; 19: 225- 245.

[Ben02] M. Benedikt, J. Freire, P. Godefroid, “VeriWeb: Automatically Testing Dynamic Web Sites”, Proceedings of the

eleventh international conference on World Wide Web, ACM Press New York, NY, USA, 2002, pp.396-407

[Ber84] H.L. Berghel, D.L. Sallach, “Measurements of program similarity in identical task environments”, SIGPLAN Notices,

9(8):65-76, Aug 1984.

[Big93] T.J: Biggerstaff, B.G. Mitbander, D. Webster, “Program understanding and the concept assignment problem.”

Communications of the ACM 1993; 37 (5): 72- 83.

[Boe00] B.W. Boehm et al., "Software Cost Estimation with Cocomo II", Prentice-Hall, Upper Saddle River, N.J., 2000

 - 157 -

[Bol01] C. Boldyreff, R. Kewish, “Reverse Engineering to Achieve Maintainable WWW Sites”. In Proceedings of Eighth
Working Conference on Reverse Engineering 2001. IEEE Computer Society Press: Los Alamitos, CA, 2001: 249-257.

[Bor01] J. Borchers, “A Pattern Approach to Interaction Design”, John Wiley & Sons, Chichester, West Sussex, UK, 2001.

[Bre98] P. Brereton, D. Budgen, G. Hamilton, “Hypertext: the next maintenance mountain”, IEEE Computer , December 1998,

IEEE Computer Society Press, Los Alamitos, CA.

[BugT1] Security Focus Bugtraq, http://www.securityfocus.com/

[BugT2] Securepoint BugTraq, http://msgs.securepoint.com/bugtraq/

[Bri99] L.C.Briand, J.Wust, H.Lounis, “Using coupling measurement for impact analysis in object-oriented systems”, Proc. of

IEEE International Conference on Software Maintenance, 1999. IEEE Computer Society Press, Los Alamitos, pp. 475-482.

[Can96] G. Canfora, A. Cimitile, and M. Munro, “An improved algorithm for identifying reusable objects in code”, Software

Practice and Experiences, vol. 26, no. 1, 1996, pp. 24-48.

[Cert00] “CERT® Advisory CA-2000-02 Malicious HTML Tags Embedded in Client Web Requests”,

http://www.cert.org/advisories/CA-2000-02.html

[cgi] "The Cross Site Scripting FAQ", http://www.cgisecurity.com/articles/xss-faq.txt

[Chu01] S. Chung, Y.S. Lee, “Reverse software engineering with UML for web site maintenance”, in Proceedings of 1st

International Conference on Web Information Systems Engineering 2001, IEEE Computer Society Press: Los Alamitos,
CA, 2001, (2): 157-161.

[Cim95] A.Cimitile and G.Visaggio. “Software Salvaging and the Call Dominance Tree”, The Journal of Systems and

Software, Volume 28, Number 2. February 1995.

[Cim99] A. Cimitile, A. De Lucia, G.A. Di Lucca, and A.R. Fasolino, “Identifying objects in legacy systems using design

metrics”, The Journal of Systems and Software, vol. 44, January 1999, pp. 199-211

 [Com01] S. Comai, P. Fraternali, “A semantic model for specifying data-intensive Web applications using WebML”, in

Proceedings of the International Semantic Web Working Symposium - 2001.
http://www.semanticweb.org/SWWS/program/full/paper19.pdf [10 April 2003]

[Con99] J. Conallen, “Building Web Applications with UML”. Addison Wesley Publishing Company: Reading, MA, 1999.

[Con99b] J. Conallen, “Modeling web application architectures with UML”. Communications of the Association for Computing

Machinery 1999. 42 (10): 63-70.

[DaC03] D. Da Costa, C. Dahn, S. Mancoridis, V. Prevelakis, “Characterizing the 'security vulnerability likelihood' of software

functions”, Proceedings of International Conference on Software Maintenance, ICSM 2003, IEEE, CS Press, Los Alamitos,
CA, 2003, pp.266-274

[Dat03] Datamonitor, “Enterprise Security Product Market”, Datamonitor report DMTC0913, Jul 2003.

[Del97] A. De Lucia, G.A. Di Lucca, A.R. Fasolino, et al., ‘Migrating legacy systems towards object-oriented platforms’, Proc.

of IEEE Int. Conference on Software Maintenance, ICSM 1997, IEEE CS Press, pp. 122- 129.

[Dil00] G. A. Di Lucca, A.R. Fasolino, U. De Carlini, “Recovering Class Diagrams from Data-Intensive Legacy Systems”,

Proc. of IEEE Int. Conference on Software Maintenance, ICSM 2000, San Jose (USA), Oct. 2000, IEEE C. S. Press, pp.
52- 63.

[Dil01] G. A. Di Lucca, M. Di Penta, A.R Fasolino, P. Granato, “Clone Analysis in the Web Era: an approach to identify

Cloned Web Pages”, Proc. of WESS 2001, Firenze, Italy.

[Dil02] G.A. Di Lucca, A.R. Fasolino, U. De Carlini, F. Pace, P. Tramontana, “WARE: a tool for the Reverse Engineering of

Web Applications”, in Proceedings of 6th European Conference on Software Maintenance and Reengineering - 2002, IEEE
Computer Society Press, Los Alamitos, CA, 2002: 241-250.

[Dil02b] G.A. Di Lucca, A.R. Fasolino, F. Faralli, U. De Carlini, “Testing Web Applications”, in Proceedings of International

Conference on Software Maintenance - 2002. IEEE Computer Society Press, Los Alamitos, CA, 2002: 310-319.

[Dil02c] G. A. Di Lucca, A.R. Fasolino, U. De Carlini, F. Pace, P. Tramontana, “Comprehending Web Applications by a

Clustering Based Approach”, Proc. of 10th IEEE Workshop on Program Comprehension, IWPC 2002, Pages:261 - 270

 - 158 -

[Dil02d] G. A. Di Lucca, A.R. Fasolino, P. Tramontana, “ Towards a Better Comprehensibility of Web Applications: Lessons
Learned from Reverse Engineering Experiments”, Proc. of 4th IEEE Workshop on Web Site Evolution, WSE 2002,
Pages:33 - 42

[Dil03] G. A. Di Lucca, A.R. Fasolino, U. De Carlini, P. Tramontana, “Abstracting business level UML diagrams from web

applications”, Proc. of 5th IEEE Workshop on Web Site Evolution, WSE 2003, pp.12-19

[Dil03b] G.A. Di Lucca, A.R.Fasolino, U.De Carlini, P.Tramontana, “Recovering a Business Object Model from Web

Applications”, Proceedings of the 27th IEEE Annual International Computer Software and Applications Conference,
COMPSAC 2003, Pages: 348 - 353

[Dil04] G.A. Di Lucca, A.R. Fasolino, P. Tramontana, “Reverse Engineering Web Application: the WARE approach”, Journal

of Software Maintenance and Evolution: Research and Practice, Volume 16, Issue 1-2, Date: January - April 2004,
Pages: 71-101

 [Dil04b] G.A. Di Lucca, A.R. Fasolino, P. Tramontana, U. De Carlini, “Identifying Reusable Components in Web

Applications”, IASTED International Conference on Software Engineering, SE 2004, pp.526-531

[Dil04c] G.A. Di Lucca, A.R.Fasolino, P.Tramontana, C.A.Visaggio, “Towards the definition of a maintainability model for

web applications”, Proceedings of the Eighth IEEE European Conference on Software Maintenance and Reengineering,
CSMR 2004, pages:279 - 287

[Dil04d] G.A. Di Lucca, A.R.Fasolino, M.Mastroianni, P.Tramontana, “Identifying Cross Site Scripting Vulnerabilities in Web

Applications”, Proceedings of 6th IEEE Workshop on Web Site Evolution, WSE 2004, pages 91-100

[Dil04e] G.A. Di Lucca, A.R.Fasolino, P.Tramontana, U.De Carlini, “Supporting Concept Assignment in the Comprehension of

Web Applications”, Proceedings of the 28th IEEE Annual International Computer Software and Applications Conference,
COMPSAC 2004

[Dil04f] G.A. Di Lucca, A.R.Fasolino, P.Tramontana, U.De Carlini, “WARE: a tool for Web Applications Reverse

Engineering”, Tool Demonstrations session of the 8th IEEE European Conference on Software Maintenance and
Reeengineering, CSMR 2004, pp.24-28

[Dil04g] G.A. Di Lucca, A.R.Fasolino, P.Tramontana, U.De Carlini, “Reverse Engineering Web Applications using the WARE

tool”, chapter of the book "Tools for software maintenance and reengineering", Franco Angeli editore (to be published)

[Dil05] G.A.Di Lucca, A.R. Fasolino, P. Tramontana, “Recovering Interaction Design Patterns in Web Applications”, accepted

for 9th IEEE European Conference on Software maintenance and Evolution, CSMR 2005

[Dot] Dotty. Available at the URL: http://www.research.att.com/sw/tools/graphviz

[Duy02] D.K. van Duyne, J.A. Landay, J. Hong, “The design of sites”, Addison-Wesley, Boston, US, 2002

[Fer02] M. Ferrara, “Metriche Software per il Riconoscimento di Cloni in Applicazioni Web e una Metodologia per la loro

Reingegnerizzazione”, Laurea Degree Thesis, Dip. Informatica e Sistemistica University of Naples Federico II, 2002.

[Gal95] H.Gall, R.Klösch, “Finding objects in procedural programs: an alternative approach”, Proc. of 2nd Working

Conference on Reverse Engineering, Toronto, Canada, 1995, IEEE CS Press, pp. 208-216

[Gam95] E. Gamma, R. Helm, R. Johnson, J. Vlissides, “Design Patterns: Elements of Reusable Object-Oriented Software,

Addison-Wesley, Boston, Massachusetts, USA, 1995

[Geo96] J. George and B.D. Carter, “A strategy for mapping from function oriented software models to object oriented software

models”, ACM Software Engineering Notes, vol. 21, no. 2, March 1996, pp. 56-63

[Gin01] A.Ginige and S.Murugesan, “Web engineering. An introduction”, IEEE Multimedia, 8(1):14-18, April-June 2001

[Gol01] N. Gold, “Hypothesis-based concept assignment to support software maintenance”, IEEE International Conference on

Software Maintenance, IEEE, CS Press, Los Alamitos, CA, 2001, pp.545-548

[Gra03] I. Graham, “A pattern language for Web Usability”, Addison-Wesley, Boston, US, 2003

[Gri81] S. Grier, “A tool that detects plagiarism in PASCAL programs”, SIGSCE Bulletin, 13(1), 1981.

[Har92] D. Harman, “Information retrieval: Data Structures and Algorithms”, Prentice-Hall, EngleWood Cliffs, NJ, 1992,

pp.363-392

 - 159 -

[Has01] A.E. Hassan, R.C. Holt, “Towards a better understanding of web applications”, in Proceedings of 3rd International
Workshop on Web Site Evolution - 2001, IEEE Computer Society Press, Los Alamitos, CA, 2001: 112-116.

[Hcip] HCI Pattern Index, available at http://www.hcipatterns.org/patterns/borchers/patternindex.html

[Hec77] M. S. Hecht, “Flow Analysis of Computer Programs”, Elsevier North-Holland, 1977.

[Hill] Pattern Catalog, available at http://hillside.net/ patterns/ onlinepatterncatalog.htm

[Html] HTML 4.01 Specification, W3C Recommendation 24 December 1999, http://www.w3.org/TR/html4/

[Hon00] A. Honrado, R. Leon, R. O’Donnel, D. Sinclair, “A word stemming algorithm for the Spanish language”, 7th

International Symposium on String Processing and Information Retrieval, IEEE, CS Press, Los Alamitos, CA, 2000, pp.
139-145

[Hor90] S. Horwitz, “Identifying the semantics and textual differences between two versions of a program”, Proc. ACM

SIGPLAN Conference on Programming Language Design and Implementation, 234-245, June 1990.

[Hua03] Yao-Wen Huang, Shih-Kun Huang, Tsung-Po Lin, Chung-Hung Tsai, “Web Application Security Assessment by Fault

Injection and Behaviour Monitoring“, Proceedings of the twelfth international conference on World Wide Web, ACM
Press, New York, NY, USA, 2003, pp.148-159

[Idef03] David Endler, “The evolution of Cross-Site Scripting Attack”,

http://pgsit.org/pages/2003/gzuchlinski/libox/websecdocs/XSS.pdf

[Isa97] T. Isakowitz, A. Kamis, M. Koufaris, “Extending the capabilities of RMM: Russian dolls and hypertext”, in Proceedings

of 30th Hawaii International Conference on System Science, Maui, HI, 1997; (6): 177-186.

[Itsd] The ITsecurity.com Dictionary of Information Security, “Cross Site Scripting (XSS, cross-site malicious content)”,

http://www.itsecurity.com/dictionary/xss.htm

[Jan88] H.T. Jankowitz , “Detecting plagiarism in student PASCAL programs”, in Computer Journal, 31(1):1-8, 1988.

[Kir02] Kirchner M. “Evaluation, Repair, and Transformation of Web Pages for Web Content Accessibility. Review of some

available Tools”. In Proceedings of 4th International Workshop on Web Site Evolution - 2002, IEEE Computer Society
Press, Los Alamitos, CA, 2002: 65-72.

[Kon95] K. Kontogiannis, De Mori R., Bernstein M., Merlo E., “Pattern Matching for Design Concept Localization”, Proc. 2nd

Working Conference on Reverse Engineering, IEEE Computer Society Press, 1995.

[Kon96] K. Kontogiannis, R. De Mori, E. Merlo, M. Galler, M. Bernstein, “Pattern Matching for clone and concept detection”,

Journal of Automated Software Engineering, 3:77-108, Mar 1996.

[Kon97] K. Kontogiannis, “Evaluation Experiments on the Detection of Programming Patterns Using Software Metrics”, Proc.

4th Working Conference on Reverse Engineering, 44-54, 1997.

[Lag97] B. Lague, D. Proulx, J. Mayrand, E. Merlo, J. Hudepohl, “Assessing the Benefits of Incorporating Function Clone

Detection in a Development Process”, Proc. International Conference on Software Maintenance, IEEE Comp. Society
Press, 1997, pp. 314- 321.

[Lev66] V. I. Levenshtein, “Binary codes capable of correcting deletions, insertions, and reversals”, Cybernetics and Control

Theory 10 (1966), 707-710.

[Liu90] S. Liu and N. Wilde, “Identifying objects in a conventional procedural language: an example of data design recovery”,

Proc. of Conference on Software Maintenance, San Diego, CA, 1990, IEEE CS Press, pp. 266-271

[Liv94] P.E. Livadas and T. Johnson,”A new approach to finding objects in programs”, J. of Software Maintenance: Research

and Practice, vol. 6, 1994, pp. 249-260

[Mai04] Alec Main, “Application Security: Building in Security during the Development Stage”, Information System Security,

May/June 2004, pp. 31-54.

[Man98] S. Mancoridis, B.S. Mitchell, C. Rorres, Y. Chen and E.R. Gansner, “Using automatic clustering to produce high-level

system organizations of source code”, 6th International Workshop on Program Comprehension, IEEE CS Press, Los
Alamitos, CA, 1998.

[Man99] S. Mancoridis, B.S. Mitchell, Y. Chen and E.R. Gansner, “Bunch: a clustering tool for the recovery and maintenance

of software system structures”, IEEE International Conference on Software Maintenance, IEEE CS Press, Los Alamitos,
CA, 1999, pp. 50- 59.

 - 160 -

[Mar01] J. Martin, L. Martin, “Web site maintenance with software engineering tools”, in Proceedings of 3rd International

Workshop on Web Site Evolution - 2001, IEEE Computer Society Press, Los Alamitos, CA, 2001; 126-131.

[May96] Mayrand J., Leblanc C., Merlo E., “Experiment on the Automatic Detection of Function Clones in a Software System

Using Metrics”, Proceedings International Conference on Software Maintenance, 244-253, IEEE Computer Society Press,
1996.

[Mic00] D. Ross, I. Brugiolo, J. Coates, M. Roe, “Cross-site Scripting Overview”,

http://www.microsoft.com/technet/security/news/csoverv.mspx

[Men01] E. Mendes, N. Mosley, S. Council, “Web Metrics - Estimating Design and Authoring Effort”, IEEE Multimedia,

January-March 2001, IEEE Computer Society Press, Los Alamitos, CA.

[Mul88] H.A. Müller, K. Klashinsky, “Rigi - A system for programming in the large”. In Proceedings of International

Conference on Software Engineering - 1988, IEEE Computer Society Press, Los Alamitos, CA, 1988; 80-86.

[New95] P. Newcomb and G. Kotik, “Reengineering procedural into object-oriented systems”, Proc. of 2nd Working

Conference on Reverse Engineering, Toronto, Canada, 1995, IEEE CS Press, pp. 237-249

[Off02] J. Offutt J. “Quality Attributes of Web Software Applications”. IEEE Software 2002; 19 (2): 25-32.

[Ohm02] K. Ohmaki, “Open source software research activities in AIST towards secure open systems”, 7th IEEE International

Symposium on High Assurance Systems Engineering, 2002. 23-25 Oct. 2002, pp. 37 -41

[Oma92] P. Oman, J. Hagemeister, “Metrics fo Assessing a Software System's Maintainability”, Proceedings of IEEE

International Conference on Software Maintenance, 1992, IEEE Computer Society Press, Los Alamitos, CA.

[Ore01] V. M. Orengo, C. Huyck, “A Stemming Algorithm for the Portuguese Language”, 8th International Symposium on

String Processing and Information Retrieval, IEEE, CS Press, Los Alamitos, CA, 2001, pp. 186-193

[Pag02] L. Paganelli, F. Paternò, “Automatic Reconstruction of the Underlying Interaction Design of Web Applications”. In

Proceedings of the 14th International Conference on Software Engineering and Knowledge Engineering (SEKE02) – 2002.
ACM Press: NY, 2002; 439-445,

[Pat99] J.F. Patenaude, E. Merlo, M. Dagenais, B. Lagüe, “Extending software quality assessment techniques to java systems”,

Proc. 7th International Workshop on Program Comprehension IWPC’99, IEEE Computer Society Press, 1999.

[Por80] M. F. Porter, “An algorithm for suffix stripping”, Program, 14(3), 1980 :pp. 130-137

 [Rei00] D.J. Reiffer, “Web Development: Estimating Quick-to-Market Software”, Novenber/December 2000, IEEE Computer

Society Press, Los Alamitos, CA.

[Ric00] F. Ricca, P. Tonella, “Web site analysis: Structure and evolution”. In Proceedings of International Conference on

Software Maintenance - 2000, IEEE Computer Society Press, Los Alamitos, CA, 2000; 76-86.

[Ric01] F. Ricca, P. Tonella “Understanding and Restructuring Web Sites with ReWeb”. IEEE Multimedia 2001; 8(2): 40-51.

[Ric01b] F. Ricca, P. Tonella, “Analysis and testing of web applications”, Proceedings of the 23rd International Conference on

Software Engineering, ICSE 2001, IEEE, CS Press, Los Alamitos, CA, pp. 25 –34

[Ric04] F. Ricca, P. Tonella, C. Girardi, E. Pianta, “An empirical study on keyword-based web site clustering”, Proceedings. of

the 12th IEEE International Workshop on Program Comprehension, IWPC 2004, IEEE, CS Press, Los Alamitos, CA,
pp.:204 - 213

[Ros99] G. Rossi, D. Schwabe, F. Lyardet, “Web application models are more than conceptual models”, in Proceedings of the

First International Workshop on Conceptual Modeling and the WWW 1999: 239-253.

[Sch91] R.W. Schwanke, “An intelligent tool for Re-engineering Software Modularity”, Proc. of 13th International Conference

on Software Engineering, IEEE CS Press, Los Alamitos, CA, 1991, pp. 83-92.

[Sch01] D. Schwabe, L. Esmeraldo, G. Rossi, F. Lyardet, “Engineering web applications for reuse”. IEEE Multimedia, 2001;

8(1): 20–31.

[Sco02a] D. Scott, R. Sharp, “Abstracting Application-Level Web Security”, Proceedings of the eleventh international

conference on World Wide Web, ACM Press New York, NY, USA, 2002, pp.396-407

[Sco02b] D. Scott, R. Sharp, “Developing secure Web applications”, Internet Computing, IEEE , Volume: 6 Issue: 6 , Nov.-Dec.

2002, pp. 38 -45

 - 161 -

[Snf] Snitz Forum 2000, http://forum.snitz.com/

[Sto03] J. Landall, J. Stoltenberg, “Application Security: Have We Locked the Windows and Left the Door Open?”, Information

System Security, May/June 2003, pp. 37-43.

[Str02] Y. Strashnoy, “The need for Web Application Security”,

www.elitesecureweb.com/images/pdf/need_for_web_app_security.pdf

[Tid98] J. Tidwell, “Interaction Design Patterns”, in Proceedings of the Pattern Languages of Programming, Monticello,

Illinois, USA, August 11-14, 1998, available online at http://jerry.cs.uiuc.edu/~plop/plop98/final_submissions/P29.pdf

[Til01] S. Tilley, S. Huang “Evaluating the reverse engineering capabilities of web tools for understanding site content and

structure: a case study”. In Proceedings of 23rd International Conference on Software Engineering - 2001, IEEE Computer
Society Press, Los Alamitos, CA, 2001; 514- 523.

[Ton99] P. Tonella, G. Antoniol, “Object oriented design pattern inference”, Proceedings of the IEEE International Conference

on Software Maintenance, 1999, Pages:230 – 238

 [Ton02] P. Tonella, F. Ricca, E. Pianta, C. Girardi, “Restructuring Multilingual Web Sites”, in Proceedings of International

Conference on Software Maintenance - 2002. IEEE Computer Society Press, Los Alamitos, CA, 2002; 290-299.

[Ton03] P. Tonella, F. Ricca, E. Pianta, C. Girardi, “Using keyword extraction for web site clustering”, 5th International

Workshop on Web Site Evolution, IEEE CS Press, Los Alamitos, CA, 2003, pp. 41-48

[Ton03b] P.Tonella, F.Ricca, E.Pianta, C.Girardi, G. A. Di Lucca, A.R. Fasolino, P. Tramontana, “Evaluation methods for web

application clustering”, Proc. of 5th IEEE Workshop on Web Site Evolution, WSE 2003, pp.33-40

 [Tra01] P. Tramontana, “Un analizzatore statico di codice a supporto del Reverse Engineering di Applicazioni Web”, Laurea

Degree Thesis, University of Naples “Federico II”, 2001

[Tze00] V. Tzerpos, R.C. Holt, “On the stability of software clustering algorithms”, 8th International Workshop on Program

Comprehension, IEEE CS Press, Los Alamitos, CA, 2000, pp. 211-220.

[Tze00b] V. Tzerpos, R.C. Holt, “ACDC: an algorithm for comprehension-driven clustering”, 7th Working Conference on

Reverse Engineering, IEEE CS Press, Los Alamitos, CA, 2000, pp. 258- 267.

[Van01] J. Vanderdonckt, L. Bouillon, N. Souchon, “Flexible reverse engineering of web pages with VAQUISTA”. In

Proceedings of Eighth Working Conference on Reverse Engineering - 2001. IEEE Computer Society Press, Los Alamitos,
CA, 2001; 241 –248.

[Vcg] Lemke I., Sander G. VCG: A Visualization tool for Compiler Graphs. The COMPARE consortium, 1993.

[Whe02] D. A. Wheeler, “Secure Programming for Linux and Unix HOWTO”, http://dwheeler.com/secure-programs/Secure-

Programs-HOWTO.html

[Wig97] T.A. Wiggerts, “Using clustering algorithms in legacy systems remodularization”, 4th Working Conference on Reverse

Engineering, IEEE CS Press, Los Alamitos, CA, 1997, pp. 33-43.

[Won94] K. Wong, S. Tilley, H.A. Müller, M.A. D. Storey, “Programmable Reverse Engineering”, International Journal of

Software Engineering and Knowledge Engineering, 4 (4), Dec. 1994, pp.501-520.

[Wel03] M. van Welie, G. C. van der Veer, “Pattern Languages in Interaction Design: Structure and Organization”,

Proceedings of Ninth International Conference on Human-Computer Interaction, Interact 2003, Zürich, Switzerland, pp.
527-534

[Wel04] “Pattern in interaction design: Web Design Patterns” avalaible at http://www.welie.com/patterns

[Yeh95] A.S. Yeh, D.R. Harris, and H.B. Rubenstein, “Recovering abstract data types and object instances from a conventional

procedural language”, Proc. of 2nd Working Conference on Reverse Engineering, Toronto, Canada, 1995, IEEE CS Press,
pp. 227-236

