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Chapter 1: Introduction 
 

Web Applications are complex software systems providing to users access to Internet contents 

and services. In the last years they are having a large diffusion due to the growing of the diffusion 

of World Wide Web: nowadays the quantity of information and services available on the Internet is 

very remarkable. 

Consequently, the diffusion of Web Applications in various different contexts is growing more 

and more, and the way business processes are carried out is changing accordingly. In the new 

scenario, Web Applications are becoming the underlying engine of any e-business, including e-

commerce, e-government, service and data access providers. The complexity of the functions 

provided by a Web Application has also increased since, from the simple facility of browsing 

information offered by the first Web sites, a last generation Web Application offers its users a 

variety of functions for manipulating data, accessing databases, and carrying out a number of 

productive processes. 

The increased complexity of the functions implemented by Web Applications is now achieved 

with the support of several different technologies. Web Applications generally present a complex 

structure consisting of heterogeneous components, including traditional and non-traditional 

software, interpreted scripting languages, HTML files, databases, images and other multimedia 

objects. A Web Application may include both ‘static’ and ‘dynamic’ software components. ‘Static’ 

components are stored in files, whereas ‘dynamic’ components are generated at run time on the 

basis of the user inputs. The Web Application components may reside on distinct computers 

according to a client-server or multi-tier architecture, and may be integrated by different 

mechanisms that generate various levels of coupling and flow of information between the 

components.  

The high pressure of a very short time-to-market often forces the developers of a Web 

Application to implement the code directly, using no disciplined development process, and this may 

have disastrous effects on the quality and documentation of the delivered Web Application. This 

situation cannot be considered different from the one occurring for traditional software produced 

using no disciplined development process, and without respecting software engineering principles. 

Poor quality and inadequate documentation have to be considered the main factors underlying 

ineffective and expensive maintenance tasks, burdened by the impossibility of applying more 

structured and documentation-based approaches.  
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Reverse Engineering methods, techniques and tools have proved useful to support the post 

delivery life-cycle activities of traditional software systems, such as maintenance, evolution, and 

migration. The software community is now seriously addressing the problem of defining and 

validating similar approaches for Web Applications. Reverse Engineering allows to recover and 

abstract documentation from an existing Web Application, to achieve comprehension, to assess 

quality factors, and so on.   

 

1.1 Aim of the Thesis 

The Reverse Engineering of Web Applications is a complex problem, due to the variety of 

languages and technologies that are contemporary used to realize them. Indeed, the benefits that can 

be obtained are remarkable: the presence of documentation at different abstraction levels will help 

the execution of maintenance interventions, migration and reengineering processes, reducing their 

costs and risks and improving their effectiveness. Moreover, the assessment of the maintainability 

factor of a Web Application is an important support to decision making processes. 

The main aim of this Thesis is the proposition and the description of a Reverse Engineering 

approach applicable to existing Web Applications.  

In the following chapters, a Reverse Engineering approach, including several methods and 

techniques addressing different aims, is proposed for Web Applications. Some tools developed to 

automates the specific tasks to fulfil support the approach. 

In particular, the approach defines: 

o a reference conceptual model for Web Applications, needed to organize information 

extracted and abstracted; 

o a Reverse Engineering process for Web Applications; 

o a set of tools supporting the execution of the process; 

Some experiments have been carried out to verify and validate the effectiveness of the 

approach. 

 

1.2 Thesis Structure 

The Thesis is subdivided in four main parts.  

In the first part a general background is provided. Chapter 1 reports a discussion about the 

nature of the Web Applications. In Chapter 2 a taxonomy of Web Applications is reported, the most 

common architectures and technologies used to implement Web Applications are synthetically 

described and a definition of Web Engineering is specified. 



  - 9 -

 

The second part of the Thesis presents some of the main reference models and methods used in 

the development of Web Applications. Chapter 3 reports a survey of such main models and 

methods. 

 

The third part of the Thesis reports the description of the proposed Reverse Engineering 

approach, the adopted models, the supporting tools realized and the experiments that have been 

carried out.  

In Chapter 4 the proposed Reverse Engineering approach called WARE (Web Application 

Reverse Engineering) is outlined. This approach follows the Goals/Models/Tools paradigm and it 

defines the Reverse Engineering process needed to obtain a set of views of a Web Application at 

different abstraction levels. These views are represented as UML diagrams. Techniques and 

algorithms needed to perform this process are described in the following chapters. 

In Chapter 5 the methodology defined to cluster the components of a Web Application in 

subsets realizing a specific user functionality is presented. This method is based on the analysis of 

the relationships between the pages of the Web Application. A heuristic algorithm has been defined 

to realize it.  

Chapter 6 describes the tool called WARE. This tool has been developed to support the 

approach described in chapter 4, allowing the extraction of information from the source code of 

Web Applications, the clustering of Web Application components and the abstraction of UML 

models. A complete list of the functionalities of WARE is reported in Chapter 6 with some 

examples of the use of WARE. 

Chapter 7 reports the results of the experimentation of the Reverse Engineering process, 

methods and tools on a number of medium sized Web Applications. A discussion of the results is 

presented, where some development techniques needed to improve the understandability of the 

application are proposed. 

In Chapter 8 a method to recover UML diagrams at business level of a Web Application is 

defined and described. Methods and heuristic algorithms to recover UML class diagrams, use case 

diagrams and sequence diagrams at business level are described.  

Some methods and techniques to provide automatic support to the comprehension of Web 

Applications in order to reduce the human effort required for the task are reported in chapters 9, 10 

and 11. In particular the problem of assigning a concept to the artefacts recovered by Reverse 

Engineering is faced and addressed. 
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In Chapter 9, a method providing automatic support in the assignment of concepts to documents 

is presented. This method is based on both Information Retrieval principles and the text format of 

Web pages browsed to users. The method defines some heuristic algorithms and includes a tool 

realized to support it. Results of some experiments carried out to validate the method are also 

reported in this chapter. 

In Chapter 10 a method supporting the identification of Interaction Design Patterns in the source 

code of Web pages browsed to users is presented. The method, the reference model, the supporting 

tool that have been developed and the results of some explorative experiments are reported. 

In Chapter 11 a method based on clone analysis techniques with the aim to identify Web 

Application components with identical or similar structure is presented. Four techniques to measure 

the degree of similarity have been defined and described. The results of some explorative 

experiments are also reported.  

In Chapter 12 a method is presented to assess the vulnerability of Web pages with respect to 

Cross Site Scripting attacks. The method, based on some secure programming rules, exploits source 

code analysis to verify that those rules are actually present in the code. A case study, based on a real 

world Web Application is reported and discussed. 

Chapter 13 presents a maintainability model for Web Applications. The model is an adaptation 

of the one proposed by Oman and Hagemeister [Oma92] for traditional software systems. New 

metrics have been defined while existing metrics have been adapted to Web Applications. These 

metrics can be automatically evaluated from the information recovered by the Reverse Engineering 

approach described in the previous chapters. A case study reporting the value of these metrics for 

some Web Applications is discussed, with the aim to compare the maintainability of those 

applications. 

 

Conclusions and future works are presented in Chapter 14. 
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Chapter 2: Background: Web Applications and Web 
Engineering 

 

In this chapter some basic definitions are reported. In particular, a definition of Web Application 

by distinguishing between Web Applications and Web Sites is provided.  Moreover, the main 

architectures and technologies typically used for implementing Web Application are described as 

well as a definition of Web Engineering is given. 

 

2.1 Web Applications 

A Web Application is a software product designed to be executed in the World Wide Web 

environment.  

A Web Application can be considered as an extension of a Web Site. A Web Site is a collection 

of hypertextual documents, located on a web server and accessible by an Internet user.  

Unlike a Web site that simply provides its users the opportunity to read information through the 

World Wide Web (WWW) window, a Web Application can be considered as a software system that 

exploits the WWW infrastructure to offer its users the opportunity to modify the status of the 

system and of the business it supports [Con99b].  

 

2.1.1 A Classification 

A large number of taxonomies have been proposed to classify Web Application. Tilley and 

Huang [Til01] proposed an interesting taxonomy for Web Applications. According to this 

taxonomy, three classes of Web Applications with increasing complexity can be distinguished. 

Class 1 applications are primarily static applications implemented in HTML, and with no user-

interactivity. Class 2 applications provide client-side interaction with Dynamic HTML (DHTML) 

pages, by associating script actions with user-generated events (such as mouse clicking or 

keystrokes). Finally, class 3 applications contain dynamic content, and their pages may be created 

on the fly, depending on the user interaction with the application. A class 3 application is 

characterised by a large number of employed technologies, such as Java Server Pages (JSP), Java 

Servlets, PHP, CGI, XML, ODBC, JDBC, or proprietary technologies such as Microsoft’s Active 

Server Pages (ASP).  
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2.1.2 Architecture 

Several architectures and technologies have been proposed to implement and deploy Web 

Applications. 

Figure 2.1 shows a general architecture for Web Applications. According to this architecture, a 

user interacts with a Web Browser, generating a URL request. This request is translated by the 

browser in a http request and it is sent to the Web Server. Web Server parses the http request and 

retrieves the code of the server page corresponding to the requested URL. The server page is sent to 

the Application Server. Application Server is an active component, usually located on the same 

machine of the Web Server. It interprets the code of the server page, generating as output a Built 

Client Page, that is a client page generated on fly and sent as response to the client. During the 

interpretation of a server page, Application Server can communicate with a Database server through 

Database Interface objects, or it can request services to a third part, such as a Web Service. Web 

Server sends Built Client Page to client browser, packed in an http response message. Web Browser 

comprehends some active plug-ins that are able to interpret code written using a client scripting 

language, such as Javascript code, Java applet bytecode, Flash code, and so on. If the Built Client 

Page has scripting code, then the result of its execution is shown to the user, else the Web browser 

displays directly the result of HTML rendering. 

Four conceptual layers may be recognized in a Web Application: 

1. Presentation layer, that is responsible of the user interface; 

2. Content layer, that is responsible of the textual part of the application; 

3. Application layer, that is responsible of the business logic of the application: 

4. Data and Service layer, that is responsible of the data exchanges between the application 

and third parties, such as databases or service providers. 

Often, it is difficult to separate these layers: as an example, client scripting code and server 

scripting code, too, may provide business logic. Moreover, at the same time, server pages may 

contain code related to each of the four layers. These situations must be avoided, because they make 

very difficult to maintain the Web Application. 
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Figure 2.1: Thick Web Server Architecture for Web Applications 
 

2.1.4 Technology 

The general architecture presented in the previous subsection can be realized using different 

components, provided by different software houses, and the code of a Web Application may be 

written using different languages.  

The language that is universally used to code the hypertextual content of a client page is HTML. 

HTML (HyperText Markup Language) is a tagged language, defined by W3C consortium as a 

specialization of SGML (Standard Generalized Markup Language). A complete specification of 

HTML syntax and semantic can be found at [Html]. HTML language is used to code hypertextual 

documents and to describe guidelines for its rendering. HTML syntax is very simple, but HTML 

parsing isn’t an easy task because HTML interpreters are syntax tolerant: there are many non-

standard extensions to HTML. Moreover, incorrect HTML pages are rendered anywhere by 

browsers. 

Client pages are usually written alternating HTML code with client script code. The most 

common client scripting language is Javascript, but VBScript and Jscript are sometimes used. 

Javascript is a simple language, with syntax similar to Java syntax, that allows executing simple 

elaborations, interacting with user interface object and sending http requests to a URL. Javascript 

provides dynamic behaviour to client pages, because their behaviour depends on the script 

execution, instead of the rendering of static HTML code. In particular, client script code may be 

used to modify properties of HTML objects, or to instantiate new objects. This characteristic makes 
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Web Applications flexible, but it makes them hard to analyse, because the structure of the pages 

may vary during execution. Client scripting languages can also handle user events. 

Client script languages support functions and classes, but their scope is limited to the execution 

of the page. Two pages (or two different instances of a page) can share a variable using cookies. 

Cookies are little data structures that can contain data and information about the session of the user 

that wrote this data and the domain of the Web Application that wrote the cookies. Cookie values 

can be read only during execution of pages belonging to the same domain. 

A large number of technologies have been adopted on the server side of Web Applications. 

Examples of server scripting languages are PHP, ASP, JSP, Perl, Python, .NET languages and so 

on. Each of these languages has its peculiarities, but there are some fundamental common 

characteristics: 

- they are page-based languages: the fundamental component of the code is the page. A 

server page is a component comprehending a main body and a set of functions and classes. 

A server page can generate only an output client page, that is sent to the client at the end of 

the execution; 

- they usually are interpreted languages. As a consequence, the scope of variables, functions 

and classes is limited to the page declaring them: this is a great obstacle for object oriented 

programming of Web Applications with scripting languages; 

Server script languages are used in conjunction with a connection-less protocol, such as http. 

Since, it couldn’t be exchange of data between different pages or different instances of the same 

page. To overcome this limitation, session variables are used on the server side of Web 

Applications as global variables. They can be global application variables or they can be correlated 

to a specific session of a specific user. However, when a great amount of data have to be saved, 

database supports are used. 

 

2.2 Web Engineering 

Web Engineering is the discipline that studies processes, methodologies and techniques related 

to the Engineering of Web Applications and Sites.  

Several discussions took place in the last years to establish if Web Engineering must be 

considered as a separate discipline or a specialization of Software Engineering. Former Web 

Applications were collections of hypertextual documents, so they weren’t like traditional software, 

because presentation aspects were predominant. In this period (when scripting languages hadn’t a 

great diffusion), Web Engineering was considered as a separate discipline, whereas today Web 
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Engineering is considered as a specialization of Software Engineering: Web Engineering processes, 

models and techniques are adaptations of the Software Engineering ones. A discussion about the 

nature of Web Engineering can be found in [Gin01]. 

Web Applications have some peculiarities that influence their life cycle and differentiate them 

from traditional application. An indicative list of these peculiarities could be the following: 

• The main purpose of a Web Application usually consist in data storing and browsing; 

• Web Applications are always interactive applications: usability is a fundamental quality 

factor for them; 

• Web Applications are always concurrent applications and the number of contemporary users 

may vary in unpredictable way: scalability is another fundamental quality factor; 

• Web Application developers are usually low-skilled people, subject to a frequent turnover; 

• Many technologies doesn’t encourage separation between logic layers: often peoples with 

different skills must work together (i.e. programmers and graphic artists); 

• Web Applications need a continue evolution, for technological and marketing reasons, too; 

• Web Applications must be developed in a very short time, due to the pressing short time-to-

market. 

 

This, incomplete, list of factors gives an idea of the problems related to Web Application 

developing. Life cycles commonly adopted for Web Applications are incremental ones, and all 

phases follow an iterative developing. 

 

In the following chapter the problem of the adoption of a model describing the structure and the 

semantic of a Web Application is addressed. 
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Chapter 3: Models describing Web Applications 
 

The fundamental starting point to address analysis, reverse engineering, comprehension and 

quality assessment of Web Applications is the definition of an appropriate reference model.   

In this chapter, a survey of the models proposed to describe Web Application structure and 

behaviour is proposed. Each of these models shows a Web Application from a particular point of 

view. For the purposes of this Thesis, detailed models are needed. In this chapter a model that can 

describe appropriately the information extracted by means of reverse engineering processes is 

presented. 

 

 

3.1 Web Application models 

During the development of Web Applications, modelling problems have been continuously 

faced. Isakowitz et al. [Isa97] proposed RMM (Relationship Management Methodology), that is a 

methodology supporting the development of Web Sites. RMM is based on RMDM (Relationship 

Management Data Model), that is a language to describe the application domain and the 

navigational mechanisms of a Web Site. 

RMDM primitives and corresponding symbols are showed in Figure 3.1. There are three 

categories: 

- Entity Relationship Domain Primitives, which are the primitives of Entity-Relationship model. 

They are needed to describe the informational domain of the application; 

- Relationship Management Data Domain Primitives. This category comprehends the slice 

primitive. Slice is used to group together attributes of different entities, which is shown 

together to the user; 

- Access Primitives, such as Links, Grouping, Conditional Index, Conditional Guided Tour, 

Conditional Indexed Guided Tour primitives. These primitives define the navigational context 

of the application. 

RMM defines a seven-step design process. The steps are the following: 

- E-R Design, in which a model based on E-R Domain primitives is produced; 

- Slice Design, in which RMDM primitives are added to the model; 

- Navigational Design, in which navigational functionalities are established; 

- Conversion Protocol Design, in which abstract navigational structures are converted in 

pages and other real navigational structures; 
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- User-Interface Design, in which the graphical layout of the user interfaces is designed; 

- Run-Time Behaviour Design, in which dynamic interactions are designed; 

- Construction and Testing, in which the application is implemented and navigational 

paths are tested. 

 

 

Figure 3.1: RMDM primitives 
 

 

The proposed methodology is applicable only to Web Applications with navigational and 

information browsing purposes. So, other models have been proposed, such as OOHDM [Ros99]. 

OOHDM is the acronym for Object Oriented Hypermedia Design Method. It represents the first 
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methodology that tries to match Object Oriented design and Web Application design. This 

methodology is structured in four phases: 

- Conceptual Design; 

- Navigational Design; 

- Abstract Interface Design; 

- Implementation. 

During Conceptual design phase, classic object oriented models are produced, describing the 

domain of the application. During Navigational Design and Abstract Interface Design phases, the 

navigational view of the application is described; some specific documents and diagrams are 

produced, such as  

o context diagrams, which show elements needed to realize a use case,  

o specification cards, which list the characteristics of an elements, 

o navigational class schemas, which show the structure of the application from the point of 

view of an user.  

The main limitations of this model are the following: 

- great emphasis is set on the description of navigational aspects with respect to elaboration 

aspects; 

- models and methodologies are much different from common used models and methodologies 

(such as UML). 

 

Bangio et al. ([Ban00], [Com01])  proposed WebML, an XML-based modelling language for 

Web Applications. WebML is a language, used for specification of a data-intensive Web 

Applications. The main objective of WebML is the conceptual separation between data model, 

architectural model and implementational solutions. As a consequence of this approach, many tools 

have been developed to generate customized Web Applications from WebML specifications. 

According to WebML approach, a Web Site has four views: 

- Structural Model, that is an entity-relationship model; 

- Hypertext Model, that describes the structure of the Web Site, in terms of pages and 

navigational relationships between them. This model comprehends two views: 

- Composition Model, that specifies pages and contents; 

- Navigation Model, that specifies navigation relationships. 

- Presentation Model, that describes the layout of the pages, independently from target output 

device; 
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- Personalization Model, that specifies specialization points of customized versions of the Web 

Site. 

Models are specified using WebML language, that is an XML-based language, which grammar 

has been established by the authors. WebML approach has been used in industrial context with 

good results, but it suffers for the same limitations of OOHDM:  

- non-compliance with UML specifications; 

- difficulties to adapt the approach to the description of a Web Application that isn’t data 

intensive. 

 

A model describing a Web Application in a more detailed way is the one proposed by Ricca and 

Tonella ([Ric01], [Ric01b]) and reported in Figure 3.2. 

 

 

Figure 3.2: The model of a Web Application proposed by Ricca and Tonella 

 

This model reports the main components of a Web Application: HTML pages, server programs 

(corresponding to server pages), frames, forms (with their input fields) and the main relationships 

between components, such as links, submissions, redirections and frame loading relationships. 

Ricca and Tonella propose models to depict the dynamic behaviour of Web Applications, too. 
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Figure 3.3 reports an example of an implicit state diagram while Figure 3.4 reports an explicit 

state diagram. 

 

Figure 3.3: Web Application models proposed by Ricca and Tonella: implicit state diagrams 
  

 

Figure 3.4: Web Application models proposed by Ricca and Tonella: explicit state diagrams 
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State diagrams proposed by Ricca and Tonella are similar to UML statechart diagrams. State 

diagrams have nodes corresponding to the entities of the model and transitions corresponding to 

relationships of the model. In the explicit diagram, an entity can be represented by more than one 

node. As an example, figure 3.3 reports a node labelled D, representing the class of the pages that 

can be built by server page S. Vice versa, in Figure 3.4 nodes D1, D2, D3, D4 represents a set of 

different client pages that can be built by the server page S.  

 

3.2 Conallen’s extensions to UML  

Jim Conallen [Con99] proposed a more general model to describe Web Applications. He tells 

that the evolution of Web Application technologies make possible to realize complex distributed 

application, so that a general modelling language is needed to describe structure and behaviour of 

Web Applications. So, he proposed to adopt Unified Modeling Language (UML) to describe Web 

Applications, too. Classical UML extension mechanisms, such as stereotypes, tagged values, 

constraints and decorators (such as icons) have been used to take into account Web Application 

peculiarities. 

Figure 3.5 reports an excerpt of the model proposed by Conallen. This model is more detailed 

than the ones previously described, and it comprehends server and client elements, too. 

Conallen’s extensions to UML yield to reduce the semantic distance between UML and Web 

Applications. Conallen’s extensions are used to trace design diagrams at a detail level of a Web 

Application in a UML compliant way. According to Conallen, high-level design phases of a Web 

Application are similar to those of a traditional application, and the same UML models can be used. 

Class diagrams can describe static structural views of the application. In a class diagram server 

pages and static client pages are depicted as static classes (classes with only one possible object). 

These classes are characterized by stereotypes <<Server page>> and <<Client page>> or by an 

appropriate icon. Local variables of these pages are depicted as private attributes of the respective 

classes, while functions are depicted as private methods. These classes can have neither protected, 

nor public attributes nor method.  

Server pages can generate as output a client page that is sent to the client. This page isn’t a static 

object: it isn’t stored anywhere. These pages are depicted as classes with the stereotype <<Built 

Client Pages>>. They are specializations of client pages and it can have attributes and methods in 

the same way of static client pages. Another fundamental stereotyped class is the Form. A Form is a 

structure collecting input data. It is aggregated to a client page. 
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Figure 3.5: Conallen’s model 
 

Relationships between stereotyped classes are also stereotyped. Conallen’s model lists the 

following categories of relationships, which are depicted as generic association: 

- <<builds>> relationships, between a server page class and the class representing its built 

client pages; 

- <<link>> relationships, between a client page and another page; 

- <<submit>> relationships, between a form and the server page to which data are sent; 

- <<include>> relationships, between two pages or a page and a library module. 

Conallen’s extensions can be used to depict the static architecture of the Web Applications (by 

means of UML class diagrams) but also the dynamic behaviour (by means of UML sequence, 

collaboration, activity, statechart diagrams). 

Adoption of Conallen’s model presents the following advantages: 

- Conallen’s model can describe Web Sites and Web Applications, too; 

- Conallen’s model can be also useful during detail design phase; 

- Conallen’s model is compliant with UML. 
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Conallen’s model can be furtherly extended. In the following section, an extended model is 

presented, allowing the description of Web Application at a greater granularity level. 

 

3.3 The proposed model 

In this section a model extending the Conallen’s model is described. This is the model that has 

been adopted in the Reverse Engineering approach described in this Thesis. 

UML class diagram can be used to model the main entities of a Web Application and the 

relationships among them: each entity, such as a Page or a Page inner entity (like Forms or Scripts 

included in the Page), will correspond to a class, while associations will describe the relationships 

among Pages (or Page components); composition and aggregation relations are used to describe the 

inclusion of an entity in another entity.  

Figure 3.6 shows a UML class diagram that is assumed as the reference conceptual model of a 

Web Application. In the diagram, each class represents one of the entities described above, while 

the associations have been given a name describing the semantics of the association itself. As to the 

composition and aggregation relationships, their multiplicity is always one-to-many, except for 

those cases where the multiplicity is explicitly shown in the Figure. 

The main entities of a Web Application are the Web Pages, that can be distinguished as Server 

Pages, i.e. pages that are deployed on the Web server, and Client Pages, i.e., pages that a Web 

server sends back in answer to a client request. As to the Client Pages, they can be classified as 

Static Pages, if their content is fixed and stored in a permanent way, or Client Built Pages, if their 

content varies over time and is generated on-the-fly by a Server Page. A Client Page is composed of 

HTML Tags. A Client Page may include a Frameset, composed of one or more Frames, and in each 

Frame a different Web Page can be loaded. Client Pages may comprise finer grained items 

implementing some processing action, such as Client Scripts. A Client Page may also include other 

Web Objects such as Java Applets, Images and Multimedia Objects (like sounds or movies), Flash 

Objects, and others. A Client Script may include some Client Modules. Both Client Scripts and 

Client Modules may comprise Client Functions, or Client Classes. A Client Script may redirect the 

elaboration to another Web Page. In addition, a Client Page may be linked to another Web Page, 

through a hypertextual link to the Web Page URL: a link between a Client Page and a Web Page 

may be characterised by any Parameter that the Client Page may provide to the Web Page. A Client 

Page may also be associated with any Downloadable File, or it may include any Form, composed of 

different types of Field (such as select, button, text-area fields and others). Forms are used to collect 

user input and to submit the input to the Server Page, that is responsible for elaborating it. A Server 
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Page may be composed of any Server Script (that may include any Server Class or Server Function) 

implementing some processing action, which may either redirect the request to another Web Page, 

or dynamically build a Client Built Page providing the result of an elaboration. Finally, a Server 

Page may include other Server Pages, and may be associated with other Interface Objects allowing 

connection of the Web Application to a DBMS, a File Server, a Mail server, or other systems.  

 

 

Figure 3.6: The reference model of a Web Application 
 

This model differs from the one proposed by Conallen because it models a Web Application at a 

more detailed degree of granularity, allowing those application items responsible for functional 

behaviour to be better highlighted. Moreover, this representation explicitly shows the difference 

between static client pages and dynamically built client pages, as well as the difference between 

entities that are responsible for any processing (such as Client or Server scripts and functions) and 

classes of ‘passive’ objects (such as images, sounds, movies). Finally, in this model, the presence of 

interface objects (e.g., objects that interface the Web Application with a DBMS or other external 

systems) is explicitly represented, too. 

Further details about this model are reported in [Dil04]. Specializations of this model are 

presented in the next chapters, supporting some specific Reverse Engineering methodologies. 
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Chapter 4: The WARE approach 
 

In this chapter a methodology for Reverse Engineering Web Applications based on the 

Goals/Models/Tools paradigm is presented. This methodology is called WARE (Web Application 

Reverse Engineering). The Reverse Engineering process needed to obtain a set of views of a Web 

Application is outlined in this chapter. The views are cast into UML diagrams. A survey of the main 

approaches in literature to the reverse engineering of Web Applications is presented. The 

methodologies adopted to realize the tasks of the process and the tool supporting them are 

described in the next chapters. 

 

4.1 Introduction 

The Reverse Engineering is a fundamental activity needed to improve the quality of a software 

system. Reverse Engineering is a set of theories, methodologies and techniques allowing the 

reconstruction of the documentation of an existing software system.  

As declared in Chapter 1, the main aim of this Ph.D. Thesis is the proposition and the 

description of Reverse Engineering approaches applicable to existing Web Application.  

In this chapter and in the following the problem of the Reverse Engineering of an existing Web 

Application is faced and a general Reverse Engineering approach, named WARE (Web 

Applications Reverse Engineering) is defined, described and the results of its experimentation are 

reported and discussed.  

4.2 Related works 

In this section reverse engineering techniques and tools existing in literature are briefly listed. 

They allow several kinds of information to be retrieved from the code of an existing Web 

Application, including information about its structural organization, behaviour, and quality factors. 

This information is usable for supporting various maintenance tasks: of course, depending on the 

specific task to be accomplished, the maintainer will be in charge of selecting the most suitable 

analysis tool and carrying out the necessary tuning activity that allows the selected tool to be 

correctly integrated in the maintenance process to be carried out.  

The problem of analysing existing Web sites and Web Applications with the aims of 

maintaining, comprehending, testing them or assessing their quality has been addressed in some 

recent papers. New analysis approaches and tools, as well as adaptations of existing ones to the field 

of Web Applications, have been proposed. For example, Hassan and Holt [Has01] describe the 
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modifications made to the Portable Bookshelf Environment (PSB), originally designed to support 

architectural recovery of large traditional applications, to make it suitable for the architectural 

recovery of a Web Application. Analogously, Martin et al. [Mar01] propose reusing the software 

engineering tool Rigi [Mul88] as a means of analysing and visualising the structure of Web 

Applications. 

Other techniques and tools have been defined ad hoc for managing existing Web Applications. 

Chung and Lee [Chu01] propose an approach for reverse engineering Web sites and adopt 

Conallen’s UML extensions to describe their architecture. According to their approach, each page 

of the Web site is associated with a component in the component diagram, while the Web site 

directory structure is directly mapped into package diagrams. Ricca and Tonella ([Ric00], [Ric01]) 

present the ReWeb tool to perform several traditional source code analyses of Web sites: they use 

the graphical representation described in the previous chapter and and introduce the idea of pattern 

recovery over this representation. The dominance and reachability relationships are used to analyse 

the graphs, in order to support the maintenance and evolution of the Web sites. Schwabe et al. 

[Sch01] define a framework for reusing the design of a Web Application, by separating application 

behaviour concerns from navigational modelling and interface design. Boldyreff et al. [Bol01] 

propose a system that exploits traditional reverse engineering techniques to extract duplicated 

content and style from Web sites, in order to restructure them and improve their maintainability. 

Vanderdonckt et al. [Van01] describe the VAQUISTA system that allows the presentation model of 

a Web page to be reverse engineered in order to migrate it to another environment.  

Other approaches address Web Application analysis with the aim of assessing or improving the 

quality of these applications. An analysis approach that allows the test model of a Web Application 

to be retrieved from its code and the functional testing activity to be carried out is proposed in 

[Dil02b]. Kirchner [Kir02] tackles the topic of accessibility of Web sites to people with disabilities, 

and presents a review of some tools available for checking Web pages for accessibility. Tonella et 

al. [Ton02] propose techniques and algorithms supporting the restructuring of multilingual Web 

sites that can be used to produce maintainable and consistent multilingual Web sites. Paganelli et al. 

[Pag02] describe the TERESA tool, that produces a task-oriented model of a Web Application by 

source code static analysis, where each task represents single page functions triggered by user 

requests. The resulting model is suitable for assessing Web site usability, or for tracing the profile 

of the Web site users. 
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4.3 Applying the Goals/Models/Tools paradigm 

A reverse engineering process is usually run to extract and abstract information and documents 

from existing software, and to integrate these documents and information with human knowledge 

and experience that cannot be automatically reconstructed from software.  

According to the Goals/Models/Tools (GMT) paradigm described in [Ben89], [Ben92], a 

reverse engineering process is characterised by goals, models, and tools. Goals focus on the reasons 

for the reverse engineering and they help to define a set of views of the applications to be reverse 

engineered. Models provide possible representations of the information to be extracted from the 

code, while Tools include techniques and technologies aiming to support the information recovery 

process. 

The Goals/Models/Tools has been adopted to define the reverse engineering process needed to 

analyse existing Web Applications. In this section the concepts of Goals, Models and Tools are 

specified for the reverse engineering of Web Applications. 

 

4.3.1 Goals 

In the field of Web Applications, possible goals of a reverse engineering process include 

supporting maintenance of undocumented or poorly documented applications by extracting from 

their code the information and documents needed to plan and design the maintenance intervention 

correctly. Reverse engineering processes may ease the task of comprehending an existing 

application, providing useful insights into its architecture, low-level design, or the final behaviour 

offered to its users. Moreover, a reverse engineering process may aid assessment of the 

characteristics of an existing application, in order to be able to evaluate its quality attributes, 

including reliability, security, or maintainability [Off02].  

 

4.3.2 Models 

The choice of the information to be extracted from the code and the models to be reconstructed 

will vary according to the specific goal to be achieved. In the previous chapter several models 

proposed in the literature for representing a Web Application were briefly discussed and a specific 

model, extending the Conallen’s model, were specified. 

4.3.3 Tools 

The recovery of information from an existing Web Application and the production of models 

documenting its relevant features cannot be effectively accomplished without the support of suitable 
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techniques and Tools that automate, or partially automate, the Web Application analysis. However, 

the heterogeneous and dynamic nature of components making up the application, and the lack of 

effective mechanisms for implementing the basic software engineering principles in Web 

Applications, complicate this analysis and make it necessary to address specific methodological and 

technological problems.  

More precisely, heterogeneous software components developed with different technologies and 

coding languages require techniques and tools implementing multi-language analysis to be used. 

The existence of dynamic software components in a Web Application, such as pages created at run 

time depending on user input, will impose the application of dynamic analysis techniques, besides 

static analysis of the code, in order to obtain more precise information about the Web Application 

behaviour. In addition, the absence of effective mechanisms for implementing the software 

engineering principles of modularity, encapsulation, and separation of concerns, will make the use 

of suitable analysis approaches, such as clustering (cfr. chapter 6), necessary in order to localise 

more cohesive parts in the Web Application code. 

 

According to the GMT paradigm, a reference approach for defining Web Application reverse 

engineering processes will prescribe that as a preliminary step, the goals of the process be precisely 

defined and hence the software views allowing these goals to be achieved be identified. After 

accomplishing this step, the software models representing the required views of the application have 

to be defined, and the techniques and tools needed for instantiating these models are selected or 

defined ex novo. Finally, on the basis of the models and tools identified, the sequence of activities 

composing the reverse engineering process, their input, output and responsibilities are precisely set 

out.  

 

4.4 The WARE’s Reverse Engineering process  

In this section, an original reverse engineering process for Web Applications is described. This 

approach has been called WARE (Web Application Reverse Engineering). This approach has also 

been descripted in [Dil02] and [Dil04].  

In the WARE approach, the GMT paradigm has been used to specify a reverse engineering 

process aiming to support the comprehension and maintenance of an existing, undocumented Web 

Application. In this case, the Goal of the process consisted of retrieving, from the source code of the 

Web Application, all kinds of information that could then enable the maintainers to accomplish a 

maintenance task more effectively. This information included the specification of all functional 



  - 31 -

requirements implemented by the application (e.g., its behaviour), a description of the organization 

of the application in terms of its relevant entities (such as Web pages, Client or Server scripts, 

Forms in client pages, and other Web objects) and of their relationships and, moreover, an explicit 

representation of the traceability relationship that enables simplified localisation of the set of 

software entities that collaborate to implement the functional requirements of the application. The 

information extracted are those presented in the model described in the previous chapter. 

After defining the Goal, software models offering a suitable representation of the required 

information had to be selected. As to the behaviour of the Web Application, UML Use Case 

diagrams were chosen to specify the functional requirements in terms of use cases and actors. As to 

the description of the organisation of the relevant entities of the Web Application, UML Class 

Diagrams using Conallen’s extensions were adopted for representing it: in such Class Diagrams, 

different types of Web pages and Web page entities (including scripts, forms, applets, etc.) can be 

distinguished by means of stereotypes, and syntactic or semantic relationships among these items 

can be represented by UML relationships (i.e., association, aggregation, composition and 

specialisation relationships).  

In addition, UML Sequence Diagrams were adopted to document the dynamic interactions 

between Web Application items responsible for implementing the functional requirements of the 

application. Each Sequence Diagram has to be associated with a specific use case, and a traceability 

relationship is deduced between the use case and the Web Application items involved in the 

Sequence Diagram. 

In order to complete the reverse engineering process definition, techniques and tools able to 

support the extraction and abstraction of the information required for reconstructing the selected 

models had to be identified. Techniques of static and dynamic analysis of the source code were 

taken into account. Finally, the specifications of the tools required to support these analyses could 

be defined. 

The Reverse Engineering process implementing the sequence of activities and tasks necessary to 

obtain the selected models was defined accordingly. The process includes four steps: the first two 

steps are devoted to Static Analysis and Dynamic Analysis of the Web Application, respectively, 

the third one focuses on the Clustering of the Web Application, while the last one executes the 

Abstraction of UML diagrams on the basis of the information retrieved in the previous steps. The 

process is supported by a tool, named the tool WARE, that partially automates the execution of 

most of the process tasks: this tool is described in Chapter 6. Figure 4.1 illustrates the process, 

while additional details about each step of the process are provided below.  
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Figure 4.1: The Reverse Engineering process in the WARE approach 
 

4.4.1 Static Analysis 

In the first step of the process, the Web Application source code is statically analysed in order to 

instantiate the reference model of a Web Application, described in the previous section. In this 

phase, all the information necessary to obtain the inventory of the Web Application entities, and the 

static relations between them, is extracted from the code. According to the reference model adopted, 

Web Application pages and inner page entities, such as forms, scripts, and other Web objects, are 

identified, as well as the statements producing link, submit, redirect, build, and other relationships 

are identified and localised in the code.  

This kind of analysis can be carried out with the support of multi-language code parsers, that 

statically analyse the code of the application, including HTML files, and scripting language sources 

(such as Vbscript, Javascript, ASP and PHP source code), and record the results in a suitable 

intermediate representation format simplifying further processing. Intermediate representation 

forms may be implemented by using the XML eXtensible Markup Language, or the GXL Graph 

Exchange Language, which enable the exchange of information derived from programs, which are 

conveniently represented in a graph, or by using any tagged syntax format designed to represent the 

necessary information efficiently. 

 

4.4.2 Dynamic Analysis 

In a dynamic Web Application, the set of entities making up the application can be significantly 

modified at run-time, thanks to the facility offered by script blocks, of producing new code that is 

enclosed in the resulting client pages, or exploiting the possibility of producing dynamic results 

offered by active Web objects (such as Java applets or ActiveX objects). Therefore, in the second 

step of the process, dynamic analysis is executed with the aim of recovering information about the 
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Web Application that is not obtainable by static analysis of the code. For instance, dynamic analysis 

is necessary to retrieve the actual content of dynamically built client pages (cfr. the class Client 

Built Page in Figure 1), since this content can be precisely defined only by executing the code. In 

addition, dynamic analysis may be indispensable for deducing links between pages, such as the ones 

defined at run-time by script blocks included in server pages, or by active Web objects.   

The dynamic analysis phase is based on, and uses, static analysis results. The Web Application 

is executed and dynamic interactions among the entities described in the class diagram are recorded. 

Dynamic analysis is performed by observing the execution of the Web Application, and tracing any 

observed event or action to the corresponding source code instructions (and, consequently, to the 

classes represented in the class diagram).  

Analysis of the execution is a task that can be carried out either automatically, on the basis of 

the application code, or manually, by observing the page execution by a browser and recording the 

observed events (i.e., results of an execution including visualization of pages/frames/forms, 

submission of forms, processing of data, a link traversal, or a database query, etc.) All the events 

must be traced to the code and all the entities responsible for these events must be identified.  

The dynamically recovered information can also be used to verify, validate and, if necessary, 

complete the information obtained by static analysis. 

 

4.4.3 Automatic Clustering of the Web Application 

In the third step of the Reverse Engineering process the problem to group together set of 

components collaborating to the realization of a functionality of the Web Application is addressed. 

An automatic algorithm partitioning the components of the Web Application in a set of clusters, 

on the basis of the information extracted during the first two steps of the Reverse Engineering 

process, has been defined and is described in the following chapter. 

The obtained clusters are analysed by a human expert in order to identify the functionalities that 

they realize. This human intensive task can be partially automated. Methodology to recover, 

automatically, valuable information supporting this task is described in chapter 9, 10 and 11. 

 

4.4.4 Abstraction of UML diagrams 

In the final step of this reverse engineering process, UML diagrams are abstracted on the basis 

of the information retrieved in the previous steps.  
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The Class Diagram depicting the structure of the Web Application is obtained by analysing the 

information about the Web Application entities and relationships retrieved by static and dynamic 

analysis. This Class diagram is drawn as an instantiation of the conceptual model presented in the 

previous chapter and depicted in Figure 3.6, where each Web page and each inner page entity are 

represented as a class, with a stereotype describing the type of entity (e.g., static client pages will 

correspond to the stereotype  <<Static Page>> classes, while the name of the class will correspond 

to the name of the page in the application). Relationships among these stereotype classes are 

represented, with names conforming to the ones presented in the previous chapter (such as link, 

build, redirect, include, etc.). Moreover, according to Conallen’s notation, each class is 

characterised by attributes corresponding to the variables it references, and by methods 

corresponding to the functions and scripts included in it. Examples of the diagram recovered can be 

found in Chapter 6. 

Sequence and collaboration diagram are also abstracted, on the basis of the static information 

extracted and of the information recovered by observing the execution of the application. 

In Chapter 7 some examples of diagrams that have been abstracted with the described process 

are reported. 

A more complete comprehension of the Web Applications needs the recover of UML diagrams 

at a greater level of abstraction, such as diagrams at business level (class diagrams, sequence 

diagrams and use case diagrams). These diagrams are also abstracted by means of methodologies 

and processes that are described in Chapter 8. 
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Chapter 5: Web Application Clustering 
 

In this chapter a method to cluster the components of a Web Application in subsets realizing a 

specific functionality of the application is presented. This method is based on the analysis of the 

connections between the components of the pages. A heuristic algorithm that is described in this 

chapter supports the method. This algorithm has been implemented as part of the tool WARE. An 

example of the application of the algorithm is also presented in this chapter. 

 

5.1 Introduction 

The abstractions obtained with the Reverse Engineering approach described in the Chapter 4 are 

structural representations that are very useful as detailed views of the Web Application under 

analysis. To address global maintenance intervention, such as reengineering interventions or 

migrations, more abstract representations are needed. Further elaborations of the extracted 

information are needed to recover these diagrams. 

In this chapter a method to group together components collaborating to the realization of the 

same functionality of the Web Application is proposed and described. In the following chapters the 

obtained partition of the components of the Web Application in clusters is used to abstract business 

level diagrams (cfr. Chapter 8). The problem of the identification of the functionality realized by a 

cluster needs human intervention to be solved but it can be supported by the automatic 

methodologies presented in Chapters 9, 10 and 11. 

Clustering approaches for factoring Web Applications have been suggested in the literature. 

Some of them collapse the graphical representations of an application around notable graph 

components, such as dominators, strongly connected components, and shortest paths [Ric01]. Other 

approaches exploit the directory structure of the application to recover logically related components 

[Mar01].  

A rich literature on software clustering has been produced in the past decades in the field of 

traditional software systems ([Bas85], [Sch91], [Man98], [Man99], [Bal01], [Tze00a], [Tze00b]). A 

valuable overview of cluster analysis and system remodularization is presented by Wiggerts in 

[Wig97]. However, explorative studies, aiming to assess the portability of the proposed approaches 

towards the web applications area, have not been conducted or described yet. Explorative studies 

should preliminarily address the following issues: the choice of a model describing the web 

application components adequately, the definition of a criterion establishing when a pair of 
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components should be clustered into a cohesive unit, and the definition of a clustering algorithm to 

be applied.  
 

5.2 Background on clustering approaches for software systems 

A number of clustering approaches exploit source code analysis techniques, trying to cluster 

together files conceptually related. Anquetil et al. propose a different approach that exploits file 

names analysis to extract concepts about an existing application [Anq98]. This approach is 

grounded on the hypothesis that file names encapsulate domain knowledge, but this may not happen 

with software applications, or web applications, whose source code is generated by automatic tools, 

or by inexperienced developers that don’t follow any coherent convention on file names.  

Other clustering criteria are based on the assumption that logically related components are 

localized in the same file system directories, and analyse the physical paths of the files to discover 

cohesive clusters. The effectiveness of this method depends on the approach the developer used for 

distributing the application files in the file system. Unfortunately, web applications are not often 

planned with a directory organization that mirrors the functional one. Besides, many tools 

supporting web applications production (e.g.: Microsoft Front Page or Macromedia Dreamweaver) 

encourage the designer to structure it according to the nature of the files, or to their access 

properties (for instance, Front Page always creates a directory “images” and a directory “_private”). 

More promising clustering approaches seem to be those based on the analysis of graphs 

representing some kind of dependence between the application components. Some approaches have 

proven useful for comprehending or factoring traditional software systems, but a tailoring activity is 

needed in order to make them suitable for comprehending web applications. For instance, some 

approaches need to be applied to acyclic graphs (cfr. the approaches based on the dominance 

relationships [Hec77], [Cim95]), while the graph modelling the interconnections between web 

application pages is often a strongly connected graph. To make the graph acyclic, all the backward 

links due to hypertextual references from a page to the home page, or any index page, should be 

identified and removed from the graph. This may be an expensive and difficult task, since it 

requires analysing the semantic of every hypertextual link of the application.  

A “mixed” clustering approach is that proposed in [Tze00b], which combines both pattern-

driven techniques based on the identification of library modules and omnipresent modules, and an 

incremental clustering technique, named Orphan Adoption, for assigning the non-clustered files to 

some sub-system. Of course, since the pattern-driven approach focuses on common structures that 

frequently appear in manual decomposition of industrial software system, it should be adapted 

according to the common structures of web applications.  
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Finally, a heuristic method and a tool that treats clustering as an optimisation problem are 

proposed in [Man98], [Man99]. The method exploits a global measure of quality of a clustering. 

The space of possible partitions of a graph is explored (using genetic algorithms, or local optimum 

search algorithms) looking for the clustering that maximizes the quality measure.  

The method has been defined with respect to a dependence graph of a traditional software 

application that models source code dependencies among the application files. This approach may 

be ported in the field of web applications, provided that an adequate model of the dependencies 

among Web Application components is defined.  

 

5.3. A Clustering Methodology for Web Applications 

The goal of the proposed clustering method is to group software components of a Web 

Application into meaningful (highly cohesive) and independent (loosely coupled) clusters. 

According to Anquetil et al. [Anq99], three issues must be considered to do clustering. The first 

issue is to build a model in which the components to be clustered are adequately described. The 

second one consists of defining when a set of components should be clustered into a cohesive unit, 

and the third issue consists of selecting the clustering algorithm to be applied.  

In the approach that is proposed, as far as the description of the components is concerned, the 

reference Web Application model is the one described in section 3.3. As to the second choice, the 

coupling between components is quantified on the basis of the direct relationships between them. 

The more links between components, the stronger their coupling. Besides, for a finer tuning, a 

strategy has been established to weight the links, assuming that the coupling depends on the type of 

the link too.  

Finally, the third choice is that of a clustering algorithm. There are many different clustering 

algorithms in the literature [Wig97]. Some of them have been exploited in the field of software 

remodularization [Sch91, Bas85], to support reverse engineering [Mul88], [Won94] or program 

comprehension [Tze00a, Tze00b]. A possible taxonomy distinguishes between hierarchical and 

non-hierarchical ones. Anquetil et al. [Anq99] experimented with several clustering algorithms, and 

their results show that hierarchical clustering provides as good results as other ones. A hierarchical 

clustering has been adopted in this approach, since it can be used to obtain different partitioning of a 

system at different levels of abstraction.  
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5.3.1 Web Application Connection Graph 

The model of a Web Application provided in Chapter 3 can be analysed at a coarser degree of 

granularity, such as that of the web pages, or at a finer one, such as that of the inner components of 

the web pages.  

The clustering approach proposed in this section considers the following components and 

relationships of a Web Application: components include web pages, server pages, client pages, 

framed client pages, client modules, and web objects (such as script blocks, images, applets, etc.). 

Relationships comprise link, submit, redirect, build, load_in_frames, and include ones. The model 

focusing these components and their relationships is provided in Figure 5.1 as a UML class 

diagram. 

Each Web Application can be represented by an instance of this conceptual model, that is called 

the Web Application Connection Graph WAG = (N, E), where N is the set of the Web Application 

components and E is the set of edges among components. Each graph can be obtained with the 

support of reverse engineering tools, such as the WARE tool described in the previous chapter, that 

extract the needed information from the source code of the application. 

 

5.3.2 Defining the coupling between Web Application components 

The choice of a metric for expressing the degree of coupling of a pair of components is strategic 

for the success of a clustering algorithm. The proposed definition of coupling takes into account 

some intuitive criteria deriving from the knowledge and expertise in Web Application development 

and maintenance.  

This expertise suggests that both the typology and the topology of the connections need to be 

taken into account for expressing the degree of coupling between components. Therefore, it is 

assumed that the considered relationships produce a different coupling between the connected 

components. In particular, some specific assumptions concerning build, redirect, link, and submit 

relationships are made. A build relationship between a server page and the built client page it 

produces is assumed to produce the stronger degree of coupling among the Web Application 

components, since the existence of the client page depends on the server page. A redirect 

relationship between two pages produces a higher degree of coupling than a link relationship, since 

a ‘redirect’ statement usually implicates the execution of an elaboration, by moving the control-flow 

from the former to the latter page. Besides, a submit relationship between a client page and a server 

page produces a higher degree of coupling than a link relationship, since a ‘submit’ statement 
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usually implicates the request for an elaboration and a data-flow between the pages. Moreover, due 

to the data-flow, a submit relationship are associated with a higher coupling than a redirect one.  

 

 

Figure 5.1: The focused Web Application conceptual model 
 

These hypotheses on the connection typologies are taken into account by assigning link, redirect 

and submit relationships with the positive weights wL, wR and wS respectively, and by assuming the 

following relations:  

wRL = wR / wL  

wSL = wS / wL 

1< wRL < wSL 

 

The ratios wRL and wSL are empirically assigned on the basis of the expertise. For instance, in 

the experiments that have been carried out, good results have been obtained with wL=1, wRL =2.4 

and wSL= 3.  

The degree of coupling CA,B of two components, namely A and B, is therefore expressed by the 

following metric: 

 

CA,B= CAB + CBA 
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where CAB is a measure of the coupling produced by edges from A to B, and vice-versa CBA is a 

measure of the coupling produced by edges from B to A.  

The simplest way to measure CAB is that of counting the weighted edges outgoing from A and 

going into B and, analogously, the simplest way to measure CBA is of counting the weighted edges 

outgoing from B and reaching A. However, the coupling between the nodes A and B should be 

considered intuitively stronger when A uniquely reaches the node B (or B is uniquely reached from 

A), rather than when A reaches both B and other nodes (or B is reached both from A and from other 

nodes). In order to take into account these different topologies differently, an additional weighting 

strategy is adopted, assigning a weight wx
OUT to exiting edges, and a weight wx

IN to incoming edges. 

The wx
OUT (assigned with each edge of type x exiting from the node) is defined according to the 

fan-out of that node, while the wx
IN (assigned with each edge of type x coming into the node) is 

defined according to the fan-in1 of the node.  

This strategy assumes that each non-terminal node has a constant Outgoing Connection 

Potential set to 1. Analogously, each node with incoming edges has a constant Incoming 

Connection Potential (set to 1). Outgoing Potential (Incoming Potential) is distributed among 

outgoing (incoming) edges proportionally to the fan-out (fan-in) of the node, and proportionally to 

the edge weights wL, wR and wS.  

Given a node A, the weights wLINK
OUT(A) of each link edge, wSUBMIT

OUT (A) of each submit 

edge, and wREDIRECT
OUT(A) of each redirect edge exiting from A can be obtained by solving the 

linear system shown below where NLINK (A) is the number of connections of link type outgoing the 

node, NSUBMIT(A) is the number of connections of submit type outgoing the node, and NREDIRECT (A) 

is the number of connections of redirect type outgoing the node.  

 

                                                 
1 Fan-in of a node is the number of edges entering the node, and Fan-out of a node is the number of edges leaving 

the node. 
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The weights wLINK
IN (B) of each link edge, wSUBMIT

IN (B) of each submit edge, and wREDIRECT
IN 

(B) of each redirect edge coming into a given node B can be obtained by solving a similar linear 

system. 

Finally, the degree of coupling CA,B of two components are expressed as follows: 

 

CA,B= CAB + CBA= pA B* pB A+ pB A* pA B 

 

The first product pA B* pB A is an indicator of the cumulative strength of the connections from 

A to B, while the second one is an indicator of the cumulative strength of the connections from B to 

A. In general, given two nodes, namely X and Y, the term pX Y is an indicator of the strength of the 

interconnections due to weighted outgoing edges from X to Y, while pY X  indicates the strength of 

the interconnections due to weighted incoming edges reaching Y from X.  

The term pX Y is expressed as follows: 

 

)()(

)()()()(

XwYXN

XwYXNXwYXNp
OUT
REDIRECTREDIRECT

OUT
SUBMITSUBMIT

OUT
LINKLINKYX

⋅→

+⋅→+⋅→=→

 

 

where NLINK (X→Y), NSUBMIT (X→Y) and NREDIRECT(X→Y) are the number of connections of link, 

submit and redirect type from X to Y, respectively. 

Analogously, the term pB A is expressed as the sum of weighted incoming edges reaching B 

from A. 

If the value of the product pA B* pB A is one, all edges outgoing from A reach B, and there is no 

edge going into B that does not come from A. If the symmetrical condition for the product pB A* 

pA B  is also true, the degree of coupling CA,B will assume the maximum value, that is equal to two. 

The minimum value of CA,B is zero, when the nodes are not directly connected.  

 

5.3.3 The clustering algorithm 

Agglomerative hierarchical clustering algorithms start from the individual items, gather them 

into small clusters, which are in turn gathered into larger clusters up to one final cluster containing 

everything. The result is a hierarchy of clusters.  
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The proposed hierarchical algorithm is iterative, starts from a clustering with n clusters, each 

one containing a single Web Application component, and produces new clusters based on four 

clustering rules: 

 

• R1: the cluster containing a built client page is merged with the cluster containing the server 

page building the former; 

 

• R2: if and only if all the pages referenced by the frame tags of a client page with frame belong to 

the same cluster, the cluster including the latter page is merged with the former cluster; 

 

• R3: if and only if all the pages including a client module or a server page belong to the same 

cluster, the cluster including the former pages is merged with the latter cluster;  

 

• R4: the pair of clusters whose coupling value is the maximum one is gathered into a new cluster. 

 

The algorithm applies to the connection graph WAG=(N,E) of a web application. The 

description of the algorithm is provided in Fig. 5.2, where n is the cardinality of the node set N, c 

indicates a generic cluster in a given clustering, and x indicates any of link, redirect, and submit 

relationships.  
BEGIN with n clusters each containing one Web Application component; 

DEFINE the wL, wRL and wSL values; 

FOR EACH cluster containing a built client page component, APPLY rule R1; 

WHILE (there is at least a couple of connected clusters) DO  

  FOR EACH cluster containing a client page with frame component, APPLY rule R2;

  FOR EACH cluster containing a client module component, APPLY rule R3; 

  FOR EACH cluster c, and for each x, COMPUTE wxOUT (c) and wxIN (c); 

  FOR EACH pair of clusters, COMPUTE the couplings between them; 

    APPLY rule R4; 

OD  

Figure 5.2: The clustering algorithm 
 

This algorithm results in a hierarchy of clustering, each one containing a set of clusters. 

However, in order to obtain a partition of the application components rather than a hierarchy, the 

hierarchy can be pruned at an appropriate height and considering only the upper clusters. The 

choice of the appropriate cut-height can be based on specific quality metrics. Possible metrics are 
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those expressing the quality of a given clustering. Of course, the quality of a clustering is as good as 

it supports the comprehension of the web application.  

According to [Man98], [Man99], a good clustering includes clusters with high intra-

connectivity and low inter-connectivity. The intra-connectivity expresses the degree of cohesion 

among entities of a web application, and the inter-connectivity can be interpreted as a coupling 

measure among entities of a web application. Therefore, the Quality of a Clustering metric QoC is 

introduced, that can be expressed as the difference between IntraConnectivity and InterConnectivity 

of a clustering: 

 

QoC= IntraConnectivity – InterConnectivity. 

 

where: 

 

 

In these expressions, NC is the number of clusters in the considered clustering configuration, 

p0
i j is the pi j between two generic nodes i and j in the original Connection Graph of the web 

application, CLUSTERk is the k-th cluster in the considered clustering, EOUT0
i is the number of 

edges leaving the i-th node in the original Connection Graph of the web application, Card(x) is the 

cardinality of the x-th cluster of the considered clustering. 

The IntraConnectivity is a weighted mean of the cluster inner edges. Its values vary between 0 

(when no cluster has got inner edges) and 1 (all clusters inner nodes are completely connected). The 

InterConnectivity is a weighted mean of the edges among clusters. Its values vary between 0 

(clusters not connected by edges at all) and 1 (every node in the clusters is connected to every other 

node from the other clusters). 

The QoC of a given clustering assumes values ranging from –1 to +1. The minimum value is 

obtained with a clustering having each cluster with a single node and inter-connected with all the 
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other ones. Besides, the maximum value is assumed either by a clustering with only one cluster 

including all the nodes, or by a clustering with only isolated clusters that are completely intra-

connected.  

The clustering obtained at each iteration of the proposed algorithm is characterized by a given 

value of the QoC quality metric. The clustering exhibiting the maximum value of QoC is a 

candidate to implement the best partition of the web application components. Therefore, the 

hierarchy of clustering may be cut at the cut-height that is associated with the maximum QoC. The 

clusters from this configuration are submitted to a validation process, with the aim of establish if the 

cluster completely realizes a functionality of the system.  

The problem of comprehending a Web Application can be addressed according to the following 

structured approach: 

 

1) Reverse engineering of the Web Application and production of the WAG; 

2) Do clustering according to the proposed algorithm; 

3) Find the Cmax clustering with the maximum QoC value; 

4) Submit the Cmax clustering to a validation process. 

 

The validation process is a human intensive process and it is needed to determine if each cluster 

realizes a functionality of the Web Application. This process will be partially supported by the 

Reverse Engineering techniques that are described in the Chapters 9, 10 and 11. 

During the clustering validation process, clusters can be modified splitting one cluster in more 

ones, or merging more clusters into one, or moving some components from a cluster to another one 

to have valid clusters.  

 

5.4 A clustering example 

In order to illustrate how the proposed clustering algorithm works, in this section a small 

exemplar Web Application is analysed in conformance with the clustering method.  

The pages of the application are divided into two areas: a public area is accessible by all users 

and a reserved area whose access is limited to registered users.  

The application is composed of eight items, including five pages (labelled from A to E), two 

server pages (labelled as F and G), and a built client page (namely H). The Web Application 

representation is provided in Fig. 5.3-a, according to the notation presented in the previous chapter.  
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Fig. 5.3: An example 
 

The home page of the application (labelled A) includes two frames, the first one (B) providing 

the access to pages of the public area (D and E, respectively), and the second one (C) containing a 

form for accessing the reserved area (composed of G and H pages) through an authentication page 

(F). 

The clustering algorithm produced a hierarchy of clusters. At the first step, G and H pages were 

merged into a cluster named GH, according to the Build rule. At the second step, C and F pages 

were merged into a new cluster CF since their degree of coupling CC,F assumed the maximum value 

(cfr. the coupling values listed in Fig. 5.3-b). The new cluster CF-GH composed of clusters CF and 

GH was analogously obtained at the third step (cfr. the coupling values listed in Fig. 5.3-c). At the 

final iteration of the algorithm, the sixth step, one cluster including all the application items was 

obtained. The QoC values obtained at each iteration are reported in Fig. 5.3-d. The maximum QoC 

value was obtained at the second step.  

The clusters obtained at this step were analysed in order to assess their validity. Valid clusters 

have been recognized, since each of them implemented a specific function. The GH cluster 
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implements the visualization of reserved information to authenticated users, while the CF cluster 

implements the user authentication function. The remaining clusters A and B implement 

coordination functions, while D and E provide the visualization of two distinct groups of 

information.  

This first experiment provides encouraging results about the effectiveness of the methods, but 

many other experiments have been carried out. The results of these experiments, based on real 

world Web Applications, are presented in Chapter 7, while a tool supporting the execution of the 

clustering algorithm is presented in the next chapter. 

Further detail and examples about the proposed clustering method can be also found in [Dil02c]. 
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Chapter 6: The tool WARE 
 

In this chapter a tool called WARE is presented. This tool supports the Reverse Engineering 

process described in Chapter 4: it supports the extraction of information from the source code of an 

existing Web Application and from the analysis of its execution, the abstraction of detailed UML 

diagrams depicting the structure of a Web Application and the execution of the clustering algorithm 

described in the previous chapter. This tool also supports metrics evaluation. Architecture, 

functionalities and examples of the use of this tool are presented. 

 

6.1 Introduction 

The most part of the tasks of the Reverse Engineering process described in the previous chapters 

may be carried out automatically: examples are the extraction of information from the source code 

of Web Applications, the clustering algorithm and the abstraction of class diagrams depicting the 

structural view of the Web Application. The automatization of these tasks reduces drastically the 

effort related to the execution of the WARE Reverse Engineering process (experiments described in 

the following chapter have confirmed this hypothesis). A tool, that is also named WARE, has been 

designed and developed with the aim to support the WARE Reverse Engineering process. 

In this chapter the architecture and the functionality of the tool WARE are described and an 

example of how the tool can support the Reverse Engineering is reported. The results of a further 

experimentation, based on a number of different Web Applications is reported in the following 

chapter. 

 

 

6.2 Architecture of tool WARE 

The tool WARE has been designed as an integrated environment including several components 

arranged in the software architecture shown in Figure 6.1. As the figure illustrates, the WARE tool 

architecture have three layers: the Interface Layer, the Service Layer, and the Repository Layer. The 

Interface Layer implements the user interface providing the access to the functions offered by the 

tool and the visualization of recovered information and documentation both in textual and graphical 

format. The Service Layer implements the tool services, and includes two main components: the 

Extractors and the Abstractors. The Repository stores the information extracted and abstracted 
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about the Web Application using intermediate format files and a relational database. Additional 

details about WARE’s layers are provided in the following. 

 

6.2.1 WARE Service Layer. 

The Service layer of WARE includes both Extractor and Abstractor components: Extractors 

directly retrieve relevant information from the source code of an application and store it in 

intermediate format files, while Abstractors are able to abstract further information and documents 

from the directly retrieved information.  

Source code extractors included in WARE are implemented in C++ language, and the set of 

analysable source code languages is constantly in evolution. The current version of the tool includes 

extractors that analyse the HTML language (version 4.0) and some scripting languages, such as the 

Javascript and VBScript languages usable at the client side of a Web Application, and ASP and 

PHP scripts from the server side. These extractors do not recover an Abstract Syntax Tree from the 

analysed code, but they just recognise and identify in the code the information needed to re-build 

the required diagrams, by means of lexical and syntactical analysis. The difficulties involved into 

the static analysis phase are due to the peculiarities of the scripting technologies. Often, the most 

part of the grammar recognition problems are based on the fundamental hypothesis of correctness of 

the code under analysis.  

 



  - 49 -

 

Figure 6.1: Architecture of tool WARE 
 
For Web Application domain, this hypothesis can be considered for server scripting code but it 

cannot be guaranteed for client scripting code. In fact, it is possible that server scripting code or 

client scripting code generate client code dynamically during execution. Moreover, a common 

characteristic of the browser is the fault tolerance: for this reason the existence of Web pages 

containing incorrect HTML code is quite common. So, an ad-hoc fault tolerant approach based on 

authoms has been adopted to analyse the source code of Web Applications. This technique has been 

detailed described in [Tra01]. Extractors are also able to recognise some lexical and syntactical 

errors contained in the source files. Finally, parsers store the extracted information in an 

Intermediate Representation Form (IRF) that is implemented as a tagged XML-like file (see [Dil02] 

for more details); this file is then parsed by an IRF translator component that populates the 

relational Database included in the Repository with the information produced by the Extractors. 
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As to the Abstractors, a first one is the Clustering Executor, supporting the clustering algorithm 

that is described in the next chapter. The Query Executor is the Abstractor that implements 

predefined SQL queries over the database and retrieves data about the Web Application that may 

aid Concept Assignment processes and dynamic analysis execution. Possible information provided 

by the Query Executor includes the list of a Web page links, Web page inner items (such as Scripts 

or other Objects), Form fields, Client/Server Functions activated in a Web page, and so on. 

However, the tool supports customized queries, too. Finally, the UML Diagram Abstractors 

implement several abstraction tasks supporting the recovery of UML diagrams, including the class 

diagrams at different degrees of detail (e.g., providing only client pages, or static pages, or filtering 

out the forms, etc.). 

 

6.2.2 WARE Interface Layer.  

The Interface Layer of WARE provides the user interface for activating WARE functions. The 

user interface has been implemented with the Microsoft Visual Basic language, and allows a 

friendly interaction of the user with the tool.  

The main functions available to a user include:  

• Automatic Static Analysis of a Web Application source code.  

• Support to the recovery of the Dynamically Instantiated Elements, that allows a user to find 

source code statements producing dynamically instantiated components or relationships, 

which cannot be retrieved automatically with a static source code analysis. (This information 

can be, therefore, stored in the repository using a specific user interface offered by WARE). 

• Information Browsing, by means of which a user can browse information recovered about a 

Web Application, such as the inventory of the Web Application components and their source 

code. Moreover, the reachability relationship of a given component can be computed. WARE 

allows each element of a page into the source code to be localized. Moreover, users may also 

formulate customisable queries over the database, by choosing the type of application item, 

relationship, or parameter to be searched for and displayed. 

• Graphical Visualization. WARE is able to show the graphical representations of the following 

models: 

a. Class diagram of the Web Application, depicted according to the extensions defined 

by Jim Conallen [Con99]; 

b. Web Application Connection Graph (WAG), showing the relationships between the 

components of a Web Application (cfr. Subsection 5.3.1); 
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c. Reachability Graph, showing the pages that can be reached from a given page of a 

Web Application. 

• Clustering functions. WARE automatically executes the clustering algorithm described in the 

previous chapter. WARE produces different clustering configurations and therefore a user is 

able to analyse each of them and to select the one that maximises cohesion between Web 

Application components and minimises coupling between them. The user may associate a 

descriptive name and a colour to each cluster or he can modify the chosen configuration. 

WARE allows a user to know what are the relationships and the data exchanged between the 

components inside a cluster and between the components inside a cluster and the remaining 

components of the Web Application. These information may be very useful to validate a 

cluster and to establish what is the user function implemented by each cluster. 

Moreover, WARE allows the WA components to be grouped in subsets by using other simple 

clustering criteria. A simple criterion implemented by WARE consists of grouping together 

physical components of a Web Application (Client and Server pages, client modules, 

multimedia components, etc.) contained in the same directory on the web server. However, a 

user can create a subset of WA components by selecting them from the inventory list. 

Currently, the graphical visualisation of the diagram is achieved using some freeware graph 

displayers, such as VCG [Vcg], and Dotty [Dot]: this visualisation does not support the UML 

notation style, but different shapes and colours are used to draw different kinds of entity and 

relationship. As an example, a box is used for drawing a Static Page, a trapezoid for a Built Client 

Page, a diamond for a Server Page and a triangle for a Form. However, export of the diagrams in 

XMI format has been considered and is under developing. 

Of course, WARE allows the visualization of customized graphs, reporting only some node 

types and some edge types. 

• Evaluation of Software Metrics. Some summary measures, such as the number of Web 

Application pages, scripts, or the LOC count of a Web Application are automatically 

computed by the tool and showed on demand to the user. An ad-hoc tool using information 

extracted and abstracted by WARE calculates more complex metrics. These metrics are used 

to estimate the maintainability of a Web Application in Chapter 13. 

WARE is also provided with some wizards that guide users during the tool configuration phase 

and creation of a new project. The user interface of WARE supports both Italian and English 

languages. 
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6.3 Analysis of a Web Application with the tool WARE 

In this section the results of the submission of a real Web Application to the Reverse 

Engineering process is reported. The case study introduced in this chapter is extended and discussed 

in deep in the following chapters. 

The selected Web Application supports the activities of undergraduate courses offered by a 

Computer Science Department. It provides students and teachers with different functions, such as 

accessing information about the courses, allowing a student to get registered to a course or to an 

examination session, allowing a professor to manage the examination and student tutoring agendas, 

allowing a registered student to download teaching material, and so on. 

The application was developed using Microsoft ASP and VBScript languages on the server side 

of the application, Javascript and HTML on the client side. It runs on Microsoft IIS Web Server. 

Only the files constituting the source code of the Web Application are available, with no design 

documentation. 

The WARE tool has automatically realized static analysis. The results of the analysis have been 

stored in text files according to the defined Intermediate Representation Form. Figure 6.2 reports an 

example of the transformation from the HTML code (auth.htm on the left side of the figure) to the 

IRF (auth.htm.irf on the right side of the figure) of a web page. The information contained in the 

IRF files has been extracted and stored in a relational database by WARE, according to the model 

presented in Chapter 3. 

Inputs needed by WARE to correctly execute static analysis of a Web Application comprehend 

also some information about the configuration of the web server on which the Web Application is 

executed (e.g. what files extensions the web server associates to server pages, what tags are 

interpreted as starting server script tag, etc.). WARE extractors produce also a log file reporting 

some syntax errors recognized in source files (such as opening tags without needed closing ones, 

closing tags without opening ones, tags without compulsory attributes, etc.). These errors aren’t 

reported by browsers, which try to interpret also incorrect HTML pages. Figure 6.3 shows a list of 

warnings reported for the Web Application under analysis. A code inspection revealed that these 

warnings correspond to actual syntax errors in the web pages source code.  

Dynamic analysis was therefore performed in the second step of the Reverse Engineering 

process, with the aim of recover information about the Web Application that is not obtainable by 

static analysis. For instance, this analysis is needed to retrieve the actual content of dynamically 

built client pages, since this content can be precisely defined only executing the code.   
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Line # 
 
1 
2 
3 
4 
5 
6 
7 
8 

File auth.htm 
 
<html> 
<form name=auth method=post action="auth.asp"> 
Login:<input name=login type=text> 
Password:<input name=pwd type=text> 
<input type=submit> 
<input type=reset> 
</form> 
</html> 
 

File auth.htm.irf 
 
<OPEN><FILENAME="\auth.htm"></OPEN> 
<OPEN FORM> <LINE=2>  
  <NAME=”auth”> <METHOD=”post”> 
  <ACTION=”auth.asp”> 
</OPEN FORM> 
<INPUT> <LINE=3> 
  <NAME=”login”> <TYPE=”text”> 
</INPUT> 
<INPUT> <LINE=4> 
  <NAME=”pwd”> <TYPE=”text”> 
</INPUT> 
<INPUT> <LINE=5> 
  <TYPE=”submit”> 
</INPUT> 
<INPUT> <LINE=6> 
  <TYPE=”reset”> 
</INPUT> 
<CLOSE FORM><LINE=7> </CLOSE FORM> 
<CLOSE> <LINE=8> </CLOSE> 

Figure 6.2: An excerpt of the source code of a web page and its corresponding 
Intermediate Representation Form 

 
Error in /areastudenti.html Line:17 Warning: attribute PATH needed 
Error in /main.html Line:21  Warning : attribute PATH needed 
Error in /maindoc.html Line:21 Warning : attribute PATH needed 
Error in /menudoc.html Line:17 Warning : attribute PATH needed 
Error in /FormPreRicev2.asp Line:417 Warning: tag </A> needed 
Error in /VisListaRic.asp Line:327 Warning: tag </A> needed 
Error in /VisPreRic.asp Line:302 Warning: tag </A> needed 

Figure 6.3: Warning reported as result of the static analysis of the 
Web Application 

 

An example is reported in Figure 6.4, where the Information Browsing functionality of WARE 

has been used to individuate an output statement in the server page check.asp (the response.write 

instruction reported in the lower part of the figure). Analysing the semantic of this statement, it is 

possible to establish that a Redirect operation from a client page built by check.asp and the client 

page areadocente.html could be instantiated (by means of the javascript method window.open).  

Some summary information about the components and relationships of the Web Application 

under analysis can be evaluated automatically by WARE. Figure 6.5 reports both the count of 

statically retrieved information, such as the number of server pages, client pages, scripts, forms, 

functions, connections composing the Web Application, both dynamically obtained information. 

Finally, the capability of WARE of producing automatically graphical views of the Web 

Application was exploited during the working session. The current version of WARE produces 

graphs that can be visualized with the tools VCG [Vcg] and Dotty [Dot]. As an example, in Figure 

6.6 is reported the Class Diagram representing the web pages implementing the whole Web 

Application. In this diagram different colours and shapes have been used to characterize different 

types of components and connections: server pages have been depicted as diamonds, static client 

pages with rectangles, built client pages with trapeziums and so on.  
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Figure 6.4: Use of the Information Browsing functionality of WARE to detect a 
Redirect operation that is dynamically instantiated 

 

Statically retrieved information  
Server Page 75 
Static Client Page 23 
Built Client Page 74 
Client Script  132 
Client Function  48 
Form 49 
Server Script  562 
Server Function  0 
Redirect (in Server Scripts) 7 
Redirect (in Client Scripts) 0 
Link  45 
Dynamically Instantiated Elements  
Link 0 
Submit  0 
Redirect (in Client Script) 0 
Redirect (in Server Script) 7 

Figure 6.5: Structural metrics of the Web Applications under analysis 
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Figure 6.6: Class diagram reporting the pages of the Web Application and the 
relationships between them (a zoom of a part of this diagram is shown in the lower frame 

of the figure) 
 

However, it is possible to modify colours and shapes of components and connections in the 

produced diagrams. Edges represent connections between the components and they are labelled 

according to the typology of that connection. Colours of the edges may be changed for a better 

visualization. 

When the static analysis of the WA code and the recovery of dynamic information have been 

accomplished, the WA can be submitted to the clustering algorithm described in the previous 
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chapter, in order to obtain a collapsed view of its structure. Clustering was therefore executed on the 

subject WA, producing various clustering configurations.  

The optimal clustering configuration proposed by the tool was submitted to a validation process, 

in order to understand the functions implemented by the clusters and to validate them. The process 

was carried out with the support of WARE, and by inspecting the code and observing the Web 

Application execution.  

The optimal clustering of the Web Application presented 49 Clusters, with an Average of 3.58 

Pages per Cluster. Figure 6.7 shows the graph of this clustering, where each node represents a 

cluster. The size of this graph is sensibly smaller than the WAG one, since it includes 49 nodes, that 

is, less than 30% of the nodes of the original WAG (considering just the web pages).  

 

 

Figure 6.7: Clusterized WAG  
 

During the clustering validation phase, some clusters were modified splitting one cluster in 

more ones, or merging more clusters into one, or moving some components from a cluster to 

another one to have valid clusters. For the analysed WA 8 were merged to produce 3 new clusters. 

The WARE Cluster Management User Interface (Figure 6.8) usefully supported these tasks, 

allowing insertion, modification or deletion of clusters and showing tables and diagrams reporting 
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relationships and exchanged data among the WA pages involved by each cluster. As an example, 

Figure 6.9 shows the form reporting in the higher part of the figure the relationships among the 

pages inside a cluster of the WA under analysis, while in the lower part data exchanged between 

these pages are reported. Figure 6.10 reports a summary after the clustering configuration 

validation. 

Reachability tables and diagrams were used to establish if a cluster is connected to the 

remaining part of the Web Application or not. Usually, isolated clusters represent obsolete parts of a 

Web Application. As an example, Cluster #43, constituted by the server page insappello2.asp and 

by its built client page cannot be reached by any other component of the Web Application. 

 

 

Figure 6.8: Subset Management User Interface 
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Figure 6.9: Relationships and data exchanged between the components of a cluster and 
the remaining part of the Web Application 

 

Number of initial clusters 49
Number of split clusters 0 
Number of incomplete clusters 8 
Number of valid clusters 41
Number of new clusters obtained from the subdivided ones 0 
Number of new clusters obtained by merging incomplete clusters 3 
Number of final valid clusters 44

Figure 6.10: Results from Clustering validation 

 

Further details about the use of the tool WARE can be found in [Dil04f] and [Dil04g], while an 

extended experimentation of the Reverse Engineering process will be reported and discussed in the 

next chapter. 
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Chapter 7: Experimenting the WARE Reverse Engineering 
Process 

 

In this chapter the results of the experimentation of the Reverse Engineering process presented 

in the previous chapters, are reported. A discussion about the programming techniques needed to 

improve the understandability of the application is reported. 

 

7.1 Assessing the effectiveness of the WARE Reverse Engineering 
process 

The Reverse Engineering approach presented in Chapter 4 has been experimented with a 

validation experiment. This experiment was conducted with a number of real Web Applications. 

Software engineers who were expert users of Web Application technologies were enrolled in the 

experiment. They were taught the reverse engineering process and tool facilities, and were asked to 

use them to analyse existing Web Applications. Software engineers were grouped in teams 

composed of 2 or 3 people, and each team was assigned a single application. 

As to the experimental materials, six Web Applications with different characteristics and 

implemented using ASP, Javascript, PHP, and HTML technologies, were selected. According to 

Tilley and Huang’s classification (cfr. Section 2.2), three of them were class 3 applications 

including dynamic client and server pages (hereafter these applications are called WA1, WA2, and 

WA3). Two class 2 applications (WA4 and WA5) with dynamic functions just on the client side 

were considered, along with a primarily static class 1 application (WA6).  

As regards the domain of the Web Applications, WA1 supported the activities of an 

undergraduate course (it has been presented also in chapter 5); WA2 provided functions for the 

management of an Italian research network, WA3 and WA5 were two personal Web sites. Finally, 

WA4 was an application supporting the activities of a society for historical studies, and WA6 was a 

Web site providing the on line reference guide of a programming language.  

While WA1 was developed without any automatic generator of HTML code, an automatic 

generator was used for producing some presentation-related aspects of WA2, WA3, and WA4 (such 

as table layout). For WA5, this tool was used to define the navigational structure, too, by 

automatically generating navigational bars. 
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The teams carried out the analysis of the Web Applications according to the prescriptions of the 

reverse engineering process. The results they achieved at each step of the process are described 

below. Further detail about this experiment can be found in [Dil02d] and [Dil04]. 

 

7.2 Carrying out Static Analysis 

In the first step of the Reverse Engineering process, the teams carried out static analysis with the 

support of the tool WARE, with the aim of detecting the Web Applications’ items and their 

relationships. Table 7.1 reports a summary of the data collected about the applications: in the first 

column, the type of the item or relationship is reported, while in the remaining columns, the count 

of items/relationships retrieved for each Web Application analysed is shown. In this Table, the 

name of the items corresponds to the name of the Web Application entities enclosed in the reference 

model presented in Chapter 3. 

 

Table 7.1: Statically retrieved data from the analysed Web Applications 

Item type WA1 WA2 WA3 WA4 WA5 WA6 

Server Page 75 105 21 0 0 0 

Static Page 23 38 19 80 45 257 

Built Client Page 74 98 20 0 0 0 

Client Script  132 225 113 261 4 3 

Client Function  48 32 60 68 1 4 

Form 49 100 5 0 25 5 

Server Script  562 2358 40 0 0 0 

Server Function  0 11 0 0 0 0 

Redirect (in Server Scripts) 7 0 0 0 0 0 

Redirect (in Client Scripts) 0 0 41 0 0 0 

Link  45 266 121 162 448 1508 

 

Thanks to the automation of the analysis by the tool WARE, the human effort required to 

accomplish this step was limited just to the activation of the tool parsers and of the IRF translator 

that populates the Repository with the information extracted from the source code.  



  - 61 -

These tasks were automatically executed by the tool, in a number of seconds (ranging from 14 

seconds to 62 seconds) that depended on the size of the application analysed (cfr. Table 7.4 for 

effort data).  

 

7.3 Carrying out Dynamic Analysis 

In the second step, class 2 and 3 applications were submitted to dynamic analysis, and 

additional information about their composition could be retrieved.  

As a first result, the existence of relationships between Web Application Pages that had not been 

retrieved by static analysis was deduced. A first type of relationship was due to code instructions 

not originally included in the HTML code, but produced at run time by output instructions in 

server/client scripts (such as the ASP response.write, PHP print, and Javascript write) whose 

arguments depend on input values. These output instructions were able to produce three different 

types of relationship between items, such as the Link type between Web pages, the Submit type 

between forms and server pages, and the Redirect relationship between a Client Script and a Web 

Page (cfr. the Link, Submit, and Redirect associations in the Web Application model). Sometimes 

the dynamic Link relationships were also defined by executing a Java applet implementing a menu 

of hypertextual links. In this case, since the code of the applet was not included in the Web 

Applications (likewise the code of any Flash or ActiveX object) and could not be parsed, only by 

execution of the applications could the target pages of the links be identified. Moreover, server 

scripts including response.redirect instructions were able to produce dynamic Redirect relationships 

between a Server Script and a Server Page, whose destination depended on the input values. 

Table 7.2 reports the count of relationships dynamically retrieved from the Web Applications 

analysed. In the first column, the type of relationship is reported, while the remaining columns show 

the count for each Web Application analysed. 

 

Table 7.2: Dynamically retrieved relationships from the analysed Web Applications 

Relationship type WA1 WA2 WA3 WA4 WA5 WA6 

Link 0 1 9 0 27 0 

Submit  0 32 0 0 0 0 

Redirect (in Client Script) 0 0 27 0 0 0 

Redirect (in Server Script) 7 0 0 0 0 0 
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Unlike static analysis, dynamic analysis required greater  intervention by the software engineers, 

who preliminarily had to define the set of input values for executing the Web Applications and, 

therefore, had to observe the resulting behaviour and record the obtained output. At the moment, 

these tasks are not supported by the WARE tool. However, the tool can be used to limit the scope of 

the dynamic analysis to those Web Pages including elements responsible for dynamic results: in 

fact, these Pages can be detected by the static analysis performed by the tool, and retrieved by 

querying the tool repository. The total effort (expressed in man hours) required to carry out dynamic 

analysis for each Web Application is reported in Table 7.4.  

The additional information retrieved was, finally, added to the tool WARE Repository 

manually. 

After accomplishing the first two steps of the reverse engineering process, a WAG representing 

all the retrieved items and relationships could be instantiated for each Web Application. As an 

example, the graph obtained for the first one, WA1, is reported in Chapter 5.  

 

7.4 Carrying out Clustering 

In this phase, the Web Application Connection Graphs (WAG, cfr. Chapter 5) were submitted to 

the Clustering algorithm described in the previous chapter, so that hierarchies of clusterizations of 

the components of the Web Applications were proposed and the best of those (according to Quality 

of Clusterization factor defined in the previous chapter) were chosen and submitted to a validation 

process. 

The clusters identified by the algorithm are composed by strictly interconnected pages, such as 

pages that actually cooperate in the implementation of a given functionality, or pages that are 

strongly interconnected by many navigation links (i.e. links just used to make easier the user 

navigation, such as the back links to go back a previous visited page or the cross links introduced to 

make a short cut to a longer path, but not necessary to implement a given user functionality).  

During the experiments, two applications, WA4 and WA5, that presented frequent navigation 

links and mechanisms, such as navigation bars, were mainly characterized by loosely cohesive 

clusters. These clusters were not very useful to support the comprehension of the Web Application 

behavior. In the case of the WA6, the recovered clustering included more cohesive clusters, since 

the links in the Web Application Connection Graph were mainly representative of semantic 

relationships among the pages (i.e. relationships actually needed to implement a user functionality).  
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The clustering algorithm allowed even the detection of groups of components isolated from the 

remaining ones. The presence of isolated pages was essentially due either to the presence of 

incorrectly resolved dynamic links between the pages, either to the presence of unreachable 

obsolete pages. However, an isolated cluster may correspond to a separate functionality, accessible 

by another/secondary Home page included in the cluster itself. 

In the validation step, the proposed clusters of each Web Application were manually analysed in 

order to validate them, by distinguishing valid clusters from invalid ones.  

During the validation process, both static analysis and dynamic analysis was carried out. During 

the static analysis, when the names of the source files of the application were meaningful, rather 

than generic, or the files were contained in directories with a meaningful name, the software 

engineer could more easily identify the concept associated with the cluster. During the dynamic 

analysis, the presence of explicative labels associated with the anchors was useful for understanding 

the interconnected pages behavior.  

The results of the validation step are listed in Table 7.3, which reports, in the upper part, the 

number of initial clusters proposed by the tool, and the number of spurious, split, incomplete, and 

accepted clusters. In the lower part of the table, the number of clusters obtained by modifying the 

ones originally proposed by the tool is listed too. 
 

Table 7.3: Results from clustering validation 
 WA1 WA2 WA3 WA4 WA5 WA6
Number of initial clusters 49 101 27 49 31 115 
Number of spurious clusters 0 0 1 1 0 0 
Number of split clusters 0 0 2 0 5 12 
Number of incomplete clusters 8 15 3 0 0 0 
Number of accepted clusters 41 86 21 48 26 103 
Number of new clusters obtained from the spurious ones 0 0 1 2 0 0 
Number of new clusters obtained from the subdivided ones 0 0 5 0 13 31 
Number of new clusters obtained by merging incomplete clusters 3 7 1 0 0 0 
Number of final clusters 44 93 28 50 39 134 

 

7.5 Discussion 

The experiment described in this Section was carried out with the aim of assessing the 

feasibility and effectiveness of the proposed reverse engineering process. The feasibility of the 

process was proved by the experiment, since the goal of reconstructing several models of the Web 

Applications for documenting both their structure and their behaviour was achieved with respect to 

applications with different characteristics, ranging from Class 1 static applications, to Class 3 

dynamic ones.  
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As to the effectiveness, both the adequacy of the reverse engineering results and the efficiency 

of the reverse engineering process were assessed.  

As regards adequacy, the recovered diagrams were submitted to the judgement of software 

engineers who were expert in Web Application development and maintenance, in order to assess 

whether the diagrams described the applications correctly or not. The experts decided the models 

correctly described both the functional requirements and the structure of the analysed Web 

Applications, so it is possible to conclude that the proposed approach is adequate. 

As to the efficiency of the reverse engineering process, the distribution of the effort required to 

carry out some steps of the process was evaluated. Table 7.4 lists the effort (in man hours) taken by 

the experimenters to accomplish the tasks of static analysis, dynamic analysis, automatic clustering 

and clustering validation, for each application analysed.  

Of course, as data in Table 7.4 confirm, the most expensive steps are those requiring human 

intervention (e.g., dynamic analysis and clustering validation) to analyse and understand the 

meaning and the behaviour of Web Application items. However, in no case was the human effort 

required considered to be unacceptable by the experimenters, so it is possible to conclude that the 

process was also efficient. 

 

Table 7.4: Effort data and computational times from the reverse engineering experiments 

Task WA1 WA2 WA3 WA4 WA5 WA6 

Static analysis (seconds) 14 52 19 30 22 62 

Dynamic analysis (man hours) 1 6 4 0.5 2 0.25  

Automatic clustering (seconds) 2 6 2 1 3 412 

Clustering validation (man hours) 10 16 6 5 5 18 

 

In addition, by observing and analysing the activities carried out by the experimenters during 

the most expensive steps, it was possible identify some features that may negatively affect the 

analysability of a Web Application. Consequently, some desirable features were identified that 

programmers should include in the code to facilitate some analysis or comprehension tasks  (carried 

out both manually or automatically).  

Some of the difficulties the experimenters encountered were due to Web Application items that 

are dynamically produced during execution of the application. The analysability of the applications 

increases when links to Web Pages are explicitly declared in the source code, rather than 

dynamically generated, since the latter can be resolved only by an expensive dynamic analysis. 
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Therefore, the use of static links, rather than dynamic ones, in the code of Web Applications, each 

time it is possible, should be preferred. 

Another difficulty that negatively affected comprehension and validation of the clusters was the 

task of understanding the actual role of hyperlinks in Web Applications, distinguishing navigational 

links from semantic links implementing a functional dependence between Web Application items. 

Therefore, it was recognized that some annotation in the code explicitly describing the role of the 

link would be useful. As an example, the HTML language provides the ‘name’ attribute for the 

‘anchor’ tag implementing hyperlinks, that may be used to specify whether a link is a navigational 

(cross or back) link or a semantic link. Figure 7.2 shows a fragment of HTML code including 

examples of anchors described with the ‘name’ attribute. In the example, the ‘name’ attributes with 

values ‘crossA’ and ‘crossC’ show that the first two anchor tags implement navigational links for 

reaching the HTML pages ‘A.html’ and ‘C.html’ directly by a shortcut. The third ‘name’ attribute 

with the value ‘backHome’ indicates that this anchor tag implements a shortcut to the Home page. 

The last anchor tags do not include the ‘name’ attribute, and therefore implement a semantic link. 

 

……….. 
<title> Argument B </title> 
… 
<a href=“A.html” name=crossA > Argument A </a> 
<a href=“C.html” name=crossC > Argument C </a> 
<a href=“index.html” name=backHome > Home Page </a> 
 
<a href=“B1.html”> Argument B.1 </a> 
<a href=“B2.html”> Argument B.2 </a> 
……… 

Figure 7.2: An example of HTML code including ‘named’ links 
 

In addition, using a suitable internal documentation standard to annotate each main entity of the 

Web Application would be another desirable programming practice, which would ease the 

comprehension tasks. As an example, a brief description of the page meaning/behaviour, its 

input/output data, and its interconnections with other Web Application components should be 

introduced as a formatted comment in the page, as shown in Figure 7.3. This information could be 

automatically captured by a static analyser, and provided to support any Concept Assignment 

Process involving that page. 

Of course, the experimenters also recognised that code analysis tasks were simplified when each 

file of the application was associated with a self-explanatory name, instead of a cryptic and 

anonymous one. 
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<%@ Language=VBScript %> 
<% Option Explicit  
%> 
<HTML> 
<HEAD> 
<TITLE> check </TITLE> 
………….. 
<META NAME="Purpose" CONTENT="This page checks Login and Password of a Teacher, then 
it redirects to Teacher Home Page"> 
<META NAME = "Incoming Links from Pages:" CONTENT = "/autenticazionedocente.html"> 
<META NAME = "Outgoing Links to Pages:" CONTENT = "/autenticazionedocente.html, 
/areadocente.html"> 
<META NAME="Input Parameters" CONTENT="login,password"> 
<META NAME="Output Parameters" CONTENT=""> 
<META NAME = "Session Variables" CONTENT = "loginOK, matricola"> 
<META NAME="Included Modules" CONTENT=""> 
<META NAME="Database" CONTENT="../basedatisito.mdb"> 
<META NAME="Images" CONTENT="bgmain.gif"> 
</HEAD> 
 
<BODY> 
…………….. 

Figure 7.3: An example of a web page with commented lines providing internal 
documentation 

 

Finally, the experimental results demonstrated the feasibility and effectiveness of the process for 

reverse engineering Web Applications with different characteristics, including both purely static 

Web Applications, and Web Applications with dynamic elements. Of course, the validity of such 

experimental results is limited by the reduced number of applications considered, and the reduced 

number of process variables observed during the experiment (i.e., adequacy and efficiency). Further 

experimentation is, therefore, required in order to extend the validity of the experiment, by 

investigating further research issues. 
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Chapter 8: Abstraction of Business Level Diagrams 
 

In this chapter a method to recover UML diagrams at business level of a Web Application is 

described. Heuristic algorithms and methodologies to recover business level class diagrams, use 

case diagrams and sequence diagrams are proposed. The results of the experimentation of the 

method on a medium sized Web Application are reported.  

 

8.1 Introduction 

In the previous chapter, methods and techniques to recover diagrams representing the structural 

view of a Web Application have been proposed and described and the results of a validation 

experiment involving them have been reported. These representations are very useful supports to 

carry out a maintenance intervention with a limited impact on the application, but they are less 

useful in the case of a maintenance intervention involving a wider set of Web Application 

components, such as a reengineering intervention or a migration. If these tasks must be faced, more 

abstract representations may be needed.  

Business level UML diagrams are typical products of the high-level development phase of a 

software system. They describe conceptual components (business objects) from the domain of the 

problem addressed by the application, their mutual relationships and the basic functionalities the 

system must provide.  

In literature, approaches extracting business level object oriented models from procedural 

legacy systems have been used to migrate the systems towards object-oriented platforms with the 

support of wrapping technologies [Del97]. Moreover, objects from an object-oriented conceptual 

model have proved useful to support a systematic reuse, since each validated object represents a 

reusable component that can be integrated in the production of new systems [Can96].  

Further works in literature, addressing the recover of objects and object oriented models from 

traditional software are described in [Can96], [Cim99], [Gal95], [Geo96], [Liu90], [Liv94], 

[New95] and [Yeh95].  

Defining and validating similar approaches in the context of Web Applications represent a 

relevant research issue. The abstraction of business level diagrams of a Web Application is a very 

difficult and expensive task. In particular, scripting languages used to implement Web Applications 

are object-based languages, instead of effective object orient languages. So, the abstraction of object 

oriented business level class diagrams is difficult. 
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In this chapter a method to abstract business level UML class diagrams, use case diagram and 

sequence diagrams is described. This method needs information extracted by the tool WARE (cfr. 

Chapter 6). 

 

8.2 Recovering Business Level Class Diagrams 

In this chapter a method that is similar to the one proposed in the context of traditional software 

in [Del97] and [Dil00] is described. That method is based on a Reverse Engineering process 

including three main steps: 

- Identification of candidate classes and their attributes; 

- Association of methods to candidate classes; 

- Identification of relationships between classes. 

In the following the terms class and object are used as synonyms. In traditional software, the 

identification of the candidate objects and of their attributes is made by looking for groups of 

logically related data making up the state of objects. This search is usually based on those language 

mechanisms that allow groups of related data implementing a relevant concept, either from the 

domain of the application or from domain of the solution, to be defined in the code. These 

mechanisms include those for the definition and use of data structures such as records, user data 

types, and table schemas in databases. Moreover, the identification of object operations, i.e., 

methods, is centred on suitable pieces of code (such as programs, subroutines, slices) that can be 

associated with the candidate objects according to specific coupling criteria. Finally, specific 

heuristic criteria, such as those defined in [Dil00], can be used to define the relationships between 

objects.  

Several questions have to be addressed when trying to use these methods in the Web 

Application context.  

The first problem regards the identification of objects and objects’ attributes in a Web 

Application, since the selection of the mechanisms that are generally used for implementing groups 

of related data is not obvious for Web Applications. Most web technologies and languages (such as 

HTML, ASP, PHP, VBS, JSP, etc.) provide syntactic constructs for declaring data groups like 

RecordSets, or Collections, or Classes, but some of them are not used frequently. Moreover, since a 

Web Application is usually implemented as a multi-tier system, with a database server 

implementing one tier of the architecture, a simple Web Application code analysis may not allow 

the identification of the persistent data stores and of the data store schemas. In this case, indeed, 

such data store descriptions may be deployed on a different tier of the application, and may be 
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inaccessible, such as in the case of a Web Application that makes the services of an existing 

information system available on the net, implementing the front-end of the system. 

A second question with Web Applications regards the identification of the chunks of code 

implementing the object methods, since the pieces of code that are usually considered for traditional 

software (e.g., programs, subroutines, slices, etc.) may not be meaningful for Web Applications. In 

this case, possible functional units to be considered should include web pages, script blocks inside a 

page, functions in a page, depending on the requested degree of granularity. Moreover, appropriate 

criteria for electing these chunks of code to object methods and associating them with the correct 

object should be accurately defined, as well as suitable rules for defining the possible relationships 

between the recovered objects should be defined.  

 In the following subsections, a technique to overcome these problems is proposed. 

8.2.1 Identifying candidate classes and their attributes 

A method identifying candidate classes from a Web Application is proposed. This method 

includes two steps. The first step comprises the identification of relevant groups of data items from 

the Web Application code; in the second step, an automatic procedure is executed to define the 

candidate classes from the list of groups identified in the previous step. 

The elements of interest for identifying the attributes of candidate classes in a Web Application 

are groups of data items that are involved in the same user input/output operation (such as data 

displayed in input/output HTML forms, or HTML tables), or in the same read/write operation on a 

data store (such as an ASP Recordset, or an array of heterogeneous data in PhP language), or the 

data set involved in a database query operation. In addition, data groups that are passed throw 

distinct pages or instances of Classes used in the pages are taken into account. 

The rationale behind this choice is that the set of data items that a user inputs by an input form, 

or that are shown to a user by an output form, usually represents concepts of interest for the user in 

the domain of the application. Analogously, data items that are read from, or written to a persistent 

data store may be representative of meaningful concepts of the business domain.  

In a preliminary step of the process, a static analysis of the Web Application source code is 

required for retrieving these data groups and their references in the code. Each data item of each 

group is associated with the identifier used to reference it in the code.  

Therefore, the items from the groups are submitted to a refinement step aiming at solving the 

problems of synonyms (i.e., identifiers with different names but the same meaning) and homonyms 

(i.e., identifiers with the same names but different meanings). Synonym identifiers must be assigned 

with the same unique identifier. Homonym identifiers must be associated with distinct names. In 

addition, while carrying out synonyms & homonyms analysis a meaningful name, synthesizing the 
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meaning of the data according to the rules of the business domain, is assigned to each data item. Of 

course, both the definition of the names, and synonyms and homonyms analysis are based on code 

reading and inspection of available documentation and are human intensive tasks. 

At this point, each data group may be considered as the attributes of a potential class and a 

validation should be carried out for distinguishing valid business classes, i.e. classes actually 

associated with a concept from the business domain, from invalid ones. This validation is usually 

accomplished manually.  

In order to reduce the effort required by this analysis, the method exploits an automatic 

procedure that analyses the data groups in order to identify the ones that are more likely to represent 

meaningful classes. Only the selected data groups are, therefore, submitted to the validation 

process. This procedure, called Produce_Candidate_Objects, is based on heuristic criteria and is 

illustrated in Figure 8.1, where: 

 

- GList is the list of data groups;  

- g is the generic group in the GList; 

- Card(g) is the cardinality of the g group; 

- Nref(g) is the number of references to the g group;  

- a is a generic data item in g; 

- CAND is the list of candidate objects; 

- C is a generic candidate object from CAND; 

- SORT (A, K) is a function for sorting the list A according to the criteria described in K; 

- TOP(A) is a function for accessing the top element of a list A; 

- REMOVE(A, x) is a procedure for removing an item x from the list A; 

- INSERT(A, x) is a procedure for inserting the item x in the list A; 

- ADD(C, h) is the procedure for adding all the item of a group h in the C group. 

 

The procedure Produce_Candidate_Objects analyses the input list Glist of data groups and 

produces the output list CAND of candidate classes.  

The first heuristic rule implemented by this procedure states that the more the references of a 

same data group in the code, the greater the likelihood that it represents a meaningful concept. The 

second heuristic rule establishes that groups with a small size may represent more simple and 

atomic concepts than larger groups, and larger groups may represent more complex concepts made 

up of joined smaller groups.  
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According to these two rules, groups from the Glist are preliminarily arranged in descending 

order with the number of references of each g group, and in ascending order with the cardinality of 

each group. This order is produced by the procedure SORT whose output consists of the ordered list 

‘OrdList’ of data groups.  

 
Procedure Produce_Candidate_Objects (in: GList; out: CAND); 
 
BEGIN 
OrdList = SORT (Glist, Descending on Nref(g)AND Ascending on Card(g) );  
CAND = ∅;  
WHILE (OrdList ≠ ∅ OR (∪i a ∈ Ci ≡ ∪i a ∈ gi ))DO 
 h=TOP(OrdList); 
 IF (∃   a∈h: a∉C ∀ C ∈CAND) THEN 
  IF (!∃ C∈CAND: C ⊆  h THEN  
   INSERT(CAND, h) 
 ELSE 
   ∀ Ci ∈ CAND: Ci ⊆ h DO 
    BEGIN 
    k = h - ∪i Ci; 
    ADD(C, k); 
    END 
  END IF 
 END IF 
 REMOVE (OrdList, g); 
END WHILE 
END 

Figure 8.1: The procedure generating the list of candidate objects 
 

Starting from the top group in OrdList, the procedure analyses each group and, if a group 

comprises at least a new data item not yet included in any other group in CAND, it is inserted in the 

CAND list of candidate objects. OrdList is examined until it includes at least a group, or until the 

union set of all the data items of the candidate objects in CAND and the union set of all the data 

items of the groups in Glist are equal. 

When a group h from OrdList includes all the data items making up one or more groups Ci in 

CAND, only the k data items in h that are not yet included in any group of CAND are added to the 

Ci groups whose elements are all included in h. The reason is that the group h is likely to represent a 

composite concept produced by a logical link among the Ci groups. The attributes that are added to 

the Ci groups are necessary to record this link, which is used to deduce relationships between 

objects, according to the method proposed in Section 8.2.3. 

As an example of this case consists in a data group associated with a report showing information 

about some distinct objects of the application domain. 

At the end of the procedure, the CAND list will include the set of data groups that have been 

selected as candidate objects. Each group in the CAND list will have to be assigned with a 

meaningful name describing the concept it represents. The data items of each group will make up 
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the attributes of the object, e.g., its state. The attributes that appear in more than one candidate 

object are analysed in a successive step according to the method presented in the next Section 8.2.3. 

For the sake of precision, CAND is the set of candidate classes from which business objects can 

be instantiated.  

As an example of the application of the proposed method, let’s consider the following OrdList: 

 

OrdList = {G1=(a,b,c), G2=(d,e,f), G3=(a,b,c,d,e,f,g), G4=(a,b,c,m,n), G5=(a,b,q,r), G6=(d,f,s,t,u)} 

 

The final CAND list will contain the following groups of candidate business objects: 

 

CAND = {(G1,m,n,g), (G2,g), G5, G6}. 

 

8.2.2 Associating methods to classes 

The identification of methods to be associated with classes essentially depends on two factors: 

the degree of granularity of the chunks of code to be considered as potential methods, and the 

definition of a criterion for assigning a potential method to a class.  

In a Web Application the search for class methods can be centred on chunks of code with fine 

granularity levels, such as inner page components like scripts or modules included in pages, or on 

coarse-grained components, like pages or groups of pages. Finer the granularity level, greater is the 

effort required for extracting the component from the code, and reengineering it as an object 

method. 

The technique proposes to consider physical Web pages (e.g., Server pages, Client pages) as 

potential methods to be associated with the candidate objects of the Web Application, rather than 

inner page components. This choice allows a reduction of the effort required for the object oriented 

reengineering of the Web Application. 

As to the problem of defining a criterion for associating methods to objects, a technique that 

aims to minimize the coupling between distinct objects is adopted.  

Measures of coupling between pages and objects are computed based on the accesses of pages 

to the candidate object. A page accesses a candidate object when it includes instructions that define 

or use the value of some object attribute. It is assumed that accesses made to define the value of 

some object attributes produce a greater coupling than accesses made to use some object attributes. 

Therefore, minimization of the coupling between objects is achieved by associating each page to 

the object it is most highly coupled with. In particular, if a page accesses exclusively one object, it 

is assigned as a method of that object. If a page accesses more objects, it is assigned to the object it 
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accesses prevalently. In this second case, the accesses of the page to the other objects can be 

considered as messages exchanged from the object the page has been assigned with, to the other 

objects. 

To implement the criterion for associating pages to objects, the following definitions are 

introduced: 

 

- M={mi}, is the set of pages (e.g., potential object methods - in the following the terms page 

and method are used as synonyms); 

- c is the generic element from the CAND list of candidate objects; 

- αdef is a positive number expressing a weight associated with each define access made to an 

object; 

- ause is a positive number expressing a weight associated with each use access made to an 

object; 

- αdef  > αuse ; 

- Ndef,m,c is the number of accesses of type define made by a page m to the object c; 

- Nuse,m,c is the number of accesses of type use made by a page m to the object c. 

 

Moreover, the function Acc(m, c) that expresses the weighted number of accesses made by m to 

c is defined as: 

 

Acc (m, c)=  αdef * Ndef,m,c + αuse * Nuse,m,c            (1) 

 

Said MAX [X] a function that returns the maximum value from a set X of values, the following 

criterion is used to assign a method m to a class c:  

m is assigned to c ∈ CAND ⇔ Acc(m , c) = MAX cj ∈ CAND [Acc(m , cj)]          (2) 

 

that is, the page m is assigned, as a method, to the class c iff c is the class such that the number 

of weighted accesses made by the page m to c is greater than all the other weighted accesses m 

makes to other classes.  

When the criterion (2) is satisfied by two or more classes, the intervention of a software 

engineer is required to establish the correct assignment of m with one of the classes.  

Pages that do not make access to any objects are considered as coordinating modules controlling 

the executions of other methods (in a Web Application this page usually corresponds to home 

pages, or pages that address the user navigation along the Web Application). 
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8.2.3 Identifying relationships between classes 

The candidate classes in the CAND list may include common attributes: these attributes will 

indicate potential relationships among the involved classes. These relationships are depicted as 

UML association relationships. 

For each set of classes having common attributes, a UML association is established between 

them. Each common attribute is assigned just to one class of the set, and all these classes are linked 

by an association relationship. The software engineer intervention is required to establish the correct 

assignment of the attributes to the object.  

The case of pages accessing more than one class will originate additional relationships. More 

precisely, the accessing page is assigned with the object it is most highly coupled with, according to 

the criterion (2), while a relationship is defined between the class the page is assigned to, and each 

remaining class the page accesses. Also this kind of relationships is depicted as UML association 

relationships. 

In a successive refinement step, the recovered association relationships may be analysed in 

order to assess whether a class with specialization or any aggregation/composition relationship can 

substitute them. 

Finally, a UML Class diagram will represent the recovered classes, their attributes and methods, 

and the relationships among them. 

 

8.3. Recovering UML Use Case and Sequence diagrams 

The Reverse Engineering methods proposed for recovering use cases and sequence diagrams 

from the code of a Web Application are presented in the following.  

8.3.1 Recovering Use Case Diagrams 

The problem of recovering use cases from the source code of a Web Application is solved on 

the basis of the results obtained with the clustering approach presented in chapter 5. That approach 

provided a set of clusters validated by an expert. The expert has to identify the user functionality 

each cluster is responsible for. As introduced in chapter 5, this task is a human intensive task, 

because it needs a comprehension of the semantic of the components of the Web Application under 

analysis. However, approaches to recover, automatically, information about the semantic of these 

components has been proposed and described in the following chapters. 
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Groups of validated clusters can be associated with potential use cases of the Web Application, 

and a use case model can be reconstructed for describing the external behaviour offered by the 

application to the end users. 

In order to obtain a Use Case Diagram, relationships among use cases may be deduced 

analysing the links between corresponding clusters (this functionality is also supported by the tool 

WARE: cfr. Figure 6.9). As an example, if a cluster associated with a use case ‘A’ is linked to just 

another cluster associated with the use case ‘B’, a candidate <<include>> relationship from use case 

‘A’ to use case ‘B’ may be proposed; if a cluster is linked to more other clusters, a possible 

<<extend>> relationship among the use case corresponding to the former cluster and the remaining 

ones may have to be considered. However, these indications provide the reverse engineer just with 

simple suggestions about how use case diagrams can be drawn. Finally, actors in the Use Case 

diagram are linked to use cases associated to clusters including any page requiring data input from a 

user (e.g., Web pages including forms), or database connections. 

 

8.3.2 Recovering Sequence Diagrams 

As to the UML Sequence diagrams abstraction, for each use case (i.e., validated cluster) it is 

possible to produce a Sequence Diagram whose objects will derive from classes associated with 

cluster’s pages, while interactions among objects are deduced from the accesses that a page 

assigned as a method to a given Class makes to other Classes. 

A process, based on heuristic criteria, obtains the recovering of a sequence diagram. This 

process includes the following steps: 

- Draw a sequence diagram for each identified use case; 

- Identify the pages composing the cluster (or group of clusters) associated to a use case; 

- For each page in the cluster, identify the class which the page was assigned to as a method: 

for each identified class put an object in the diagram; 

- If a page assigned to an object of the Class A makes accesses to other objects of the Classes 

Bi, draw an interaction between the object of A and each object of Bi; 

- Assign each interaction with a meaningful name (corresponding to the name of the invoked 

method) and define the list of parameters exchanged between the objects (deduced by analysing the 

data flow between the Web Application interconnected items); 

- Draw an interaction between an object and an actor if that object was assigned to a page 

including input or output forms;  
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- If there is a relation between pages assigned to the same class, it is considered as a call 

between methods of the same Class, and therefore a 'Message to self' is drawn on the object life-

line. 

According to the UML notation, in a Sequence Diagram the correct temporal sequence of the 

events (e.g., interactions between objects) can be deduced by reading the flow of interactions from 

upside to downside in the diagram. In the recovered Sequence Diagrams, this temporal sequence 

may be reconstructed by statically analysing the control flow in the source code. As a preliminary 

result, the temporal sequence may correspond to the lexicographic statement sequence. Therefore, 

dynamic analysis can be used to refine the statically defined temporal sequence. 

8.4. A case study 

In order to assess the effectiveness of the proposed techniques, several controlled experiments 

were carried out involving some real-world Web Applications. An example of these experiments is 

shown in this section, where the results obtained in a case study are presented and discussed.  

In the case study, the Web Application, designed to support the activities of undergraduate 

courses offered by a Computer Science Department analysed in Chapter 6, has been considered. 

During the first step of the recovery process, the code was analysed for identifying data groups, 

according to the method presented in Section 8.2.1. Groups of data items involved in I/O forms, in 

read/write operations on persistent data stores, and so on, were looked for, and the number of their 

occurrences in the code was evaluated. The WARE tool (cfr, Chapter 6), that statically analyses the 

source code of Web Applications, was used to support this task. The analysis retrieved 128 

references to data groups including a total of 485 data items.  

Therefore, synonyms/homonyms analysis was carried out and each data item was assigned with 

a meaningful name. This task was accomplished by reading and inspecting the code, and analysing 

the Web Application during its execution. At the end of synonyms/homonyms analysis, just 43 

different data groups including a total of 26 different data items were defined.  

These data groups were submitted to the candidature procedure Produce_Candidate_Objects 

that automatically selected 8 candidate classes, including a total of 38 attributes (of course just 26 

were different attributes). The candidate classes are listed in Table 8.1, where the set of attributes of 

each class is reported. Some candidate classes presented common attributes that were exploited to 

identify the relationships among the classes in the third step of the process. 

In the second step of the process, the accesses each page made to the candidate classes were 

analysed. Twenty pages that did not reference any data group were detected, since they had only 

presentational or navigational purposes. 
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The remaining pages were assigned as methods of the candidate classes according to the method 

described in section 8.2.2. More precisely, for each page the function Acc(m,c) was computed with 

respect to all the accesses to all the classes the page made, and each page was assigned to a class 

according to the criterion (2) in section 8.2.2.  

For evaluating the function Acc(m,c), different values had to be defined for the αDEF and αUSE 

weights. During the experiments carried out with different Web Applications, several values for 

αDEF and αUSE were tried in order to detect the ones that produced the best results (i.e., the best 

assignment of methods to classes, according to the judgment of an expert). The best results were 

achieved for αDEF = 1 and αUSE = 0.6, and this couple of values were used in the case study too.  

 

Table 8.1: Candidate classes produced by the Candidature Procedure 

Candidate classes and corresponding attributes 
Student  (Student name, Student surname, Student code, Student email, Student phone 

number, Student password) 
Teacher  (Teacher name, Teacher surname, Teacher email, Teacher phone number, 

Teacher password, Teacher code) 
Exam Session  (Exam date, Exam time, Exam classroom) 
Tutoring  (Tutoring date, Tutoring start time, Tutoring end time, Course code, Course 

name) 
Course  (Course code, Course name, Course academic year) 
Tutoring Request  (Student name, Student surname, Student code, Tutoring request date) 
News  (Course code, News text, News number, News date, Teacher code) 
Exam 
Reservation 

 (Student code, Student name, Student surname, Course code, Exam date, Exam 
reservation date) 

 

In the third step of the process, associations between classes had to be defined. In a preliminary 

phase, candidate classes were examined in order to find classes with common attributes. This task 

was carried out with the support of an automatic procedure. 

For each set of classes including a same attribute, an association between these classes was 

established, and each common attribute was assigned to the class that was better characterized by 

that attribute, depending on the experimenter’s judgment.  

Other relationships between classes were defined on the basis of accesses to the attributes of 

other classes that were made by a method assigned to a given class. A relationship was established 

between the class the method was assigned to, and the remaining classes whose attributes were 

referenced by this method. 

Figure 8.2 shows the UML class diagram representing the resulting business object model of the 

Web Application, while Table 8.2 reports the list of the Web Application pages assigned as 

methods to each identified class.  



  - 78 -

 

Figure 8.2: UML class diagram representing the resulting business object model of the Web 
Application 
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Table 8.2: Web Pages implementing Class methods  

Class Web Application pages assigned as Class methods 
Student chiediPass.html, cancellareg1.asp, cancellareg2.asp, visualizzareg2.asp, 

prenotatiapp3.asp, FormCancPreRicevimento.asp, PreRicev3.asp, iscrivicorsi.asp, 
regstudente.asp, regstudente.html, autenticazionestudente.asp, checkStudente.asp, 
modificaiscriz2.asp, modificastud.asp, modificastud2.asp 

Teacher autenticazionedocente.html, check.asp, registradoccorso.html, registradocente.asp, 
eliminadoc.asp,  eliminadoc2.asp, FormPreRicevimento.asp, modificadoc.asp, 
modificadoc2.asp 

Exam 
Session 

listaappelli2.asp, listaappellistud.asp, cancellaapp2.asp, cancellaapp3.asp, 
prenotatiapp2.asp, modappello2.asp, modappello3.asp, modappello4.asp, 
prenotaesame2.asp, prenotaesame3.asp, prenotaesame4.asp, insappello.asp, 
insappello3.asp 

Tutoring CancPreRic.asp, CancRic.asp, CancRic2.asp, FormCancRicevimento.asp, 
FormPreRicev2.asp, FormModRicevimento.asp, ModRic.asp, ModRic2.asp, 
VisListaRic.asp, VisPreRic.asp, FormInsRicevimento.asp, insRicevimento.asp 

Course aggiungicorso.asp, aggiungicorso.html, listaappelli.asp, visualizzaapp.asp, 
FormVisBacheca.asp, FormCancAvviso.asp, cancellaapp.asp, cancellacorso.asp, 
cancellacorso2.asp, cancellareg.asp, visualizzareg.asp, prenotatiapp.asp, 
FormVisPreRicev.asp, sceltacorsi.asp, modappello.asp, prenotaesame.asp, 
modificadcnz.asp, modificadcnz2.asp, modificaiscriz.asp, insAvviso.html, 
regcorso.asp, registracorso.html. 

Tutoring 
request 

- 

News VisBacheca.asp, CancAvviso.asp, DelAvvisi.asp, modappmsg.html, 
modappmsg1.asp, FormInsAvviso.asp, insAvviso.asp 

Exam reserv. - 
 

In order to abstract the use cases of the application, the clustering method proposed in Chapter 5 

was applied. As a result of the automatic clustering, 44 valid clusters were recovered that were 

submitted to a validation step. Table 8.3 reports the list of validated clusters. 

The validated clusters were initially associated to use cases and a top use case diagram was 

produced. Figure 8.3 reports an excerpt of this diagram, showing the <<extend>> and <<include>> 

relationships between use cases that have been deduced using the criteria proposed in Section 8.3.1.  

For each of these use cases, a Sequence Diagram was drawn.  

As an example of these diagrams, Figure 8.4 reports the one derived for the use case ‘Course 

insertion’, that inserts in the database a new Course taught by a given teacher. The cluster 

corresponding to this use case includes two pages: the client page ‘aggiungicorso.html’ and the 

server page ‘aggiungicorso.asp’, both assigned to the object Course. The former page includes a 

form requiring input of data by a user, therefore an interaction of this page with an actor was drawn. 

The page ‘aggiungicorso.html’ does not refer to any other object, but is linked to the page 

‘aggiungicorso.asp’ by a submit operation: this was modeled in the sequence diagram by the self-

interactions on the Course object. The page ‘aggiungicorso.asp’ makes a reference to some 
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attributes of the object Teacher, then an interaction between the Course and Teacher object was also 

drawn. 

 

Table 8.3: Validated clusters with their descriptions 
Cluster Id. Description 

1 Home page  
2 Teacher login  
3 Teachers function menu 
4 Teacher area entry point 
5 Teacher area frameset 
6 Tutoring date insertion (available to teachers) 
7 Tutoring date deletion (available to teachers) 
8 Tutoring area entry point (available to teachers) 
9 List of registered students for tutoring  (available to teachers) 

10 Teacher registration 
11 Assign a course to a teacher 
12 Teacher data deletion 
13 Undergraduate course insertion 
14 Teacher and course data update 
15 Teacher and course management area entry point (available to teachers)  
16 Course deletion (available to teachers) 
17 Student data deletion (available to teachers) 
18 Students enrollment area entry point (available to teachers) 
19 List of enrolled students display 
20 Exam schedule modification 
21 Insertion of a new date in the exam schedule 
22 Deletion of a date from the exam schedule 
23 List of students registered to an exam (available to teachers) 
24 Exam schedule area entry point (available to teachers) 
25 Exam schedule list display (available to teacher) 
26 Bulletin board area entry point 
27 List the news in the bulletin board 
28 News insertion in the bulletin board 
29 News deletion from bulletin board 
30 Students area entry point 
31 Lost password request (available to students) 
32 Student Enrollment Area entry point 
33 Student data update (available to students) 
34 Student course enrollment  
35 Exam area entry point (available to students)  
36 Exam schedule listing (available to students) 
37 Register a student to an exam 
38 Tutoring request area entry point (available to students)  
39 Tutoring requests insertion (available to students) 
40 Tutoring date deletion (available to students) 
41 Tutoring date update (available to teachers) 
42 Utility module ‘adovbs.inc’ 
43 Obsolete functionality (old version of  Insertion of a new date in the exam schedule) 
44 Work in progress page for not yet implemented functionalities  
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Figure 8.3: An excerpt of the Use Case diagram recovered from the Web Application 
 

 

 

Figure 8.4: The UML sequence diagram representing the interactions for the use case ‘Course 
insertion’ 
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All the recovered diagrams were validated by submitting them to the judgment of the software 

engineers that had developed the Web Application. These diagrams were compared against the 

original diagrams designed by the software engineers: no substantial differences were found 

between the recovered diagrams and the original ones.  

It was concluded that the recovered diagrams represented the same concepts and the differences 

with the original ones were mainly due to implementation details. Similar results were obtained in 

the other experiments that have been carried out: these results showed us the effectiveness of the 

method. 

Further details about the methods and the techniques presented in this chapter can be found in  

[Dil03] and [Dil03b]. 

 

8.5 Future Works 

In future work, the definition of criteria for a further automation of the model reconstruction 

will be addressed, as well as the investigation on possible approaches for identifying UML 

aggregation, composition, or generalization-specialization relationships between classes will be 

carried out. A wider experimentation involving more complex Web Applications, implemented with 

different technologies, will be moreover carried out, in order to extend the validity of the proposed 

approaches. 
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Chapter 9: Concept Assignment for client pages 
 

In this chapter, a method providing automatic support in the assignment of concepts to Web 

documents is presented. This method is based on Information Retrieval principles. Descriptions of 

the heuristic algorithms defined and of the tool realized to support the method are provided in this 

chapter with the results of some experiments carried out to validate it. 

 

9.1 Introduction 

The recovering of semantic information about the functionality realized by the components of a 

Web Application cannot be addressed only analysing the structural information of its components 

(i.e. Web pages, server and client script modules, etc.). In the experiment presented in the previous 

chapters, human expert, without any automatic support, has addressed this task, and the effort of 

clustering validation and concept assignment was the most expensive step of the Reverse 

Engineering process (cfr. Table 7.4). So, in the following chapters techniques to recover, 

automatically, information about the semantic of the components of a Web Application are 

proposed. 

In this chapter the textual information contained in these artefacts are analysed, with the aim to 

propose a concept describing the contents of a client page.  

The term concept assignment was introduced by Biggerstaff et al. [Big93] to describe the 

problem of assigning a synthetic description regarding the computational intent of segments of 

source code. A concept was defined as a description at a higher level of abstraction than the source 

code. Several approaches to provide automatic support to the concept assignment process have been 

proposed for traditional (i.e. not web based) applications, such as the one described in [Gol01] 

where a hypothesis-based concept assignment method for COBOL programs is proposed.  

Differently from traditional software applications, web based applications are characterised by a 

large amount of textual information contained in the pages making up them; usually, this 

information is displayed in the pages forming the user interface to improve the usability of the 

application by describing possible uses of the application, available user functions, arguments 

discussed in the page and so on. Moreover, special edit formatting (as bold, italics, underlined 

characters) is usually used to highlight some piece of the displayed text related to the most relevant 

information contained in the page. 
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Both the text contained in the web pages, and the editing format used to display it, are a relevant 

source of information that can be used in a concept assignment process involving a Web 

Application. This method is exploited to automatically support the identification of concepts to be 

associated with artifacts recovered by reverse engineering the Web Application. The motivation of 

this choice is based on the fundamental hypothesis that the concept to assign to a web page 

displayed to a user is contained inside the text of the page itself.  

There are several solutions described in the literature to the problem of obtaining a synthetic 

description of a given text document. In particular, Information Retrieval (IR) methods are based on 

the analysis and elaboration of the textual content of the document in order to be able to extract few 

relevant terms allowing the classification (i.e. a synthetic description) of the document. These IR 

methods may be classified with respect to the granularity of the analysed piece of text. Some 

methods consist of the analysis of each word of the document, determining an array of terms 

[Har92] on which some appropriate elaborations are made to identify the terms usable to classify 

the document. Some other methods consist of the analysis of single words and bi-grams (sequence 

of two consecutive words in the text) [Ton03]. These methods may be useful to find index words 

for a document, or to evaluate the statistic similitude between two documents.  

 

9.2 A specialized conceptual model describing a Web Application 

A conceptual model describing the components of a Web Application and the relationships 

among them has already been reported in Chapter 3. In that model the attention was focused on the 

structural aspects of a Web Application. In this chapter the part of the conceptual model describing 

the textual content of the Web Application is focused. 

Web pages contain the information to be shown/provided to/from a user, being the information 

made up by text, images, multimedia objects, etc., embedded in the page itself, or retrieved/stored 

from/in a file or database. Thus, in a Web page, it is possible to distinguish a control component 

(i.e., the set of items - such as the HTML code, scripts and applets - determining the page layout, 

business rule processing, and event management) and a data component (i.e., the set of items - such 

as text, images, multimedia objects - determining the information to be read/displayed from/to a 

user).  

In particular, just the HTML code is considered as the control component while for the data 

component are considered the pieces of text, i.e. any sequence of words included by two HTML 

tags, that are displayed to a user using the text formatting defined by the HTML tags.  
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Of course, a HTML tag in the Control Component may be nested into another one, as well as a 

tag may have a list of attributes.  Moreover, a word may have synonyms and may derive from a 

stem (e.g. the masculine form of a word is the stem of a feminine one, the singular form of a word is 

the stem of a plural word, the infinite tense of a verb is the stem of any other tense, and so on); in 

addition a word may be a stopword, i.e. a word (such as articles, conjunctions, prepositions, 

exclamations, pronouns) that does not provide any significant contribution to the meaning of the 

sentence it belongs to. 

Each piece of text from a page is characterised by its meaning and, therefore, can be associated 

with a concept. Analogously, a Web page can be associated with a concept describing its meaning: 

this concept can be selected from all the concepts associated with the pieces of text included in the 

page. 

These aspects of a Web page are represented by the UML class diagram shown in Figure 9.1, 

providing the conceptual model of a Web Application considered in the remaining part of this 

chapter. 

 

9.3 Identifying the Concepts  

The identification of the concept to assign to a Web page is based on the following hypotheses: 

• Client Pages are used to allow the interaction of the users with the Web Application;  

• Client Pages contain textual information to communicate the aim/scope/topic of the page to 

the user;  

• some special editing formats (e.g. bold, italics, underlined, character size, etc,) are used in 

the page to highlight some pieces of the text (i.e. some words) that would summarise the 

aim/scope/topic of the page;  

• the pieces of text declaring the main aim/scope/topic of the page are, usually, at the top of 

the page; 

• the text format is defined by appropriate HTML tags and attributes. 

Thus, the particular editing format and position of the text in a page represent information that 

can be exploited to identify automatically those words that may describe conceptually a page, i.e. 

the Concept to assign to a page. 
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Figure 9.1: The Web Application’s reference conceptual model 
 

 

A stepped process has been defined for accomplishing the task of assigning a concept to each 

Web page. The input data of the process are the client pages, and for each client page the following 

steps are executed: 

1) separation of the control component from the data component of the page; 

2) normalisation of the text making up the data component; each piece of normalised text is a 

candidate concept; 

3) computation of a relevance weight for each candidate concept; 

4) clustering of similar candidate concepts and computation of a weight for each cluster of 

concepts; 

5) selection, among the candidate concepts, of the concept to assign to the page. 
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9.3.1 Separating the Control Component from the Data Component  

In the first step of the process, the code of each client page is parsed with the aim of separating 

the HTML tags making up the control component from the pieces of text making up the data 

component .  

Let’s consider the following example:  

<html> 
<b>Hello World 
 <h6>I am here</h6> 
 </b> 
</html> 
 

The corresponding sequence of tags is the following:  

 

<html> <b> <h6> </h6> </b> </html> 
 

will form the control component, while the two sentences: 'Hello World’ and 'I am here’ 

will form the data component. 

Also the text making up the values of some tag attributes have to be considered, such as the 

value of the alt attribute of the IMG tag, because they could give a significant contribute to the 

definition of the page concept. 

The control and data component of each page and the relationships among them are stored into a 

repository that stores all the information about a Web Application represented by the Web 

Application’s conceptual model in Figure 9.1.  

 

9.3.2 Text Normalisation 

In this step, each piece of text belonging to a data components is analysed in order to: 

• eliminate stopwords; 

• substitute each word with its stem, when necessary; 

• resolve synonyms, by substituting each word having one or more synonyms with a reference 

synonym. 

At the end of this step, each normalised text will correspond to a candidate concept. 

The normalisation operation is needed in order to avoid that two or more text pieces including 

synonym words, or using singular/plural or masculine/feminine forms are associated with different 

concepts, while they actually represent the same concept.  
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Just as an example, let us consider the following two sentences: 

 

'At the party the actresses had on dark dresses' 

'At the reception all the actors had on black suits'. 

 

Both sentences are normalised as follows: 

 

'party actor have dark suit' 

 

since 'actor' is the stem for 'actors' and 'actresses', 'have' is the stem for 'had', 'suit' 

is the stem for 'suits' and 'dresses', and 'party', 'dark' and 'suit' are the reference 

synonyms for 'reception', 'black' and 'dress' respectively; moreover all the other words 

('at', 'the', 'all', 'on') in the two sentences are stopwords and then they will not be included in the 

normalised form. In this way, the normalised forms of the two sentences are actually associated 

with the same concept.  

The normalisation process is also needed to allow the successive step of concepts clustering to 

be carried out. 

 

9.3.3 Computation of the Concept Weights  

In this step, a weight is computed for each candidate concept (i.e. each normalised text) 

identified in a page, on the basis of both the editing format used to display the piece of text 

associated to that candidate concept, and the position of the text in the page.  

Different editing formats can be used to give more or less emphasis to text. Usually, editing 

formats such as bold, italics, underlined characters, as well as a large size characters, are used to 

give greater emphasis to text, while small size characters are used to reduce the emphasis of the 

text. 

In a client page, the text editing format is determined by the tags, and tag attributes, that enclose 

the text itself. HTML tags that provide either no emphasis, or greater emphasis, or less emphasis to 

text are distinguished by normal editing formatting.  

For example, the tags <B> and </B> are used to display the enclosed text in bold format, while 

the tags <SMALL> and </SMALL> are used to display the enclosed text with a reduced size of the 
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character. Therefore, it is possible to classify the HTML tags according to the emphasis they give to 

the text.  

Table 9.1 shows an excerpt of the HTML tags classification that has been used in the proposed 

method. The tags have been classified as: 

• Neutral, i.e. no emphasis is given to the text,  

• Medium, just a little emphasis is given to the text; 

• High, a significant emphasis is given to the text; 

• Very High, the maximum emphasis is given to the text; 

• Low, to reduce the emphasis of the text; 

• Very Low, to give the minimum of emphasis to the text. 

A weight has been associated to each class of tags; the values of the weights shown in Table 1 

are the ones that produced the best results in some experiments that have been carried out. 

Similarly, a classification and a set of weights was defined for the tag attributes.  

A particular consideration has to be done for the tag A (i.e. the tag specifying an anchor for a 

hyperlink to another page): the effect of this tag consists of highlighting the hyperlink (usually by 

underlining it), but the text associated with this tag, typically, provide a description (i.e. a concept) 

of the target page of the hyperlink, rather than a description of the page containing it.  

Since more tags may be applied to a text, their total effect on the text is given by their 

cumulative actions; as an example, the following statement: 

 
<b> <i> Hello World </i> </b> 

 

will display the sentence ' Hello World' both in bold and italic format. 

To take into account the cumulative effects of tags, the Total Weight (TW) is considered. It is 

computed as the product of the single weights of each tag involved in the cumulative set of Tags 

applied to a piece of text: 

 

 TW (TS(Ci)) = ΠT∈TS(Ci)  W (T) 

 

where TS is the set of tags cumulatively applied to the text forming the candidate concept Ci, T 

is the generic tag in TS and W(T) is the weight associated to the single tag T. 
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Table 9.1: Classification and weight of the HTML Tags 

Tag Name Class Weight
S, DEL, A, SMALL, STRIKE, ………. Very Low 0,25
KBD, H6, CITE, CODE, … ……… Low 0,5
COL, COLGROUP, COMMENT, DD, H5, DEN, DIR, EMBED, 
EM, THEAD, BUTTON, TFOOT, FIELDSET, FN, FONT, 
FRAME, FRAMESET, TEXTAREA, DIV, ADDRESS, TT, U, 
UL, VAR, WBR, XMP, SERVER, SHADOW, SIDEBAR, BODY, 
ACRONYM, BR, HTML, ……… 

Neutral 1

B, OL, DL, STRONG, MENU, MARQUEE, H3, BLINK, BIG, 
Q PRE, TH, TR, I, CENTER, CAPTION, FORM, ……… 

Medium 1,5

TITLE, H2, ……… High 2
H1 Very High 3

 

A similar computation is made for tag attributes, when they act in a cumulative way, and a Total 

Attribute Weight (TAW) is defined as the product of the weights associated to the single attributes. 

As an example, let us consider the HTML web page in Figure 9.2, where the boldface letters 

between the HTML tags would represent any text to display to a user: 

 

<title>a b c d e f</title> 
<html> 
<b>a b c d 
 <h6>x y z</h6> 
</b> 
<div>w x y</div> 
<h1>a b c d g h i j k l 
 <code>c d e f g</code> 
</h1> 
</html> 

Figure 2: An example of a HTML Page 
 

 

For the sake of brevity, the text represented by the boldface letters is considered as already 

normalised; in this case the following six candidate Concepts, named C1…C6, have been identified: 

 

C1={a,b,c,d,e,f} 

C2={a,b,c,d} 

C3={x,y,z} 

C4={w,x,y} 

C5={a,b,c,d,g,h,i,j,k,l} 

C6={c,d,e,f,g} 
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While the control component of the page is formed by the tag sequence: 

 

<title> </title> <html> <b> <h6> </h6> </b> <div> </div> <h1> 

<code> </code> </h1> </html> 

 

According to the values in Table 9.1 the weights associated to each tag in the control component 

are: 

 

Tag H1 TITLE B DIV, HTML H6, CODE 
W(T) 3 2 1.5 1 0.5 

 

And the cumulative weights associated with each one of the six candidate concepts C1, …, C6 

are: 

 C1 C2 C3 C4 C5 C6
TW 2 1.5 0.75 1 3 1.5

 

The Position of a candidate concept in the page displayed to the user is the other feature to 

consider to evaluate the emphasis given to the displayed text. Indeed, the text displayed at the top of 

a page is read as soon as the page is displayed in the browser window, without scrolling it, and that 

gives more emphasis to that piece of text. Vice-versa, the text at the bottom of the page has, usually, 

a less emphasis and may require the scrolling of the page in order to allow the user to read it. 

The Position of a candidate concept can be evaluated by considering a text string formed by all 

the normalised text, making up the candidate concepts. These concepts are copied in the string with 

the same sequence by which they are encountered in the source code of the page (i.e. with the same 

sequence by which they are displayed). Let us say CS this string, LS the length of the string CS, and 

Pos(Ci) the position in CS of the first character of the first word of the candidate concept Ci. 

Position Weight (PW) must be computed to associate to each candidate concept Ci, as follows: 

 

PW (Ci) = 1 - [ Pos(Ci) / LS (CS) ] 

 

As an example, the position weights for the six candidate concepts of the page in Figure 9.2 are: 

 C1 C2 C3 C4 C5 C6 
PW(Ci) 1 0.80 0.68 0.59 0.5 0.16
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Finally, the Concept Weight (CW) to be associated with each candidate concept Ci of a page is 

computed as: 

 

CW(Ci) = TW(Ci) * TAW(Ci) * PW(Ci) 

 

Of course, if no attribute value is considered it is TAW(Ci)=1. 

The Concept Weight CW(Ci) takes into account both the editing format used when the 

candidate concept Ci is displayed, and the position in the page where it is displayed. 

As an example, the following table reports the CW(Ci) values computed for the six candidate 

concepts of the page in Figure 9.2. 

 C1 C2 C3 C4 C5 C6 
CW(Ci) 2 1.21 0.51 0.59 1.5 0.24

 

9.3.4 Concept Clustering 

Some particular cases are those where different candidate concepts contain the same words, or 

two or more candidate concepts share all their words, or when all the words of a candidate concept 

are included in another concept. 

These cases may indicate those concepts may share any common sub-concept, or that some 

concepts may be equivalent, or that a concept is composed by one, or more, other ones. 

However, if a same group of words is included in more than one candidate concept, this group is 

likely to be more representative of the actual concept to assign to the page. 

This communality of words among different candidate concepts may be exploited to identify 

and cluster common concepts, in order to reduce the number of candidate concepts of a page and to 

built more significant concepts. 

In this case, the proposed clustering criterion is based on a metric of similarity SD between 

couples of candidate concepts, that is defined as follows: 

 

SD(Ci, Cj) = | (FCi∩ FCj) | / Max( |FCi|,|FCj| ) 

 

where: 

• Ci and Cj are two candidate concepts; 

• FCi = {W1,…Wn} and FCj = {W1,…,Wm} are the sets of the words forming the candidate 

concepts Ci and Cj respectively; 

• |S| is the cardinality of the set S; 
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Thus, if two candidate concepts share no words, the Similarity Degree (SD) is zero, while if 

they share all their words SD is 1.  

Two candidate concepts Ci and Cj are considered to be similar if the value of SD(Ci, Ci) is 

equal or greater than a predefined threshold TH, so they can be clustered together according to the 

following rule: 

 

Ci is similar Cj iff SD(Ci, Ci) ≥ TH 

 

Thus, each cluster will group the candidate concepts satisfying the above condition; among all 

candidate concepts grouped into a cluster the Prevalent Candidate Concept (PCC) can be identified, 

that is the candidate concept having the maximum value of CW(Ci), being Ci a candidate concept 

belonging to the considered cluster. The PCC of each cluster is then considered as the concept 

describing the cluster itself.  

Finally weight has been computed for each cluster, called ClW, defined by the sum of all the 

CW(Ci) of the candidate concepts in the cluster: 

 

 ClW (CLi) = ΣCj∈CLi CW(Ci) 

 

Table 9.2 shows the values of SD(Ci, Cj) for the six candidate concepts of the example HTML 

page in Figure 9.2, while Table 9.3 reports the results of the clustering of those candidate concepts 

by using TH=0,65, and Figure 9.3 shows a graphical representation of the resulting clustering where 

the PCC of each cluster is shown by a boldface circle. 

 

Table 9.2: The SD(Ci, Cj) values of the candidate  

concepts of the example HTML page in Figure 9.2 
 
SD(Ci,Cj) C1 C2 C3 C4 C5 C6
C1 1      
C2 0,67 1     
C3 0 0 1    
C4 0 0 0,67 1   
C5 0,4 0,4 0 0 1  
C6 0,67 0,4 0 0 0,3 1 
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Table 9.3: The results of the clustering with TH=0,65 
 Composition PCC Concept Weight
CL1 {C1,C2,C6} C1 3.45 
CL3 {C5} C5 1.50 
CL2 {C3,C4} C3 1.10 

 

 

Figure 9.3: A graphical representation of the clustering results in Table 3 
 

9.3.5 Selecting the Concepts  

The identified clusters are sorted in a descending order with the values of ClW(Cli): the 

prevalent candidate concept of the cluster at the top of this list is proposed as the concept to assign 

to the page from which the candidate concept was extracted. 

For the example page in Figure 9.1, C1 is proposed as the concept of the page. 

 

9.4 The Web Concept Finder Tool 

In order to validate the proposed method, a tool named Web Concept Finder (WCF) that 

supports the method, has been developed. 

WCF tool is composed of a set of separate modules, written in Microsoft Visual C++ and 

Microsoft Visual Basic languages. The architecture of the tool is shown in Figure 9.4. 

The description of the WCF tool modules follows. 
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• Control-Data Separator. This module implements a parser of HTML pages, and separates the 

data component from the control component of each parsed page. Parsing results are stored in 

the ConceptDB database.  

• Word Finder. This module implements a pre-processing of the data component extracted by 

each page, for extracting the single words and deleting punctuation. Output of this module is a 

filtered version of the data component text, which is written in ConceptDB database.  

• Stopword Eliminator. This module deletes stopwords from filtered Concepts. 

• Stemmer. This module tries to transform words into their stems. Realization of the Stemmer 

module depends on the language used in the data component of the pages. Most of the algorithm 

solving stemming problem are base on the Porter algorithm [Por80], applicable to English 

language. This algorithm consists in a set of transformation rules by which some affixes and 

suffixes are deleted from words. This Porter algorithm cannot be used for languages such as 

Romance languages (French, Italian, Spanish, Portuguese, etc.), because these languages have 

more complex grammar rules, and many exceptions, than English language. More complex 

algorithms are needed to stem words in these languages, such as those developed for the 

Portuguese language [Ore01] and Spanish language [Hon00]). Because, the text of the analysed 

Web Application was written in Italian language, a stemmer for Italian language has been 

implemented. It exploits the grammar analysis and spell checking functionalities of Microsoft 

Word 2000. A set of 177 transformation rules has been considered. The most of these rules are 

applied to transform conjugate forms of verbs to infinitive forms. To reduce the effect of 

incorrect stemming due to grammar exceptions, a spell checking of each stem is performed 

before the substitution of the word with its stem. 

• Synonym Tool. This module further reduces the size of the set of filtered text, by resolving 

synonyms of the words. All the synonyms of a word are looked for within the set of filtered 

text, and therefore they are substituted with the same word.  

• Concept Weighter. This module calculates the Concept Weights, using the method described in 

Section 9.3.3. 

• Cluster Finder. This module executes the concept clustering algorithm described in Section 

9.3.4. Candidate Concept Clusters, Prevalent Candidate Concepts and Cluster Weights are 

identified and calculated. Results are reported in ConceptDB database. 

• Page Concept Finder. This is the only module with a user interface. This module reports the 

ranking of the Candidate Concepts, sorted in descending order with the Cluster Weights. 
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Figure 9.4: The architecture of the Web Concept Finder Tool 
 

9.5. Experimental results 

The proposed method has been experimented on a number of medium-sized Web Applications 

selected from real world. The aim of the experiment was to assess the effectiveness of the method to 

support the comprehension of the applications. In order to evaluate the effectiveness, the concepts 

assigned to the Web pages of the applications and proposed automatically by the method were 

compared with those ones obtained by a 'manual' concept assignment process carried out by 

software engineers who were unfamiliar with the applications.  

A first experiment involving four primarily static web applications, i.e. applications whose 

client pages are mainly implemented by HTML and with no user-interactivity, was carried out. 

According to the classification proposed by Tilley and Huang (cfr. Section 2.2) they were Class 1 

web applications. This type of applications has been selected since they usually have a large number 

of client pages with a lot of text inside describing the topics the web site deals with. The goal of this 
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experiment was to verify that the concepts detected by the proposed method actually coincided with 

the main topic addressed by each analysed page. 

The first considered web application (namely WA1) consisted of the web site of an Italian 

University, the second one (WA2) was a web site dealing with the Italian medieval history, the third 

one (WA3) was a web site reporting touristic information about an Italian island, and the fourth one 

(WA4) was the web site of an Italian research network. 

Table 9.4 shows the total number of Client pages of each analysed application, together with the 

total number of HTML tags and Data Components extracted after the execution of the first phase of 

the process described in Section 3. The last row reports the average number of Data component for 

client page. 

 

Table 9.4: Some data about the analysed Web Applications 

 WA1 WA2 WA3 WA4 
Client Page # 104 62 58 31 
HTML Tag # 23783 8121 13660 13515 
Data Component# (DC#) 3446 1304 2322 2992 
Average DC# for page 33.14 21.03 40.04 96.52 

 

The text making up each element of the Data Component was normalised producing the 

candidate concepts. A weight was computed for each candidate concept according to the formulas 

presented in section 9.3.3. Therefore, the Concept Clustering step was executed and similar 

candidate concepts were identified and grouped. Several different threshold values has been tried 

for concepts clustering and, for all the applications; the best results have been obtained with a value 

of Threshold of 0.8.  

For each page, the concept clusters were sorted as described in section 9.3.4 by producing a 

sorted list. The Prevalent Candidate Concept of the cluster at the top of each list was taken as the 

Concept describing the page corresponding to that list. 

The selected PCCs were compared with the ones produced 'by hand' by some software 

engineers. The result of this analysis was that all the selected PCCs contributed to provide the right 

concepts to the page but in most cases they did not provide the full page concept (according to the 

ones provide by the software engineers) but just partially described it. Indeed, for WA1 only about 

the 20% of the PCCs just provided the full page concept, while for WA2 about 43%, for WA3 31% 

and about 65% for WA4. However, the full page concept could be obtained by merging the selected 

PCC with the PCCs of the other clusters that immediately followed the first one in the cluster 

ordered list. In particular, just considering the first 5 clusters (i.e. the first 5 PCCs) in each list, for 

WA1 there are the 91% of successful cases, the 60% of successful cases for WA2, the 92% of 



  - 98 -

successful cases for WA3, and 80% of successful cases for WA4. The percentage of successful 

cases was greater than 93% by considering the first 10 clusters of each ordered list. 

One of the reasons because the selected PCC was not able to fully describe the page was that in 

many cases the PCC was derived from the main title of the page displayed to the user, while the 

complete concept of the page was formed both by that title and one or more subtitles (represented 

by a less weighted candidate concept due to the minor edit formatting evidence and the successive 

position in the page). 

Thus, it is possible to conclude that to obtain better results not just the PCC of the first cluster in 

the list has to be considered, but also the ones that immediately follow it in the list. Indeed, in some 

other experiments that have been carried out, considering the first three to six clusters in the list 

resulted in an average percentage of successful cases greater than 70%. 

These data confirmed the validity of the proposed method: in all the experiments, the selected 

first PCC rightly described, even if partially, the actual page concept, while the PCCs that are in the 

immediate successive position in the list are able to describe the page concept completely. 

The method can be used to support the assignment of a meaning to software artefacts extracted 

applying the Reverse Engineering process previously described. As an example, it allows to reduce 

the human effort related to the association of a meaning to a cluster of pages. 

Further details about this method can be found in [Dil04e]. 

 

9.6 Future works 

Further work should be addressed in the context of Web Applications with large dynamic 

content, whose pages can be created on-the-fly, depending on the user interaction with the 

application.  

The experiments highlighted some limitations of the method too, and possible solutions to these 

limitations had to be explored. As an example, the results produced by the clustering algorithm used 

in the final steps of the proposed method can be improved by considering also the relative position 

of two candidate concepts in the page and defining new criteria to group two successive concepts. 

Moreover, the combined usage of the proposed method together with 'traditional' Information 

Retrieval methods should be analysed in order to obtain more effective results. 

 

Future work will have to consider also the analysis of style sheets defining the edit formatting of 

page content, as well as the analysis of other languages used for implementing Web Applications, 

such as XML. 
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Chapter 10: Recovering Interaction Design Patterns  
 

In this chapter a method supporting the identification of Interaction Design Patterns in the 

source code of Client pages of a Web Application is presented. The method, the reference model 

and the supporting tool that have been developed are described in this chapter. The results of some 

explorative experiment are also reported. 

 

10.1. Introduction 

In the previous chapter, the problem of the concept assignment of client pages has been 

addressed. The proposed method recover concepts that describe the content of a client page, but not 

the functionality it realizes. In this chapter a method is proposed to identify if a client page contains 

a well-known Interaction Design Pattern. The presence of this pattern is a remarkable clue for the 

human expert to individuate the functionality realized by the client page. 

The concept of design pattern has been introduced in software engineering to produce more 

flexible and reusable software systems. A design pattern provides a reusable solution to a problem, 

and in object oriented systems it consists of a collection of related classes and objects [Gam95]. 

However, the applicability of the design pattern concept is not limited to the object oriented context. 

Indeed, design patterns have been defined and catalogued in the context of Human Computer 

Interaction to design User Interfaces (UI) ([Hill], [Hcip], [Bor01], [Tid98]), where a UI pattern 

provides a common way for a user to interact with a software system.  

Related to UI patterns are Web Interaction Design Patterns (WIDP) that provide a solution to 

the classical interaction problems of Web Applications users. As an example, typical interaction 

patterns in a Web Application include the ones allowing a user to search for an item on the Web, to 

register at a web site, to participate to a user forum, etc. Specific Web UI patterns have been 

proposed in the literature by [Duy02], [Gra03] and [Wel03]. In particular, van Welie in his Web site 

[Wel04] provides a catalogue of interaction design patterns for Web Applications.  

In van Welie’s catalogue, patterns are described in terms of the Problem addressed by the 

pattern, the Context where it should be used, the Solution to use for solving the Problem and an 

Example providing a screenshot and some additional text to explain the context of the particular 

solution. As an example, Table 10.1 shows the description of the Login pattern as it is reported in 

[Wel04]. 

 



  - 100 -

Table 10.1: The ‘Login’ Web Interaction Design Pattern description 

Problem The users need to identify themselves so that stored data about/of them can be used in 

the process they are in.   

Context When users frequently return to a site that uses large amounts of data about or 

belonging to the users, it is convenient to have users enter that information once and use it again for 

future visits to the site. Usually the information that is stored is personal information and can 

include name, age, gender, shipping addresses, stock portfolio, bank account numbers and credit 

card numbers. In order to be able to access their data, users must complete their Registration first.  

For many site types it can be convenient to store information of/about visitor. Often these are E-

commerce Site, Community Site or Web-based Application such as electronic banking applications.  

Solution When needed, ask the users to login using a combination of a username and a 

password  

Example 

 

 

Although the necessary degree of abstraction that characterizes a pattern description, a pattern 

can be actually used if it is defined precisely, in order to allow a software engineer to find and apply 

it. As an example, an effective definition of an interaction pattern can be given in terms of the UI 

Model fragments it typically comprises.  

Recovering the WIDPs implemented in existing Web Applications represents a viable solution 

to detect components to be reused for developing new applications, or for comprehending an 

existing application to be maintained, or evolved.  

While several approaches for detecting recurrent design patterns from the code or the design of 

object oriented systems have been proposed in the literature ([Ase02], [Bal03], [Ton99]), the 

problem of reverse engineering a Web Application for detecting the WIDPs it implements has not 

yet been addressed. 

In this chapter is proposed a method for identifying the WIDPs implicitly implemented in a 

Web Application that is based on the detection of the characteristic features (such as UI Model 

fragments, or lexical terms) they include. The method requires that fragments that are characteristic 
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of a given pattern must be preliminary identified. To reach this aim, a metric that expresses the 

degree of characterization of a feature for a given pattern, with respect to a family of instantiations 

of the pattern, has been defined.  

Therefore, an interaction design pattern is identified in a Web page by recognizing the most 

characteristic features of that pattern included in the page The method requires the reverse 

engineering of the Web Application’s code in order to identify the code components implementing 

the UI fragments. 

 

10.2. Background 

In the context of Web Design Interaction Patterns, although there may be many different ways 

of implementing a solution to the same problem (i.e., there may be a family of instances of a same 

pattern), some characteristic UI fragments in the different implementations can be found. As an 

example, characteristic fragments of the ‘Login’ pattern shown in Table 1 will include a form with 

two input fields, a submit button and ‘login’ and  ‘password’ texts labeling the input fields. 

Generally, an interaction pattern in a Web page is characterized both by the UI graphical items 

it includes (such as tables, forms, grids, input fields, etc.), both by lexical items i.e., text that is 

shown to the user, and that describes the interaction function (such as login, poll, site map etc.). 

Hereafter a feature may be defined as the occurrence of a UI graphical items or of a lexical items 

included in a page of a Web Application. The occurrence of each feature in an existing Web 

Application can be deduced automatically by analysing the code of the application. 

These features can be used as clues for detecting interaction patterns in the code of existing Web 

Applications. The features that are more effective to describe a given pattern are those that are 

associated most frequently with the different instances of that pattern, and that are, at the same time, 

specific of the pattern. A specific feature is the one that can be often found in a given family of 

patterns, but rarely exists in other patterns.  

The definition of characteristic features that can be associated with Web Interaction Design 

Patterns and the problem of assessing the effectiveness of a feature to recognize a given pattern are 

addressed in the following sub-section. 

 

10.2.1 Characterization of Patterns’ features  

Given a pattern P, in order to identify its most characteristic features, a set of client Web pages 

has been selected, each one containing just an instantiation of a pattern P. This set of Web pages is 

called Training Set (P), and the set of features they exhibit has been collected. Considered features 
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include the UI model fragments reported in Figure 10.1 as a class diagram. The class diagram 

represents the UI fragments that are usually included in a Web page and possible relationships 

between them, which are considered as possible features of a WIDP. The model below is a 

specialization of the conceptual model described in section 3.3. 

 

 

Figure 10.1: User Interface Fragments Model 

 

 

For each pattern P and feature F, let’s consider the frequency Freq(P, F) of the feature F in the 

Training Set (P):  

 

Freq(P,F) =∑wp∈TrainingSet(P)Occ(wp,F) /Card(TrainingSet(P))     (1) 

 

Where:  

• Occ(wp,F)=1 if the feature F is included in the wp Web page, elsewhere Occ(wp,F)=0 

• Card(TrainingSet(P)) is the cardinality of the Training Set(P). 
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Of course, 0≤Freq(P,F)≤1, where Freq(P,F)=0 means that F is never used for implementing the 

pattern P, while Freq(P,F)=1 means that F is used in every instantiation of the pattern P.  

 

Besides the frequency of a feature, the specificity Spec of a feature for a given pattern P must be 

considered. It is an indicator of how much a feature F is specific of a pattern P. The specificity of a 

feature F for P can be evaluated with respect to a set of considered Patterns (e.g., all the patterns in 

Welie’s catalog, or a subset of them) and by assessing frequency of the feature F in each pattern. 

The set of considered patterns is called PatternSet.  

The average value of the frequencies of the Feature F in each pattern of the PatternSet is called 

Av(F) and it is expressed as it follows: 

 

Av(F)=∑p∈PatternSetFreq(p, F)/ Card(PatternSet)           (2) 

 

Therefore Spec can be evaluated by the following formula: 







 >−
=

Elsewhere

ifFAvFPFreq
FPSpec

0
(3)

Av(F)F)Freq(P, )(),(
),(  

 

Of course, Spec(P,F) varies in the range [0,1[.  

Spec(P,F)= 0 when Freq(P,F) ≤Av(F), that is, a feature F is less frequent in P than in the 

complete set of considered patterns.  

More frequently the feature F is encountered in the P pattern’s instantiations, and less frequently 

in other patterns’ instantiations, the greater is the specificity of the feature F for the pattern P. 

 

Finally, in order to evaluate how much a feature is characteristic of a given pattern, the 

Characterization Weight CW(P,F) of a feature F for a pattern P is defined as it follows: 

 

CW(P,F) = Freq (P,F) * Spec (P,F)            (4) 

 

CW(P,F) varies in the range [0,1[ and it represents a combined index that takes into account 

both Frequency and Specificity of a feature F for a pattern P. The most characteristic features for a 

given pattern are those showing the greater values of CW. 
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10.3. The approach 

 

The approach proposed for searching patterns in existing Web Applications includes three main 

phases: a training phase, a candidature phase, and a validation phase. The training phase is devoted 

to the computation of the features’ Characterization Weights on a training set of instantiations of the 

patterns to be searched for. The second phase exploits the computed Characterization Weights to 

candidate possible patterns in a set of Web pages to be analysed. The third phase is devoted to the 

validation of the candidate patterns. 

Figure 10.2 illustrates the phases of the method and the main input and output of each phase. 

Additional details about each phase are presented in the following. 

 

 

Figure 10.2: Web Interaction Design Pattern Recovering Process 

 

 

In the first phase, to obtain a training set, a number of Web pages with different characteristics 

(such as language, domain of the application, purposes, producer, etc.) have to be taken into 

account. Considered features in this sample will describe the occurrence of the typical UI fragments 

included in a Web Application, and that are reported in the model shown in Figure 10.1. At the end 

of this phase, Characterisation Weights CW(P,F) are obtained.  

 

The second phase includes two main activities: 

 

1) Likelihood evaluation for each Web page and pattern; 

2) Identification of candidate patterns. 
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To compute the likelihood that a pattern P is included in a Web page WP, let’s consider the 

occurrence in the WP of the most characteristic features for that pattern. A likelihood index 

L(WP,P) is therefore provided by the following ratio:  

 

∑
∑

∈

∈=
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),(

),(*),(
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PFeatureSetf

PFeatureSetf
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PWP    (5) 

 

where:  

CW(P,f) is the Characterisation Weight of a feature f for a pattern P; 

FeatureSet(P) is the set of features f having CW(P,f)>0; 

Occ(WP,f) =1 if the feature f is included in the WP Web page, elsewhere Occ(WP,f) =0. 

 

In formula (5), the denominator has been introduced in order to make comparable the different 

CW values, as the patterns vary. The values of L(WP,P) vary in the range  

[0, 1]. L(WP,P) is 1 when all the features f having CW(P,f)>0 are contained in the WP page. Vice-

versa, L(WP,P) is 0 when no feature f having CW(P,f)>0 is contained in the WP page. 

 

In the second step, the identification of candidate patterns in pages is obtained by comparing the 

L(WP,P) with respect to a threshold, and assuming that a page WP includes a pattern P if L(WP,P) 

is greater than the selected threshold. 

The choice of the threshold of course impacts on the set of candidates: greater the threshold, 

smaller the set of candidates, while lower the threshold, wider the set of candidates. The best 

threshold values encountered in a validation experiment are discussed in Section 10.5.  

 

The third phase requires that the candidate patterns detected in pages be submitted to a 

validation phase aiming to assess that each page actually includes that pattern. The validation phase 

is performed manually, by a software engineer with experience in developing Web Interaction 

Design Patterns.  

After the validation, validated patterns can be added to the training set samples, allowing the 

CWs for the new training set to be recalculated. 
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10.4 The supporting environment 

The identification method described in the previous section is supported by the Web Interaction 

Pattern Recovery integrated environment. This environment is composed of a number of tools 

realized using Microsoft Visual C++ and Microsoft Visual Basic.  

The environment supports the execution of the Training, Identification, Validation and Tuning 

activities required by the pattern identification method and includes the following modules: 

 

Reverse Engineering Tool. This tool extracts information from a web client page about any UI 

feature included in the page. The extracted information is stored in the Web Application 

Information Repository whose model is coherent with the information model described in section 

10.2.1. This tool is an extension of the WARE tool described in Chapter 5. 

 

CW Evaluator. This module has the responsibility to compute the Characterization Weight 

values according to the formula (4). The computed values are stored in the Pattern Repository. 

 

Likelihood Evaluator. This module computes the Likelihood values for each pattern and for 

each page, according to formula (5), by querying the Web Application Information Repository and 

the Pattern Repository. 

 

Pattern Identifier. This module selects, for each page, the candidate interactions patterns 

identified in that page by comparing the L(WP,P) values with a prefixed threshold. 

 

Pattern Validator. The responsibility of this module is to present the candidate patterns to a 

human expert that will validate them. Validated patterns may be used to extend the set of pattern 

samples and to tune the CW values. 

 

CW Tuner. This module recalculates CW values taking into account further pattern samples 

and the validated patterns. 

 

Figure 10.3 shows the architecture of the system (the Reverse Engineering Tool is reported 

twice just for graphical reasons).  
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Figure 10.3: Architecture of Web Interaction Design Pattern Recovery System 

 

10.5. An explorative experiment 

To validate the proposed method, an experiment aiming at assessing the effectiveness of the 

method in the detection of patterns in Web pages of existing Web Applications has been carried out. 

In the experiment, the following six Interaction Design Patterns selected from the catalogue 

reported in [Wel04] have been considered: 

• Guestbook, providing a view of the list of messages written by the visitors of a website; 

• Login, consisting in an authentication module for inserting personal identification information 

needed to access to private services; 

• Poll, consisting in a module to insert a vote for a poll; 

• Registration, consisting in a module to insert personal data needed to registrate to a service; 

• Search, consisting in a module to insert keywords for a search on a search engine; 

• Sitemap, consisting in a view of the map of the pages of a website. 

 

The main steps of the experiment were the following: 

• Feature Definition, where a set of features that are characteristic of WIDPs are defined. 

• Training Phase, where the training set is selected and CW values are calculated;  
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• Preliminary Identification Test, where the candidature process has been executed for the 

training set, obtaining a first evaluation of the effectiveness of the identification process; 

• Identification Test, where the candidature process has been executed for a more significantly 

test set, obtaining a more reliable evaluation of the effectiveness of the process. 

 

10.5.1 Feature Definition 

This preliminary phase has been executed to define the set of features to be taken into account 

during the pattern identification process.  

 

Selected features are those expressing the occurrence of a UI fragment (from the categories of 

fragments shown in Figure 10.1) or the occurrence of a combination of these fragments. As an 

example, the features that have been considered are related to the characteristics of a form - such as 

the occurrence of one or more input fields in a form- or they are related to tables, that take into 

account the occurrence of anchors, forms, input fields in cells/rows of tables, or they are lexical 

features, taking into account the occurrence of some common textual expressions labeling form and 

table features in web pages.  

For instance, the experiment has shown that the occurrence of 2 or more select buttons in a form 

is a good feature to identify the Poll pattern, while the occurrence of 2 or more anchors in a row is a 

good feature to identify the Sitemap pattern (cfr. Table 3). Moreover, ‘login’ and ‘password’ words 

have been found to be good features to identify a login pattern.  

 

The proposed method considers synonyms and translations of each textual expression as 

equivalent features. As an example, ‘username’ is considered as a synonym of ‘login’, while ‘nome 

utente’ is considered as an Italian translation of ‘username’. If one of these features is found in the 

analysed Web pages, the occurrence of the equivalent feature is also added. 

The set of lexical features considered in the experiment comprehends 36 textual expressions that 

are recurrent in the considered patterns. If more patterns are considered, more textual expressions 

will have to be defined. 

 

10.5.2 Training Phase 

The Training phase has been devoted to the computation of the features’ Characterization 

Weights on a training set of instantiations of the patterns to be searched for. 
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The Training set was composed of 108 client pages, each of which implementing a single 

pattern. Table 10.2 reports the number of samples selected for each Pattern. 

 

Table 10.2: Training Sets 
composition 

Pattern Samples# 
Guestbook 15 
Login 25 
Poll 13 
Registration 14 
Search 20 
Sitemap 21 

 

In order to have a meaningful set of samples, they have been extracted from different websites. 

These websites were different as to the typology (portals, personal sites, e-commerce sites, 

educational sites and so on), language (English and Italian), and graphical layout. 

 

The Characterization Weights have been calculated for each Pattern and for each Feature of the 

training set. Table 10.3 reports the list of features with the best values of Characterization Weight 

for each Pattern. 

 

10.5.3 Preliminary Identification Test 

 

To test the effectiveness of the method a preliminary identification test has been conducted. The 

input of this test is represented by the training set. This test was carried out to validate the 

characterization features selected by the previous step. 

Likelihood values have been calculated with respect to the Characterization Weights values 

obtained by the training phase. The computed Likelihood values have been compared with a 

threshold to identify the pattern included in the pages.  

To assess the correctness of the results of the candidature phase, Recall and Precision metrics 

have been adopted. Of course, the set of Patterns included in the training set was known, thanks to 

an analysis performed by an expert software engineer. Recall and Precision have been defined in the 

following way: 

Recall: Number of correct candidate couples (web page, pattern) / Number of couples (web 

page, pattern) to identify 
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Precision: Number of correct candidate couples (web page, pattern) / Number of candidate 

couples (web page, pattern) 

Table 10.3: Features with CW > 0.2

Best Guestbook Features CW 
Word ‘guestbook’ 0,8205128 
Word ‘comment’ 0,5118095 
Word ‘page’ 0,3888718 
Word ‘at least’ 0,3510375 
Word ‘none’ 0,3489927 
Word ‘next’ 0,2917176 
Word ‘email’ 0,2855873 
1 anchor to an email in a cell 0,2334815 
1 anchor to an email in a row 0,2334815 
Word ‘message’ 0,2080847 
Best Login Features CW 
1 password button in a table 0,7565714 
1 radio button in a form 0,7565714 
1 password button in a cell 0,7108571 
1 password button in a row 0,7108571 
Word ‘password’ 0,7103174 
Word ‘login’ 0,6575238 
1 input text field in a cell 0,503619 
1 input text field in a row 0,503619 
1 input text field in a table 0,4972698 
1 image field in a form 0,422 
1 submit button in a row 0,3206838 
1 submit button in a table 0,3206838 
1 submit button in a cell 0,3104274 
1 checkbox field in a form 0,231387 
Word ‘username’ 0,2242125 
Best Poll Features CW 
Word ‘poll’ 0,5644125 
2 or more select buttons in a form 0,4741561 
Word ‘vote’ 0,4399831 
Word ‘results’ 0,4216681 
2 or more radio button in a table 0,3189687 
1 radio button in a cell 0,3031277 
Best Registration Features CW 
Word ‘registration’ 0,7190476 
2 or more images in a form 0,6937755 
2 or more input text fields in a table 0,5951021 
Word ‘last name’ 0,5912925 
Word ‘email’ 0,5569841 
Word ‘address’ 0,4179251 
Word ‘none’ 0,3489927 
1 input text field in a cell 0,2752494 
1 input text field in a row 0,2752494 
2 or more input text fields in a cell 0,2682993 
2 or more input text fields in a row 0,2682993 
Word ‘password’ 0,2270408 
Word ‘all’ 0,2053288 
Best Search  Features CW 
Word ‘search’ 0,5579731 
1 text input field in a table 0,3880635 
1 text input field in a row 0,2916826 
1 text input field in a cell 0,2916826 
Best Sitemap Features CW 
Word ‘map’ 0,775873 
2 or more anchors in a row 0,3103768 
Word ‘search’ 0,2974975 
2 or more anchors in a table 0,2941863 
2 or more anchors in a cell 0,2801186 
2 or more anchors to image in a table 0,2350997 
2 or more anchors to image in a cell 0,2090476 
2 or more anchors to image in a row 0,2011111 
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Different candidate sets of patterns have been obtained by varying the threshold value, and 

Precision and Recall has been measured for each of these threshold values. Table 10.4 reports 

Recall and Precision values for 9 different threshold values, ranging between 0.1 and 0.9. A 

satisfying trade-off was obtained with a threshold value of 0.6 (82% of Recall, 79% of Precision). 

These results confirmed the adequacy of the choice of the set of features for the detection of the 

selected set of patterns. 

 

Table 10.4: Recall and Precision value in the Preliminary Identification Test 
Threshold 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1 
Recall 22/108 46/108 69/108 89/108 93/108 101/108 106/108 107/108 108/108
% 20% 43% 64% 82% 86% 94% 98% 99% 100% 
Precision 22/22 46/49 69/75 89/112 93/135 101/174 106/234 107/325 108/487
% 100% 94% 92% 79% 69% 58% 45% 33% 22% 

 

 

10.5.4 Identification Test 

After the Preliminary Identification Test, another experiment has been executed on a wider set 

including 208 Web pages. These pages have been selected in different web sites, belonging to 

different domains. The analysis performed by an expert software engineer stated which and how 

many patterns were included in the set of pages. The results of this analysis was that the Web pages 

included:  

9 Search Patterns 

10 Registration Patterns 

12 Login Patterns 

9 Poll Patterns 

8 Sitemap Patterns 

7 Guestbook Patterns 

 

Some of the web pages in the set did not include any pattern, while some other ones included 

more than one pattern. 

The evaluation of the Likelihood was executed for each page using the Characterization 

Weights values obtained in the training phase. Also in this experiment the Recall and Precision 

metrics were computed to assess the correctness of the results. The Table 10.5 reports Recall and 

Precision values for 9 different threshold values, between 0.1 and 0.9. Also in this case a satisfying 

trade-off was obtained with a threshold value of 0.6 (80% of Recall, 66% of Precision). 
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Table 5: Recall and Precision value in the Identification Test 
Threshold 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1 
Recall 10/55 20/55 31/55 44/55 45/55 51/55 52/55 54/55 54/55 
%  18% 36% 56% 80% 82% 93% 95% 98% 98% 
Precision 10/11 20/24 31/39 44/67 45/112 51/171 52/229 54/347 54/590
%  91% 83% 79% 66% 40% 30% 23% 16% 9% 

 

The results obtained by these two experiments showed us the validity of the proposed method, 

as it allows a good identification of WIDP in web pages. However, further work is needed to 

improve the quality of the results. Further details about the method described in this chapter can be 

found in [Dil05]. 

 

10.6 Future works  

Of course, a first improvement considers the definition of the characterising features for other 

patterns and, as a consequence, the updating and refining of the Characterisation Weights CW(P,F). 

A wider training set would improve the Recall and Precision degree, too. 

Further improvements are obtained by considering not just the presence of single UI fragments 

in a page, but considering the co-presence of an adequate group of them in a page, as the 

implementation of a specific pattern is generally characterised by groups of features.  

To reach this aim, a further analysis of a wider number of web pages is required: this goal will 

be addressed as future work.  
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Chapter 11: Identifying Cloned Components 
 

In this chapter a method based on clone analysis techniques with the aim to identify Web 

Application components with identical or similar structure is presented. Four techniques to 

measure the degree of similarity among client pages are defined. The results of an explorative 

experiment are also reported. Finally, a discussion about the combined used of the information 

retrieved by the reverse engineering techniques based on Concept Assignment, Interaction Design 

Pattern Identification and Clone Analysis is reported. 

 

11.1 Software clones and clone analysis. 

Addressing the problem of concept assignment, the information about the presence of 

duplicated or similar components in the Web Application can reduce the effort of this expensive 

task in a remarkable way. In fact, the semantics associated to duplicated components may be very 

similar. Anyway, clone analysis can have other important applications, such as in the reengineering 

of Web Applications or during dynamic analysis. In this chapter clone analysis techniques 

identifying duplicated or similar components or portions of code in a Web Application is described.  

Duplicated or similar portions of code in software artifacts are usually called clones, and clone 

analysis is the research area that investigates methods and techniques for automatically detecting 

them. 

The research interest in this area was born in the ‘80s ([Ber84], [Gri81], [Hor90], [Jan88]) and 

focused on the definition of methods and techniques for identifying replicated code portions in 

procedural software systems.  

The methods and techniques for clone analysis described in the literature focus either on the 

identification of clones that consist of exactly matching code portions ([Bak93], [Bak95], 

[Bak95b]), or on the identification of clones that consist of code portions that coincide, provided 

that the names of the involved variables and constants are systematically substituted (p-match or 

parameterised match).  

The approach to clone detection proposed in [Bal99] and [Bal00] exploits the Dynamic Pattern 

Matching algorithm [Kon95], [Kon96], that computes the Levenshtein distance [Lev66] between 

fragments of code. The value of the Levenshtein distance is a measure of the similarity between two 

vectors. It is defined as the minimum number of insertions, deletions and replacement of items 

necessary to make two vectors equal. Levenshtein distance is also called edit distance if the 
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operations are weighted in a equivalent way. A classical alternative metric to measure the distance 

between two vectors is the Euclidean distance. To compute Euclidean distance, the distance 

between two items is equal to one if the items are different, else its value is equal to zero. 

Baxter [Bax98] introduced the concept of near miss clone, which is a fragment of code that 

partially coincides with another one. Further approaches, such as the ones proposed in ([Kon97], 

[Lag97], [May96], [Pat99]), exploit software metrics concerning the code control-flow or data-flow.  

 

11.2 Clones in Web Applications. 

In a Web page a control component and a data component can be distinguished (cfr. Chapter 8). 

Focusing on software clones characterized by the same control component, two categories of 

clones, with different degrees of granularity, can be taken into account. At a coarse grained level, 

any duplicated or replicated static page of a Web Application can be considered as a software clone. 

In particular, two types of replicated pages can be distinguished: static client pages having the same 

HTML control component, i.e., pages composed by the same set and sequence of HTML tags, and 

static server pages coded using a script language, such as the ASP, and including the same set of 

ASP objects.  

At a finer degree of granularity, inner components of a page that are replicated throughout the 

Web Application can be also considered as clones. Examples of these components include, on the 

client side of the application, script blocks, script functions, HTML forms, and HTML tables that 

are replicated in the pages of the application. On the server side, script blocks, script functions, and 

subroutines can be considered.  

Table 11.1 reports the classification of Web Application software clones that are considered in 

this chapter. The classification distinguishes the clones depending on their degree of granularity. 

Table 11.1: A classification of software Clones. 

Degree of granularity of a clone  Type of clone 
Client Page Web Page 
Server Page 
Script Block 
Script Function 
HTML Form 

Client Page inner components 

HTML table 
Script Block Server Page inner components 
Script Function 
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11.3 Identifying clones  

In this section, a clone analysis based process for identifying cloned components in a Web 

Application is presented. The process focuses on software clones provided by artifacts showing the 

same control component, and includes the following phases: 

 

• Separation of the control component from the data component within Web pages. 

• Clone Detection. 

• Clone Validation. 

 

11.3.1 Separation of the control component from the data component. 

In the first phase of the process, Web pages are pre-processed in order to separate their control 

component from the data component, and submit the control component to the next phase of the 

process. As an example, the pre-processing of client pages is executed with the support of language 

parsers that extract and store the sequence of HTML tags from HTML files, by separating them 

from the list of attributes and data associated with these tags and determining the information to be 

read/displayed from/to a user. This task is the same described in subsection 9.3.1. 

 

11.3.2 Clone Detection. 

In the second step of the process, clone analysis is used for detecting clones in Web 

Applications.  

Most clone analysis techniques compare distinct software artifacts on the basis of relevant 

information extracted from them: this information may be either a sequence of symbols (from a 

given alphabet) representing, for instance, the artifact control structure, or a set of software metrics 

characterizing them. The extracted information is used to compute a similarity distance between 

artifacts, such as the Levenshtein or the Euclidean distance: zero-distance items provide a software 

clone, while quasi-zero-distance items provide near-miss- clones. 

As to the identification of cloned Web pages, two classes of techniques have been used: 

techniques that are based on the match between sequences of symbols (using the Levenshtein 

distance), and techniques based on software metrics extracted from Web pages (using the Euclidean 

distance). A list of possible techniques (and an explanation of the acronyms) is reported in Table 

11.2. STH, and CTH techniques are applicable to client pages, while SOA, and AMA ones are 

applicable to server pages. 
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In the proposed process, all the techniques listed in Table 11.2 can be used for detecting cloned 

Web pages, in order to combine their different output and obtain more precise final results. A 

complete description of STH, CTH, and SOA techniques can be found in [Dil01], while the AMA 

one is described synthetically in the following. 

The AMA technique is a metric based technique that detects couples of cloned server pages 

using a set of metrics extracted from pages including ASP script blocks. Each page is characterized 

by an array of software metric values, and the Euclidean distance of the corresponding arrays will 

compare couples of pages. Experiments have shown that the AMA technique detects clones more 

effectively than the SOA technique [Fer02]. 

The set of considered metrics is shown in Table 11.3.  

Table 11.2: Clone analysis Techniques. 

Technique Description 
STH Strings of HTML tags extracted from client pages are compared by the Levenshtein 

distance. 
CTH Counts of HTML tags extracted from client pages are compared by the Euclidean 

distance. 
SOA Strings of ASP built-in objects extracted from server pages are compared by the 

Levenshtein distance. 
AMA An array of software metrics extracted from ASP script blocks in server pages is used 

to compare server pages by the Euclidean distance. 

 
Before computing the first and last metric in Table 11.3, the AMA technique requires that a 

preprocessing be made on the ASP pages. The preprocessing is executed for making the comparison 

between script blocks independent on comment lines, writing style, and choice of identifier names 

in the analysed code.  

 

 

Table 3: Software metrics used by the AMA technique. 

Software Metrics 
Total Number of characters per page (NTC) 
Total Number of lines of code per page (NTRC).  
Total Number of ASP code blocks per page (NTBC). 
Total Number of declarative statements per page (NTSD)  
Total Number of conditional statements per page (NTSC)  
Total Number of cyclic statements per page (NTSI)  
Total Number of Functions per page (NTF). 
Total Number of Subroutines per page (NTS). 
Total Number of built-in ASP objects per page (NTOP). 
Levenshtein distance of ASP code blocks (LDBC)  
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In particular, in the ‘Separation of the control component from the data component’ phase, each 

line of ASP block code is transformed into an intermediate format by removing blank characters 

and comments from the line, and substituting each data element (such as constants, or identifiers) 

by a dummy one. Moreover, consecutive blocks of ASP code are merged in a single comprehensive 

block. 

As an example, the consecutive ASP blocks of code shown in the following:  

 
<% If HourPart>12 then %> 

<% 'It is Afternoon %> 

<% Response.write "Good Afternoon!” %> 

<% Else %> 

<% 'It is Morning %> 

<% Response.write "Good Morning!" %> 

<% Endif %> 
 

is transformed as follows, by removing blank characters, substituting identifiers with DUMMY 

names, and merging the different blocks into a single block: 

 
<%IfDUMMY>DUMMYthen 

Response.writeDUMMY 

Else 

Response.writeDUMMY 

Endif%> 

 

11.3.3 Techniques for detecting Inner Page Clones  

On the client side of the application, candidate reusable components are provided by script 

blocks, script functions (implemented in Javascript, VBScript or Jscript languages), HTML forms, 

and HTML tables that are replicated in the pages of the application.  

In order to localize cloned script blocks and script functions (potentially implementing reusable 

functions), the STH technique based on textual string comparisons is used. As to the identification 

of cloned HTML input Forms (representing reusable components implementing the function of data 

input and the request for their elaboration to a server page), the same STH technique based on the 

Levenshtein distance, comparing strings of HTML tags associated with each form, is used. Zero-

distance forms represent cloned forms, with the same HTML structure. A similar technique can be 

used for finding cloned HTML tables, which represent a reusable output data structure.  
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On the server side, cloned script blocks implemented in ASP, besides script functions, and 

subroutines written in VBScript or Jscript language are looked for, since they potentially implement 

reusable functional abstractions. The AMA technique is used for analysing single script blocks 

written in ASP, while script functions and subroutines are analysed by comparing textual strings 

extracted from the code, using the Levenshtein distance. 

A tool, named CloneDetector, has been implemented which provides a unified framework for 

executing clone analysis using different techniques. Once the user has selected the techniques of 

clone detection to apply, the tool computes the Distance Matrix (whose items represent the distance 

between each pair of artifacts from the Web Application). Clusters of clones are, therefore, 

obtainable from this matrix. 

 

11.3.4 Clone Validation. 

The detected set of clones need to be submitted to a validation activity aiming at assessing if 

they can be actually considered reusable components or not.  

In the Validation phase, the detected clones are analysed as regard their meaningfulness (does 

the considered clone implement a meaningful abstraction in the business domain, or in the solution 

domain?), and their completeness (does the clone include all the lines of code necessary for 

implementing a valid abstraction?). Meaningless clones are discarded, while incomplete clones may 

have to be merged in order to obtain an actually reusable component.  

Validated clones are associated with a description of the reusable abstraction they implement. 

Business domain knowledge and experience in building Web Applications are required for carrying 

out the validation activity. 

 

11.4. An experiment. 

In order to assess feasibility and effectiveness of the proposed method, several experiments 

involving real Web Applications were carried out; the Clone Detector tool was used to support 

them. 

This Section provides the results of the experiments involving four Web Applications (hereafter, 

WA1, WA2, WA3, and WA4), which were submitted to the process proposed in Section 11.3 for 

detecting their clones. 

The first three applications presented client pages written in HTML and script languages, and 

server pages coded in ASP, while the fourth one just included ASP pages. WA1 implemented a 

‘juridical laboratory’ with the aim of supporting the job of professional lawyers; WA2 was a Web 
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Application designed to support the activities of undergraduate courses offered by a Computer 

Science Department (this application has been also considered as case study in the previous 

chapters), WA3 was an e-commerce Web Application for selling music CDs; WA4 was a Web 

Application designed to manage an Internet discussion forum.  

Table 11.4 reports the main experimental results obtained after the clone identification and 

validation phases of the process: in the Table, just the exact clones that passed the validation phase 

have been considered. For each category of considered artifact (e.g., Web page, script block, script 

function, etc…), the number of artifacts in the Web Applications, the number of detected cloned 

artifacts, and the number of clusters of cloned artifacts are reported. In particular, each cluster 

gathers together the set of the same cloned items. 

In the experiments, the STH textual string comparison technique was used to identify clones 

among the client side components, while the AMA metric-based technique was used to identify 

cloned items among the server side components. The total number of false positives (that is, clones 

detected by the process which were not actually clones) is very low (less than 7%); and all the false 

positive clones regarded server side items. With reference to client pages, there are about 25% of 

cloned pages (33% for WA1, 8% for WA2, and 35% for WA3), while the average percentage of the 

cloned server pages was about 9%.  

As to the inner page components, there is also a higher percentage of cloned items for client 

pages than for server pages. In particular, for the client functions the percentage of cloned items was 

about 48%, while the cloning of server functions was only 2%.  

This datum may indicate that exact cloning of client side items is a practice adopted more 

frequently than cloning server side items; however, this datum may also depend on the fact that the 

AMA metric-based technique, that has been used for finding clones on the server side, exploited a 

Levenhstein based metric (cfr. LDBC metric in Table 11.3) that produced a relevant percentage of 

near missing clones, composed by ASP code blocks computing the same functions but just differing 

for the lexicographical order of some statements. Therefore, the precision of the AMA technique is 

very high (i.e., all detected clones were actually validated), but the recall parameter (e.g., the 

number of detected clones) may be improved (despite of the precision) by omitting the LBDC 

metric from the metric array considered by the AMA technique. 

Further details about this technique can be found in [Dil04b] and [Dil01]. In conclusion, the 

method showed its effectiveness in detecting a significant percentage of clones. 
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Table 4: Results from clone analysis 

 WA1 WA2 WA3 WA4 
# HTML pages 55 23 23 - 
# cloned HTML pages  18 2 8 - 
# clusters of cloned HTML pages 3 1 4 - 

# scripts in client pages 3 12 10 - 
# cloned client scripts  3 4 2 - 
# clusters of cloned client scripts 1 2 1 - 

# functions in client pages 12 10 10 - 
# cloned client functions  12 4 2 - 
# clusters of cloned client functions 4 2 1 - 

# forms in client pages 1 8 10 - 
# cloned client forms  0 2 9 - 
# clusters of cloned client forms 0 1 3 - 

# tables in client pages 7 4 3 - 
# cloned client tables  0 0 0 - 
# clusters of cloned client tables 0 0 0 - 

# ASP pages 19 73 37 71 
# cloned ASP pages  2 15 3 2 
# clusters of cloned ASP pages 1 6 1 1 

# scripts in ASP pages 75 576 150 5341 
# cloned ASP scripts  4 0 36 0 
# clusters of cloned ASP scripts 2 0 3 0 

# functions/subroutines in ASP pages 5 0 3 165 
# cloned ASP functions/subroutines  0 0 0 9 
# clusters of cloned ASP functions/subroutines 0 0 0 3 

 

11.5 Future Works 

The adoption of the methods presented in chapters 9, 10 and 11 allow a reduction of the effort 

related to the comprehension of the semantic of Web Application components.  

The proposed techniques have been presented separately, but they can be also used in a 

collaborative way. As an example, the rank of concepts proposed by the concept assignment process 

may be considered as a further, good feature to the identification of Interaction Design Patterns. 

Moreover, frequent cloned structures identified by clone analysis technique may be considered as 
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possible Interaction Design Patterns. The results of concept assignment method and clone analysis 

method may be used to classify similar Web pages in three categories: 

 

• Pages with similar (or cloned) structure but different textual content. For these pages, a common 

template could be extracted and they could be reengineered according to this template; 

 

• Pages with similar textual content but different structure. These pages can be clustered together 

according to the keyword clustering method proposed in [Ric04] and [Ton03]; 

 

• Pages with similar textual content and structure. They are probably cloned pages, obtained with 

a ‘copy and paste’ operation.  A reengineering of these components will surely improve the 

maintainability of the Web Application. 
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Chapter 12: Identifying Cross Site Scripting Vulnerabilities 
 

In this chapter a method is presented to assess the vulnerability of the Web pages of a Web 

Application with respect to Cross Site Scripting attacks. The method, based on some secure 

programming rules, exploits source code analysis to verify that those rules are actually present in 

the code. Moreover, a strategy to test the effectiveness of Cross Site Scripting attacks on vulnerable 

pages is presented. A case study, based on a real world Web Application is discussed. 

 

12.1 Introduction 

In the last years, the problem of ICT security has been devoted an increasing interest from 

industry, users and Public Administrations; a study conducted by Datamonitor [Dat03] shows that 

the global ICT market revenue estimated in 2006 is 13.5 billion USD, while in 2002 it was 7 billion 

USD. 

Approaches to ICT security [Mai04] are mostly focused on: 

- building perimeter defences around application; 

- putting up reactive defence software or intrusion detection systems. 

Therefore, the effort in implementation of security is mainly concentrated in buying specific 

security systems (such as firewalls, or IDS) and software (such as antivirus or encryption software), 

and taking organisational changes to business processes finalised to improve security. 

However, as tools become more sophisticated and as corporate networks and applications are 

more interconnected, open, and distributed, just defining and defending the perimeter may be 

insufficient [Mai04]. More effective approaches require that the application security is achieved 

building it inside the application’s code, that is using secure programming practices. However, the 

application security is frequently overlooked. Main reasons for overlooking it are that the teams 

involved in the development do not communicate with one another; also, developers do not build 

security into their applications, based upon the false assumption that another area of security will 

cover it (database, network, firewalls, etc.) [Sto03]. 

The problem of security is particularly relevant for Web Applications [Off02]. A possible 

classification of security attacks affecting a Web Application distinguishes six basic categories 

[Sto03]: 

1. Parameter tampering 

2. Hidden field manipulation 
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3. SQL injection 

4. Application design/business logic 

5. Debug options 

6. Common vulnerabilities 

 

In the category of common vulnerabilities, Cross Site Scripting (XSS) is well known in the 

Internet community from several years ([Cert00], [Itsd]). XSS is a vulnerability of a Web 

Application caused by the failure of the application in checking up on user input before returning it 

to client’s web browsers. Without an adequate validation, user input may include malicious 

scripting code that may be sent to other clients and unexpectedly executed by their browsers, thus 

causing a security exploit (cfr. subsection 12.2.2). XSS vulnerability is a relevant issue for the 

following reasons: 

- many web sites are vulnerable to this attack (e.g., Ohmaki says that 80% of Japanese e-

commerce sites are vulnerable to XSS [Ohm02]); 

- the exploits are very simple to carry out, and no particular application knowledge or skill are 

required; 

- the attacks may bypass perimeter defences (e.g. Firewalls), cryptography, digital signatures 

and site trusting;  

- it may be very difficult for the victim to know which web application allowed the XSS 

attack; 

- it may be very difficult for the developer to know which element of the web application 

allowed the XSS attack; 

- evolution of hypertextual language characteristics and browser capabilities may make it 

possible new attack strategies and make vulnerable a web application which was considered 

invulnerable. 

 

Several solutions have been proposed to defend an application from XSS attacks. A first 

recommended solution for the users of Web Applications consists of disabling scripting languages 

in their browsers, and avoiding promiscuous browsing on untrustworthy web sites. However, rather 

than by users, the problem should be addressed by web page developers who should check up on 

the input received by a page, and encode or filter the output returned to the user. More precisely, a 

possible remedial action to avoid XSS vulnerability, would consist of introducing an input 

validation function immediately after every input statement contained in a Web page. However, 

only the input data that will affect output data will cause a XSS vulnerability. Therefore, an 
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effective method for detecting XSS vulnerabilities in a Web Application requires that just input data 

affecting output data must be analysed. 

 

12.2. Background 

12.2.1 Related works 

The problem of vulnerability of software systems, and in particular, of their user interfaces, has 

always been considered very important for traditional applications, but the importance is growing 

quickly with the diffusion of web applications, in which a large amount of users may use the 

application in nearly anonymous way. Several approaches have been proposed in the literature to 

detect vulnerabilities in existing applications. In particular, several vulnerabilities are due to a lack 

of validation of the user input of an application, like XSS. As an example, buffer overflow 

vulnerability has been deeply studied, and different approaches have been proposed to detect and 

fix it ([Lar01], [Sha01], [Flaw], [RATS], [ITS4], [Mops], [Cow98], [Cow01]). 

Recently, [DaC03] addresses buffer overflow in C and C++ software, proposing an approach 

based on static analysis to individuate the so-called FLF (Front Line Functions), that are functions 

in which a validation test of input and/or output data is needed. 

A general approach to the problem of detecting vulnerabilities in Web Applications can be 

found in [Hua03]: this approach exploits fault injection and is based on a dynamic analysis of the 

application in order to deduce the presence of vulnerabilities in the application.  

Another detection technique is based on the installation of a software proxy between the web 

application server and the network, which intercepts malicious strings in input and/or output 

[Str02]. According to this approach, a commercial product has been realised, where the security 

policy is written in an XML-based language, called SPML (Security Policy Markup Language).  

Moreover, [Sco02a] and  [Sco02b] describe a proxy-based approach to prevent XSS attacks,  

which intercepts the http queries in input to a server page and the html response in output from a 

server page. In this way, it is possible to simulate XSS attacks in order to verify if a web application 

is vulnerable or not. This approach is promising, but requires knowledge of all the elements 

potentially vulnerable of the application, and for this reason has been used only for web application 

implemented with a specific language  [Big01]. 
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12.2.2 Cross site scripting (XSS) 

According to [Cgi], there is a Cross-Site Scripting attack when a client executes a page 

containing script code that has been injected from other sources.  

In [Idef03], details are provided about how XSS attacks may be carried out bypassing the 

“traditional” defensive barriers coded by programmers. 

A complete review on XSS attacks and defence techniques may be found in [Mic00], where also 

a complete list of possible effects resulting after an XSS attack are described.  

Some programming tricks that may be used during the development of Web Applications to 

avoid XSS vulnerability are described in [Whe02].  

In [Cert00], solutions that may be carried out directly by users are proposed. One of the 

proposed solutions recommends to disable script execution by browsers. However, this solution is 

often inapplicable because it reduces the functionality executable by the client side of the 

application. Rather, an effective attack prevention must be implemented by the server side of the 

application. 

There are two basic techniques to accomplish a XSS attack. The first one requires that malicious 

code is stored into a database, and therefore, once retrieved, it will finish to be executed by a client 

browser. 

The first technique [Cert00] is exemplified by the web application shown in Fig. 12.1. The 

application implements a guestbook, in which a visitor may write a message (using the page 

sign.html), which is stored into the database by the page sign.asp. The message may be displayed by 

other users (using the guestbook.asp page), retrieving it from the database. 

 

 
Sign.html 
<form method="post" action="sign.asp"> 
    <textarea name="txtMessage"></textarea> 
    <input type="submit" value="Sign!"> 
</form> 
 
 
Sign.asp 
<% Message=request.form("txtMessage") 
   conn=OpenDBConnection 
   set rs=server.createobject("Adodb.recordset") 
   rs.open "Guestbook",conn,1,2,2 
   rs.Addnew 
   rs("Message")=Message 
   rs.update 
%> 
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Guestbook.asp 
<% conn=OpenDBConnection 
   rs=server.createobject("Adodb.recordset") 
   rs.open "SELECT Message FROM GuestBook" ,conn,3,3 
%> 
<table> 
<% rs.movefirst 
   while not(rs.eof) 
 response.write (rs.fields("Message")) 
 rs.movenext 
   wend 
%> 
</table> 
<% rs.close 
   set rs=nothing 
   conn.close 
   set conn=nothing 
%> 

Figure 1: a Web Application implementing a guestbook 

 

A XSS attack can be performed if an attacker submits a string like the one shown in Fig.12.2 to 

sign.asp page: when a user will open guestbook.asp web page, values of its cookies are sent to the 

attacker. 

 

<script>location.URL= ‘http://www.attackersite.com/attacker.cgi?’ + 
document.cookie </script> 

Figure 12.2: A XSS attack string 
 

The second technique [Cert00] requires that the victim unconsciously executes a link containing 

itself malicious code (there are sophisticated techniques to hide the real content of a link to an 

inexpert user). As an example, let us consider the link shown in Fig.12.3, where a user would query 

the database to search for a word: 

 
<A HREF=http://www.site.com/search.asp?Word= <script> malicious code </script> >
 

Figure 12.3: A link containing malicious code 
 

The server page ‘search.asp’ (Figure 12.4), will send to the client the response to the query but 

also the malicious code, which is executed by the user browser. 
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<% word=request.querystring(“Word”) 
    // find if Word is in db  
   else 
     response.write (“The word “+Word+” isn’t in the DB”) 
   end if 
%> 

Figure 12.4: Server page search.asp 
 

Since XSS vulnerability is due to a lack of validation of user input, preventing vulnerability of 

an existing application would require that each input is submitted to a validation function. However, 

for an effective approach just input data affecting output data should be analysed. 

 

12.3. Detection of XSS vulnerabilities 

In this section, a technique for detecting vulnerabilities in a Web Application that exploits both 

static and dynamic analysis of the source code is presented. Static analysis is used to determine 

whether a server page is vulnerable to a XSS attack. Dynamic analysis is exploited to verify 

whether a Web Application with vulnerable server pages identified by static analysis is actually 

vulnerable. 

 

12.3.1 Assessing a server page XSS vulnerability by static analysis 

Although a Web Application is composed both by client and server pages, its vulnerability is 

due to server pages, since they are responsible for receiving the input data and outputting them.  

In order to detect the vulnerabilities of a server page, let’s consider its Control Flow Graph, 

CFG, and associate a label with the CFG nodes corresponding to statements performing input, 

output, definition or use of data variables. 

In particular, a CFG node is labelled as Input(v) if the corresponding statement assigns a value 

to a variable v that depends on a user input, a cookie, a database field value, or a data value read 

from a file. 

In the same way, a node is labelled as Output(v) if the corresponding statement outputs the 

value of the variable v in a file, a database, a cookie or a built client page.  

As an example, possible Input nodes are those associated with statements performing input of 

data from a HTML form, or reading the value of a query string, of a cookie, a database field, or any 
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data from a file. Output nodes are associated with statements writing a database field, a file, a 

cookie, or the built client page. 

The server page is potentially XSS vulnerable if there are a variable v and two Input(v) and 

Output(v) nodes that are connected by a CFG path. More precisely, a server page is vulnerable if 

there are a variable v, and two Input(v) and Output(v) nodes, such that all the CFG paths leaving the 

Input(v) node reach the Output(v) node, being def-clear with respect to v.  Finally, a server page 

including an input data item that does not affect any output is certainly invulnerable with respect to 

that input.  

Figure 12.5-a shows an example of a server page vulnerable with respect to the variable 

‘Message’. Fig. 5-e represents the case of an invulnerable server page with respect to the variable 

‘Message’.  

Figures 12.5-b, 12.5-c and 12.5-d show three examples of potentially vulnerable pages, whose 

actual vulnerability can be assessed by a further analysis of the source code. In particular, in Figure 

12.5-b, an input (i.e. the variable ‘Message’) becomes an output with some intermediate redefinition 

of the input; this case requires that the semantic of the statement redefining the input is analysed in 

order to verify if it corresponds to an input validation. 

Figure 12.5-c shows the case of a CFG with no intermediate redefinition of the input, but where 

an input may affect an output or not, depending on a selection statement; also in this case, it’s 

needed to verify if the selection statement implements an input validation.  

Figure 12.5-d illustrates the case of a CFG where either an input affects an output (eventually 

being redefined), or the input does not affects an output, depending on a selection statement; also in 

this case a semantic analysis is needed to verify if any input validation is done. 

 

Given a variable v of a server page P, and two CFG nodes I and O, where I is labelled as 

Input(v) and O as Output(v), the following predicates are introduced in order to define some rules 

for assessing the vulnerability of a server page: 

 

A(v): There exists a path on the CFG between I and O nodes. 

B(v): The O node postdominates I node. 

C(v): Each path between I node and O node is a def-clear-path. 

 

The following implications are verified, for each variable v: 

B(v) => A(v) 

C(v) => A(v) 
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Figure 12.5-a: Server Page 1 

 

 

Figure 12.5-b: Server Page 2 

 
 

Figure 12.5-c: Server Page 3 
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Figure 12.5-d: Server Page 4 

  

Figure 12.5-e: Server Page 5 

 

 

Figure 12.5-f: Server Page 6 
Figure 12.5-a,b,c,d,e,f – Examples of server pages with labelled Control Flow Graphs 

 

 

 

nI

1

2

10

nF

…

Input
Message

Output
Message

…

Def 
Message

3
…

Message

Message

nInI

1

2

10

nFnF

…

Input
Message

Output
Message

…

Def 
Message

3
…

Message

Message

nI

1

nF

…

Input
Message

nInI

1

nFnF

…

Input
Message

nI

1

2

8

nF

…

…

Input
Message

Use Message,
Def EncodedMessage

Output 
EncodedMessage

Message

Encoded
Message

nInI

1

2

8

nFnF

…

…

Input
Message

Use Message,
Def EncodedMessage

Output 
EncodedMessage

Message

Encoded
Message

<%
‘Read Message from input form
Message=request.form("txtMessage")
‘Check for string “script” in Message
if instr(1,Message,“script")>0 then

‘Encode Message value
Message=server.HTMLEncode(Message)
. . . open DB connection . . .
rs.open "Guestbook",conn,1,2,2
‘Store Message into the DB
rs.Addnew
rs("Message")=Message
rs.update   

else
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‘Read Message from input form
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These predicates can be used to characterize the vulnerability of the server page P by the 

following conditions PV, V and NV: 

 

PV) ∃v ∈ P: A(v) => P is potentially vulnerable with respect to v => P is potentially vulnerable 

V) ∃v ∈ P: B(v) AND C(v) => P is vulnerable with respect to v => P is vulnerable 

NV) ∃v ∈ P: NOT(A(v)) => P is not vulnerable with respect to v  

 

With respect to the first five server pages reported in Figure 12.5, Table 12.1 shows the truth 

values of the predicates A, B, and C, and of conditions PV, V, and NV with respect to the variable 

‘Message’. These examples cover all feasible combinations of the predicates A, B, and C. 

 

Table 12.1 : Predicates and Conditions values for Server Pages shown in Figure 12.5-a,b,c,d,e 

Server Page Predicate values Condition Input variable 
 A B C V PV NV  
1 T T T T T F Message 
2 T T F F T F Message 
3 T F T F T F Message 
4 T F F F T F Message 
5 F F F F F T Message 

 

 

The server page in Figure 12.5-f is an example of a page that is potentially vulnerable with 

respect to the input variable Message, since the output variable EncodedMessage directly depends 

on the input variable Message which has not been redefined before being assigned to the output 

variable. 

A five-step process allowing the vulnerability of a server page P to be assessed can be, 

therefore, proposed: 

 

• Identify the input and output nodes of the CFG of the page P; 

• Identify all paths leaving the input nodes on the CFG; 

• For each path leaving an input(v)  node and reaching an output(v) node, verify if the path is def-

clear with respect to v; 

• Evaluates A, B, and C predicates’ values with respect to v; 

• Evaluate the vulnerability of page P, by the PV, NV, and V conditions. 
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With reference to the second step of this process, in order to cope with the complexity of 

identifying all paths leaving the input nodes on the CFG, the analysis can be limited to a set of 

linearly independent paths extracted from the CFG.  

 

12.3.2 Vulnerability of a Web Application 

The vulnerability of a server page is a necessary condition for the vulnerability of a Web 

Application, but it isn’t a sufficient condition.  

For instance, a server page may send its output not directly to a client browser, but to another 

server page or to a persistent data store, such as a file, or a database. In these cases, if the 

components receiving the page’s output will validate it, the Web Application is protected from a 

possible XSS attack. In this case, the vulnerability of the server page does not imply the 

vulnerability of the Web Application. 

As an example, let’s consider the XSS attack carried out according to the first technique 

described in section 12.2.2. Vulnerability of that Web Application depends on: the vulnerability of 

server page sign.asp, which stores user input messages in a database; on the vulnerability of server 

page guestbook.asp, which sends messages retrieved in the database to a user; on the vulnerability 

of the database. In fact, if database has a sanitization mechanism (e.g. an encoding method), Web 

Application would be not vulnerable to a XSS attack carried out according to the first technique. 

In these cases, assessing the vulnerability of a Web Application entails that not only the single 

server pages, but all the software components that are interconnected with the pages are taken into 

account. An effective method to detect the Web Application vulnerability may involve dynamic 

analysis. In the next section, such a method is proposed.  

 

12.3.3 Using dynamic analysis for assessing a Web Application 
vulnerability 

Even if static analysis is able to detect vulnerable, or potentially vulnerable server pages, it is 

not able to establish whether the Web Application is actually vulnerable to a XSS attack. Indeed, 

some security mechanisms implemented either by the web server of the application, or by other 

software components, such as a software gateway, may make the Web Application invulnerable. 

Dynamic analysis based on the design and execution of XSS attacks may be used to determine if 

a Web Application is actually vulnerable. However, dynamic analysis cannot establish the 

invulnerability of a Web Application, since there may be any XSS attack strategy revealing 

vulnerability, which might not be taken into account in the test-case design. 
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Two different dynamic analysis strategies are proposed to reveal vulnerability of Web 

Applications with respect to the two different XSS attacks exemplified in section 12.2.2. Both 

strategies exploit static analysis results in order to detect vulnerable or potentially vulnerable pages, 

and input variables causing the vulnerabilities. Therefore, only these pages are submitted to a XSS 

attack for each variable causing the vulnerability. A set of XSS attack strings, such as the ones 

proposed in [Idef03], [Mic00], [Cert00], [Ohm02], [cgi], or published in bugtraq repositories, such 

as [BugT1] or [BugT2] should be designed for each input variable and submitted to the Web 

Application during dynamic analysis. Therefore, the results of the analysis are checked in order to 

assess whether the attack is successful or not. A possible successful attack accomplishes the theft of 

the values of the set of client cookies, which are sent to the attacker’s server. Another common 

attack will cause the forced loading in the client browser of an attacker web page, which reproduces 

a trustworthy web page, and where the user might insert private data that are submitted to the 

attacker’s server. 

The following algorithm describes the proposed testing strategy: 
FOR EACH vulnerable or potentially vulnerable page P of the Web Application

  FOR EACH input field I of page P causing 
  vulnerability 
    Define a set S of XSS attack strings 
    FOR EACH s ∈ S 
       EXECUTE server page P with  
       input field I=s  
       Check for attack consequences 
 

Vulnerabilities of the first type are more difficult to be detected, because a XSS attack will have 

to inject malicious data that will not be directly provided to the user, but are stored in a persistent 

data store. Therefore, effects of a XSS attack may be observed only if another functionality of the 

Web Application will send the injected data to the final user. Consequently, after an attack has been 

accomplished, all the Web Application functions that read data from a persistent data store should 

be exercised in order to discover attack’s consequences. A test suite covering these functions may 

be executed to reach this aim.  

The following algorithm describes the proposed testing strategy: 
FOR EACH vulnerable or potentially vulnerable page P of the Web Application

  FOR EACH input field I of page P causing 
  vulnerability 

    Define a set S of XSS attack strings 
   FOR EACH s ∈ S 
      EXECUTE server page P with  
      input field I= s 
     FOR EACH test case T from the test suite  

        EXECUTE test case T 
        Check for attack consequences 
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This strategy may be supported by a Web Application testing tool that automatically executes 

the test cases. Some tools have been proposed in the literature to support testing of Web 

Applications, such as VeryWeb [Ben02], and TestWeb [Ric01]. The testing tool WATT (Web 

Application Testing Tool) [Dil02b] has been used to carry out the vulnerability testing according to 

the proposed strategy. This tool has been interfaced with a XSS Test Case Generator module, which 

generates automatically XSS attack test cases, and stores them in the WATT Test Case Repository. 

WATT has been used to execute the attacks, and therefore to exercise the Web Application with a 

suitable test suite. The results of the test execution were checked in order to assess the success of 

the attack. 

 Figure 12.6 shows how the XSS test case generator, and the WATT tool can be used to 

automatically support dynamic analysis. 

 

 
Figure 12.6: XSS testing strategy 

 

 

12.4 A case study 

In order to assess the effectiveness of the proposed method, a number of web applications 

implemented with server scripting languages, such as ASP and PHP, have been submitted to the 

vulnerability analysis. Open source web applications with declared XSS vulnerabilities have been 

searched for, in order to verify if the method is able to discover the declared vulnerability. Bugtraq 

web sites, such as [BugT1] and [BugT2], have been queried to select suitable applications. As an 
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example, the 3.4.03 release of the ‘Snitz Forum’ [SnF] application is declared as vulnerable to XSS 

attacks of the first type, and therefore it has been considered for the experiment. 

Snitz Forum implements a discussion forum providing several user functions. The search.asp 

page, that interfaces the user and accepts his requests of searching for a word or a sentence among 

the messages stored in the forum, was analysed. This page was vulnerable to the second type of 

XSS attacks.  

 During the experiment, this page has been submitted to the static analysis process described in 

Section 12.3.1. The page resulted vulnerable with respect to the input variable Search that is read 

and written by the statement reported in Fig. 12.7. Then, this page satisfies predicates A, B, and C 

with respect to the variable Search.  

 
 
Response.Write “<input type=""text"" name=""Search"" size=""40"" value=""" & 
Request.QueryString("Search") & """><br />" & vbNewLine 
 

Figure 12.7: a fragment of server page search.asp (Snitz Forum 3.4.03) 
 

The dynamic analysis confirmed that the Web Application was actually vulnerable with respect 

to this variable. Table 12.2 reports the test case used to carry out the exploit: the input string 

including the malicious script that showed the vulnerability is reported.  

 

Table 12.2 
Test 
case 

Input Variable Expected Output 
Action 

 Search  
1 “><script>location.URL= 

‘http://www.attackersite.com/attacker.cgi?’ + 
document.cookie) </script> 

Client Cookie 
redirected to a 
page of attacker’s 
server 

 

Static analysis revealed also two data variables causing potential vulnerability. Figure 8 reports 

an excerpt of the page source code, and figure 12.9 shows the CFG of the page. The Input variable 

causing potential vulnerability was the ‘rs’ recordset variable, which is assigned a value by the 

statement at line 7. This variable includes two fields that affect indirectly, through the 

allMemberData variable (assigned in line 11), the MembersMemberID variable that is defined at 

line 20 and outputted in line 22, and the MembersMemberName variable, defined at line 21 and 

outputted in line 22.  On the CFG in figure 9 the data dependences between these variables have 

been represented by dashed lines. 
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This page is potentially vulnerable with respect to the input variable ‘rs’, since ‘rs’ satisfies the 

A condition (i.e., there is a path between nodes 7 and 22). On the other side, B and C conditions are 

not true (B is false since there are more paths from the input node 7 that do not reach the output 

node 22, while C is false because ‘rs’ is redefined at line 11). The semantic analysis  of the source 

code shows that no effective validation of variables ‘rs’ and ‘MembersMemberID’ is implemented 

in the code, so any malicious data from input will reach the output node. On the other hand, the 

variable MembersMemberName is checked by the ChkString user function (cfr. line 22), that 

implements an effective output validation, according to the semantic analysis of the code that has 

been carried out.  

Dynamic analysis was, therefore, carried out  in order to assess the actual vulnerability of the 

Web Application with respect to these two variables. Although the potential vulnerability, no attack 

string succeeded, due to a security mechanism embedded in the DBMS, that accept only integer 

values for the field whose value is assigned to the variable ‘MembersMemberID’. 

 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
 
23 
24 

‚## Forum_SQL 
strSql = “SELECT MEMBER_ID, M_NAME “ 
strSql = strSql & “ FROM “ & strMemberTablePrefix & “MEMBERS” 
strSql = strSql & “ WHERE M_STATUS = “ & 1 
strSql = strSql & “ ORDER BY M_NAME ASC;” 
set rs = Server.CreateObject (“ADODB.Recordset”) 
rs.open strSql, my_Conn, adOpenForwardOnly, adLockReadOnly, adCmdText 
if rs.EOF then 
  recMemberCount = “” 
else 
  allMemberData = rs.GetRows(adGetRowsRest) 
  recMemberCount = Ubound(allMemberData,2) 
  meMEMBER_ID = 0 
  meM_NAME = 1 
end if 
rs.close 
set rs = nothing 
if recMemberCount <> “” then 
  for iMember = 0 to recMemberCount 
    MembersMemberID = allMemberData(meMEMBER_ID, iMember) 
    MembersMemberName = allMemberData(meM_NAME, iMember) 
Response.Write “<option value=””” & MembersMemberID & “””> “ & 
ChkString(MembersMemberName,”display”) & “</option>” & vbNewline 
  next 
end if 

Figure 12.8: a fragment of server page search.asp (Snitz Forum 3.4.03) 
 

This second case of vulnerability was not declared by the Bugtraq sites (since it reports only 

actually exploited vulnerabilities), while the proposed method was able to detect it. This was a 

valuable result, since the potential vulnerability might become an actual one, if the type of the 

involved database field was changed from integer to string. 
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Figure 12.9: Labelled CFG of the fragment of search.asp in figure ff 

 

As a further validation, the code of the search.asp page from the 3.4.04 release of the Snitz 

Forum Web Application has been analysed. In this release, the code showed in Fig. 12.7 has been 

corrected as it is reported in Figure 12.10. Static analysis revealed that predicates A and B were true 

with respect to variable Search, while predicate C was false because the value of the output variable 

was modified by functions trim and ChkString. The page was therefore potentially vulnerable, 

according to this method, and the vulnerability depended on the ChkString validation function. 

Dynamic analysis was not able to exploit the application. 

 
Response.Write ”  "<td bgColor=""" & strPopUpTableColor & """ 
align=""left"" valign=""middle""> <input type=""text"" name=""Search"" 
size=""40"" value=""" & trim(ChkString(Request.QueryString("Search"),"display")) 
& """><br />" & vbNewLine & _ 

Figure 12.10: a fragment of server page search.asp (Snitz Forum 3.4.04) 
Further details about this technique can be found in [Dil04d]. 
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Chapter 13: A maintainability model for Web Applications 
 

In this chapter a maintainability model of a Web Application is presented. This model is an 

adaptation of the one proposed by Oman and Hagemeister [Oma92] for traditional software 

systems. New metrics have been defined while existing metrics are adapted to Web Applications. 

These metrics can be automatically evaluated from the information recovered by the Reverse 

Engineering approach described in the previous chapters. A case study reporting the value of these 

metrics for some Web Applications under analysis is discussed, with the aim to compare the 

maintainability of these Web Applications. 

 

13.1 Introduction 

As already discussed in this Thesis, technologies and development techniques that are used to 

realize a Web Application make them harder to maintain (cfr. Chapter 7). To avoid a software crisis 

for the Web Applications there is a strong need to urgently address the definition and the 

experimentation of methodological approaches, techniques and tools supporting an effective 

maintenance of existing Web Applications. Analogously, there is a strong need also for methods 

and models to assess the maintainability of existing Web Applications in order to have a valuable 

support to successfully estimate the effort of a maintenance intervention. 

While dealing with Web Application’s maintainability assessment, the first step to achieve is the 

definition of software attributes affecting maintainability; the related model for such Web 

Applications is consequently carried out. 

Web Applications are substantially different from traditional software systems; thus, models and 

metrics defined for traditional applications cannot be ever applied to Web Applications, because 

they could not fit well in describing those new features (such as the hyper-textual based structure, or 

the usage of several technologies and programming languages to code web pages, or the dynamic 

generation of HTML pages) characterizing Web Applications' and affecting Web Applications’ 

maintainability  

Since a few years, Software Engineering Research Community has been dealing with problems 

about Web Application metrics in order to estimate Web Application developing efforts and 

evaluate some Web Application quality attributes.  

In [Men01] some web metrics are defined and used to generate models for estimating, in the 

early phases of development, the effort to design a Web Application. The problem to estimate web 
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based software development and duration is discussed also in [Rei00], where new sizing metrics, 

derived by metrics used for traditional software and adapted to the new Web Applications context, 

are defined and used in an estimation model called WebMo, derived as an adaptation of the 

CoCoMo II model [Boe00]. 

Jeff Offutt, in [Off02] discusses about the differences among traditional applications and Web 

Applications and indicates the main quality attributes to be considered for Web Applications and 

which are the main Web Application features that can affect them.  

The maintainability is one of the critical aspects of a Web Application: Web Applications have 

to be modified and evolve in a very fast way, then those features affecting it should be defined, 

identified and evaluated in order to improve/reduce the ones that have a positive/negative impact on 

the maintainability both during the development and maintenance process of a Web Application. 

Unfortunately, there are a very few works in the literature addressing the problem of assessing 

the Web Application maintainability, even if in [Bre98] web based applications were considered as 

the 'next maintenance mountain'.  

In this chapter a maintainability model for Web Applications is proposed. The model is derived 

from the maintainability model proposed in [Oma92] by Oman and Hagemeister for traditional 

systems. This model is adapted to Web Applications, considering architectural and structural 

peculiarities that make Web Applications different from traditional systems. Proper metrics are 

defined in order to carry out an estimation of Web Application maintainability that can be expressed 

as a function of those metrics.  

The current state of this research does let to compare maintainability of different Web 

Applications, but evaluating the maintainability level of a Web Application from an absolute 

viewpoint is not yet possible. Collecting and analysing data from appropriate experiments is needed 

in order to defining exactly coefficients of each metric to compose the maintainability function.  

This model doesn’t take into account all the aspects of maintenance, in terms of phases and 

documentation. This is due, mainly, to the following reasons. 

The major aim is to support decision-making: the model is just a prediction tool whose required 

effort is neglectable. 

Model is focused on the source code: in the most critical cases, it is the only available 

documentation; in the usual web application lifecycle, the source code is the most handled 

document. 
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13.2 A maintainability model for Web Applications 

Many papers discussing maintainability models for traditional software systems are present in 

literature. Among these, the one proposed by Oman and Hagemeister seems to us the most 

exhaustive and complete. It has been chosen as reference model for deriving a suitable one to define 

the maintainability of a Web Application. 

 

13.2.1 The Oman and Hagemeister maintainability model  

In [Oma92], Oman and Hagemeister presented a maintainability model based on a hierarchical 

tree structure comprehending 92 attributes affecting the maintainability of a software system. The 

leaf nodes in the hierarchy represent an identified maintainability attribute and, for each of these, 

attribute metrics are defined to evaluate that maintainability characteristic. 

In Figure 13.1 the top level of the OHMM hierarchy is showed. At this level, three main 

categories of factors are pointed out: 

- Management: practices of management employed, and facts related with them; 

- Operational environment: environment, in terms of hardware and software, involved in the 

operation of the system under examination; 

- Target Software System: the examined software system under maintenance, including the 

source code and support documentation. 

Oman’s work focuses mainly on the Target Software System; Figure 13.2 shows a detail of the 

sub-tree concerning this category.  

Three major categories can be identified in this sub-tree: 

- Maturity Attributes: maintainability characteristics referring to the maturity degree of the 

system under evaluation, relying on the aging, stability, reliability, number of defects; and number 

of maintenance interventions, techniques of development used; 

- Source Code: maintainability characteristics due to those ones of the source code; 

- Supporting Documentation: maintainability characteristics due to the supporting 

documentation; they are divided in two categories: 

- Documentation Abstraction: characteristics related with content (completeness, correctness, 

and descriptiveness) of supporting documents set; 

- Physical Attributes: characteristics related with the form (readiness, modifiability) of 

supporting documents set. 
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Figure 13.1 The Oman and Hagemeister top level Software Maintainability hierarchy  

(extracted from [Oma92]) 
 

 

Figure 13.2 The Target Software System subtree of the Oman and Hagemeister Software 
Maintainability hierarchy (extracted from [Oma92]) 

 

The Source Code category is divided in three sub-categories, each divided in two sub-categories 

(i.e. System and Component) in order to distinguish attributes characterizing either the overall 

system or single components forming it. 
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- Control Structure: it includes characteristics concerning the way either the system or the 

program is decomposed (characteristics of the implementation, or code) 

- System: characteristics concerning inter-modular control attributes, specifically referring to 

the way system is decomposed in modules, the way modules are coupled, and the way in which 

algorithms are implemented. 

- Component: characteristics concerning attributes about intra-modular control flow and 

module execution. 

- Information Structure: includes characteristics concerning choice and use of data structures 

and inter- and intra-modular data flow: 

- System: characteristics of information regarding the memorization and flow of data in the 

system, as global data types, global data structures, nesting of data structures; 

- Component: characteristics of information, at the level of a single module, concerning the 

memorization and manipulation of data within a system module, such as local data types, local data 

structure, coupling. 

- Code typography, naming and commenting: including characteristics about the 

typographical layout, names and comments of the code: 

- System: Characteristics related to typographical layout of source code and to comments 

related to the overall system as general formatting of programs, conventions for the names, and 

module separation. 

- Component: characteristics concerning the typographical layout of source code and 

comments, at level of a single module, such as vertical spacing, comments in the module, indenting 

of statements. 

The current work focuses on the category of the Source Code and, more specifically, on the sub-

categories of Control and Information Structure. Adaptation of attributes and metrics concerning 

these categories to the case of Web Applications is discussed in the following. 

These adaptations are influenced by and refer to components typically forming a Web 

Application. Components forming a Web Application, and the main relationships among them, are 

introduced and discussed in the next section. 

 

13.2.2 Traditional Systems and Web Applications 

The OHMM was developed with reference to traditional (Legacy) systems. These systems are 

usually composed of a set of programs (or modules), linked by calling relationships and different 

kinds of data coupling, and running just on one centralized computer. Moreover, the programs are 
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usually coded just using one programming language (or at least very few different programming 

languages) and they are executed in a static way (i.e. no program or code component is created at 

run-time).  

On the contrary, Web Applications are usually composed of different kinds of items coded with 

different programming/scripting languages; Web Applications' components may be executed on 

different computers in a distributed architecture, and some components can be generated at run-

time; among Web Applications' components may exist different kinds of relationships connecting 

them. 

 

13.3 Adapting Oman and Hagemeister maintainability model to Web 
Applications  

The differences between traditional systems and Web Applications have to be considered to 

apply the OHMM to Web Applications: the original model has to be modified to be efficiently and 

effectively used with Web Applications. 

In the following the proposed modifications to apply to the OHMM for estimating the 

maintainability of a Web Application are reported. 

 

Table 13.1 Web Application Metrics at System Level 

Metric Name Description 

TotalWebPage#  Total number of Web Application pages 
TotalWebPage#= TotalServerPage# + TotalStaticClientPage# 

TotalLOC# Total number of Web Application LOCs 
TotalLOC# = TotalServerPageLOC# + TotalStaticClientLOC# 

ServerScript# Total number of Web Application server scripts  

ClientScript#  Total number of Web Application client scripts 

WebObject#   Total number of Web Application web objects 

InterfaceObject# Total number of Web Application Interface Object 

TotalData# Total number of different data identifiers 

I/OField# Total number of Web Application form fields + number of I/O data 
from/to mass storage devices 

TotalConnectivity# Total number of relationships among web pages 
TotalConnectivity# = Link# + Redirect# + Submit# + Build# +Include# 

TotalLanguages# Total number of programming/scripting languages used to implement 
the Web Application 
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Firstly, a set of simple metrics is defined. These metrics characterize a Web Application either 

at system and component level, and then these metrics are used to evaluate the attributes. Table 13.1 

and Table 13.2 report these metrics. 

The metrics in the Table 13.1 aim to provide a structural size of the whole Web Application by 

counting the total number of components it consists of. In the following some remarks about these 

metrics are provided. When computing TotalWebPage# the Built Client Pages are not considered 

because there is not a physical source file corresponding to them; the reason is because a maintainer 

will operate on the source generating a built page. A problem exists about what has to be considered 

a LOC in Web Application: is it correct to consider as a LOC the text data that is displayed by a 

client page? In this work these lines of text have been counted too, because the idea is that they 

contribute to make more complex the execution of a maintenance operation.  

 

Table 13.2 Web Application Metrics at Component Level 

Metric Name Description 

WebPageTag# Number of tags in the page 

WebPageScript# Number of scripts in the page 

PageWeb Object#  Number of web objects in the page 

WebPageI/O# Number of form fields in the page + number of I/O data from/to mass 
storage devices 

WebPageRelationships# Number of relationships that page has with the other pages 
WebPageRelationships#= PageLink# + PageRedirect# + 
PageSubmit# + PageBuild#+PageInclude# 

PageCodeSize Number of source LOCs forming the page 

PageInterface# Number of Interface Objects referred in the page 

WebObjectSize Number of source LOCs forming the web object 
Note: This metric is used just only for those web objects whose 
source code is available 

WebPageData# The number of data different data identifiers in the Page 

WebPageDataCoupling# The number of data exchanged with other Web Pages 

InnerComponents# The number of inner components composing the page: 
InnerComponents# = PageForms# + PageWebObjects# + 
PageScripts# + PageFrames# 

WebPageComplexity# The cyclomatic complexity of the page 

WebPageControlStructures# The number of Control Flow Structures  

PageLanguage# Number of programming/scripting languages used to implement the 
page 

ScriptSize Number of source LOCs forming the Script 
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Moreover the web page count, the total number of scripts blocks have been considered (both 

server and client side ones), web objects, and interface object because their number provides an 

index of the Web Application general structural complexity (e.g. a greater number of scripts would 

mean a greater algorithmic complexity). The TotalData# and the InputField# would provide the 

Web Application complexity due to the data involved in the Web Application and to the user 

interactions. The TotalConnectivity# would indicate the overall Web Application complexity due to 

the control coupling among the Web Application pages. Finally the TotalLanguages# give us an 

index of the Web Application complexity due to the usage of several different 

programming/scripting languages. 

The metrics in Table 13.2 aim to provide information about the structural complexity of a web 

page both by its internal composition and when connected to other pages. In particular the 

WebPageDataCoupling# and WebPageRelationships# metrics can provide an index of ripple effects 

among the pages. 

In the OHMM the main system basic unit is the module or program, that is mainly characterized 

by its size in KLOC, the data it refers to, the number of control flow structures used to implement it, 

the control and data coupling it has with the other modules or programs. 

In a Web Application the basic unit is the Web Page that is mainly characterized by its inner 

components (forms, scripts, web objects, and so on - these components are referred as page sub-

components in the following), its size in LOC, the tags and the control flow structures used to 

implement it, the data it refers, the connections it has with other pages. 

The common elements, the differences and the analogies existing between traditional systems 

and Web Applications are used to adapt the OHMM to Web Applications. The present work has 

been focused just on the Source Code Characteristics and in particular on the Control and 

Information sub-characteristics. 

The Tables 13.3 to 13.6 reports the considered attributes and the metrics needed to evaluate 

them, for the Web Application Maintainability Model (WAMM).  

In the Tables the new attributes have been highlighted writing (NEW) after the attribute name, 

while the word 'SAME' in the description field means that the same definition of the OHMM is 

used for the WAMM. 

While adapting the OHMM to WAMM, 12 new attributes have been introduced, 2 ones have 

been deleted (i.e. Encapsulation and Span of Control Structures) and all the others have been 

adapted to the Web Applications by defining them using the simple basic Web Application metrics 

in Tables 13.1 and 13.2. 
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Table 13.3 Web Application Control Structure  

Maintainability Attributes and Metrics at System Level 

System Attribute Web Application System Metrics 

Size (NEW) [TotalWebPage#, TotalLOC#, WebObject#,  ServerScripts#, ClientScripts#, 
TotalLanguages#] 

Modularity [TotalWebPage#, Average PageCodeSize] 

Complexity Total Cyclomatic Complexity 

Consistency [Standard deviation of PageCodeSize, Standard deviation of 
WebPageComplexity# 

Nesting [Max number of InnerComponents#, Max depth of sub-components nesting, 
Average of nested sub-components per page, % of nested components] 

Control Coupling Total WebPageRelationships# / TotalWebPage# 

Data Coupling 
(NEW) 

Total WebPageDataCoupling# / TotalWebPage# 

Module Reuse Include# / TotalWebPage# 

Control Flow 
Consistency 

Total number of dead relationships interconnecting Web pages 

 

Table 13.4 Web Application Control Structure  

Maintainability Attributes and Metrics at Component Level 

Component Attribute Web Application Component Metrics 

Size (NEW) PageCodeSize 

Modularity [PageCodeSize, TotalWebPage#] 

Complexity Web Page Cyclomatic Complexity 

Use of Structured Constructs WebPageControlStructures# 

Use of Unconditional Branching SAME 

Control Structure Nesting SAME 

Web Page InnerComponents (NEW) InnerComponents# 

PageLanguages PageLanguage# 

Density of Control Structures (NEW) WebPageControlStructures# / PageCodeSize 

Control Coupling (NEW) WebPageRelationships# 

Data Coupling (NEW) WebPageDataCoupling# 

Cohesion SAME 
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Table 13.5 Web Application Information Structure  

Maintainability Attributes and Metrics at System Level 

System Attribute Web Application System Metrics 

Data Size (NEW) [TotalData#, Total number of data references] 

Global Data Total number of global data/ TotalData# 

Global Data Structures Total number of global data structures/ 
TotalData# 

System Coupling Total WebPageDataCoupling#/ TotalData# 

Data Flow Consistency Total number of anomalous data usage/ 
TotalData# 

Data Type Consistency SAME 

Nesting SAME 

I/O Data (NEW) I/OField# 

Density of Data (NEW) TotalData# / TotalWebPage# 

I/O Complexity SAME 

I/O Integrity SAME 

 

Table 13.6 Web Application Information Structure  

Maintainability Attribute and Metrics at Component Level 

System Attribute Web Application System Metrics 

Web Page Data Size (NEW) [WebPageData#, Total number of data 
references in the Web Page] 

Local Data Structures Total number of data structures in a Web Page 

Data Coupling WebPageDataCoupling# 

I/O Data (NEW) WebPageI/O# 

Initialization Integrity SAME 

Span of Data WebPageData# / PageCodeSize 
 

The Maintainability of a Web Application, with reference to the Source Code Control and 

Information Structure characteristics, may be expressed as a function of the 39 attributes described 

in tables 13.3 to 13.6: 

Web Application Maintainability = F(γi Ai), i=1 .. 39 

 

where Ai is the value of  i-th  maintainability attribute and γi is the weight to assign to that 

attribute according to how much the attribute affects the maintainability. The definition of the 

values of such weights requires the availability and the analysis of (historical) data from several 
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maintenance operations on different Web Applications. At the current state of the work there is not 

yet a meaningful amount of such data to be able to define the γi values, this task will be a future 

work for this research. However an initial analysis have been conducted for some Web Applications 

from real world. For these applications the attributes of WAMM have been computed and some 

simple experiments for a first validation of the effectiveness of the model have been carried out. 

The initial results are presented and discussed in the next section. 

 

13.4 Case Study 

Four web applications with different features, and implemented using ASP, Javascript, and 

HTML technologies, were selected for the case study. From here on, for sake of brevity, these 

applications are named WA1, WA2, WA3, and WA4. Some of these applications have been also 

considered in the case studies reported in the previous chapters. 

WA1 is a source freeware application implementing a flexible discussion forum. WA2 is a 

freeware application supporting the realization of a customisable portal. WA3 is an application 

managing the on-line services provision for an undergraduate course. WA4 is a prototype of an e-

commerce application supporting the buying of mp3 files.  

The metrics described in the previous tables have been computed and used for providing a 

qualitative analysis of the Web Applications maintainability. 

The most part of the metrics has been measured automatically by using the tool WARE and 

another tool developed just to support the computation of some Web Application metrics. The tools 

statically analyse the Web Application source code in order to compute the metrics. The remaining 

part of the metrics was achieved in semi-automatic way based on the results provided by the two 

tools: the cost for this kind of measuring was low, in terms of effort required and experience needed 

for the measurer. Such analysis is mainly localized on the single lines rather than on the overall 

structure of the application. 

For sake of brevity in Tables 13.7 and 13.8 just some of the computed metrics are reported. This 

is the reason why Component Level Metrics are neglected. However, notice that System Level 

Metrics represent a synthetic expression of Component Level Metrics. 

In this first case study then attention has been focused on some attributes, and related metrics, 

that are supposed to affect the maintainability harder than other ones. In particular, the Size, 

Complexity, Control and Data Coupling attributes have been considered.  

In the following some remarks resulting by the analysis of the data in Tables 13.7 and 13.8 are 

reported.  
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When considering the System Size of a Web Application, all the items in 6-ple in Table 13.3 

have to be taken into account. Indeed, the TotalWebPage# may not be significant if considered as a 

whole and by alone, but it is more significant when specifying its composition in term of the server 

and client pages, because these values provide an index on which side (server or client) the most of 

the Web Application complexity is. Moreover it is more and more significant when considered 

together other metrics. For example, let’s notice that WA3 and WA1, from Table 13.7 have a 

similar TotalWebPage# then, from this perspective the two applications seem to be very similar. By 

using also the TotalLOC# metrics for those Web Applications, the TotalLOC# Ratio is 1:2.7 and 

the TotalServerPageLOC# ratio is 1:3.2. From this perspective, WA1 is much greater than WA3 

and, moreover, harder to maintain, due to larger number of TotalPageLOC# and in particular for the 

number of TotalServerPageLOC#.  

Then it is possible to suppose that the maintenance’s effort is greater on the server side, where 

the most of the business logic is usually implemented, than on the client side. In this perspective, 

metrics concerning server side parts of Web Applications are good candidates for predictors of 

effort for maintenance interventions. 

The Complexity attribute evaluation provides an indicator about the effort of maintenance 

intervention with specific regard to the business logic. From Table 13.7 it appears that WA1 is more 

complex than WA2 according to Total Cyclomatic Complexity metric with a ratio of 4:3, 

notwithstanding that the size of WA1 and Wa2 is almost the same in terms of TotalLOC#. 

Consequently, as well as in traditional software, in web applications size and complexity are not 

strictly related, but they have considered together to obtain useful information about the Web 

Application maintainability. 

A high Coupling may negatively affect the impact of maintenance interventions [Bri99].  

In a Web Application the kind of connections and thus the kind of control coupling, entails 

different consideration on the effort of maintenance intervention to implement. From Table 13.7 it 

seems that WA1 gets much more connections than WA2, WA3 and WA4, but about the 80% of 

WA1’s connections are hypertextual links, which rarely bring data and business logic: usually, they 

are just used for navigation purposes. On the contrary, WA2 has a greater number of submit 

connections, that may be more complex to be maintained than the previous ones, because usually 

they are used to implement a user function and involve the exchange of data from a client page to 

the server page that will elaborate that data. 

As well as in traditional software, variables amount and reference frequency are further 

indicators of the complexity of the information structure of a web application and its components. 

From this perspective WA1 is the most complex one. 
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Table 13.7 Web Application Control Structure Maintainability Measures at System Level 

  WA1 WA2 WA3 WA4 

Size TotalServerPage# 71 126 75 22 

 TotalClientPage# 0 0 23 19 

 TotalWebPage# 71 126 98 41 

 TotalBuiltClientPages#  56 53 74 21 

 TotalLOC# 21994 22062 8025 2689 

 TotalServerPageLoc# 21994 22062 6895 2098 

 TotalStaticClientPageLoc# 0 0 1040 600 

 WebObject# 0 0 0 0 

 TotalLanguages# 3 3 3 3 

Modularity Average Page CodeSize 309,8 175,1 81,9 65,6 

Complexity Total CYclomatic 
Complexity 

2936 2206 532 143 

Consistency Standard deviation of 
PageCodeSize 

466,8 226,7 29,6 41,1 

 Standard deviation of 
WebPageComplexity 

49,5 22,4 1,5 3,8 

Control 
Coupling 

Total WebPage 
Relationship# / 
TotalWebPage# 

17,6 5,4 1,1 3,6 

 Link# 810 182 51 93 

 Submit# 60 86 49 20 

 Redirect# 117 17 8 32 

Data 
Coupling 

Total WebPage 
DataCoupling# / 
TotalWebPage# 

11,3 6,1 1,4 1,4 

Module Reuse Include# / TotalWebPage# 3,7 5,4 0,6 0,4 

 

Table 13.8 Web Application Information Structure Maintanability Measures at System Level 

  WA1 WA2 WA3 WA4 

Data Size TotalData# 1147 1088 613 146 

 TotalDataReferences# 17102 11059 3153 788 

System 
Coupling 

Total 
WebPageDataCoupling# 
/ TotalData# 

0,7 0,7 0,2 0,4 

Density of 
Data 

TotalData# / 
TotalWebPage# 

16,2 8,6 6,3 3,6 
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By summarizing WA1 results the most complex application in terms of Size and Data while 

considering the Control Coupling WA1 is the most complex one for the number of connections, 

while WA2 is the most complex one for the kind of connections. 

Further details about the maintainability model presented in this chapter can be found in 

[Dil04c]. 

 

13.5 Future Works 

Empirical studies are needed to evaluate if the model is effective to assess the degree of 

maintainability of a Web Application. More specifically, a relevant goal is the evaluation of 

applying WAMM on data about a Web Application’s story. 

Metrics’ effectiveness in predicting effort is strictly dependent on the kind of intervention to 

perform (i.e., intervention on user interface mainly regard client side pages). Referring to Web 

Application Maintainability’s formula in section 13.2.3, the weight γi could be related to the 

influence of the attribute Ai on the kind of intervention. Although, such considerations are 

preliminary and need a further empirical validation, the WAMM’s set of metrics seems to furnish a 

good quantitative support for building a theory in this direction. 
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Chapter 14: Conclusions  
 

A Reverse Engineering approach has been described in this Ph.D. Thesis. The purpose of the 

approach is the recovering of knowledge from the analysis of the source code of Web Applications, 

supporting their maintenance and evolution. 

A method to extract detailed information about the structure of the components of a Web 

Application analysing the source code has been proposed and described in this Thesis. The 

extracted information has been represented as a UML Class diagram, according to the model 

presented in Chapter 3. The tool WARE, described in chapter 6, allows the browsing of the 

recovered information in a very easy and intuitive way and provides a useful support to the process 

of the comprehension of structure and behaviour of the Web Application components. So, it 

provides a great help for the Engineer that has to carry out any maintenance intervention on the 

Web Application. 

The problem of recovering high-level abstractions has been addressed from several points of 

view. A clustering technique to group the Web pages in subsets highly cohesive and loosely 

coupled has been defined to identify the groups of Web pages implementing the provided user 

functions. Moreover, a method has been defined to assign automatically a concept to a Web page or 

a group of pages. This method can be also useful for developing a search engine or for migrating to 

the Semantic Web. 

Another problem that has been addressed is the automatic identification of Interaction Design 

Patterns analysing the source code of Web pages. The identification of these patterns provides 

further information to better and easier comprehend the functionality realized by Web pages. 

Moreover, a technique has been proposed to recognize Web pages and components having identical 

or similar structures. Applying this technique to the set of pages and components of a Web 

Application, cloned components may be recognized. The presence of cloned components can be 

due to a poor design of the software. So, a reengineering of the cloned components would improve 

the quality of the application. Moreover, it is possible to detect plagiarism (comparing pages and 

components of different Web Applications) and to compare different version of the same Web 

Application. Another application of this technique consists of comparing the different client pages 

that are built from the same server page, with the aim to recognize if the outputs of different 

executions of a server page are the same. 

Some other methods and techniques have been defined to abstract business level UML use case 

diagrams, class diagrams and sequence diagrams. These diagrams show a set of views that are 
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independent from the technological and architectural constraints due to the coding of the Web 

Application with scripting languages. 

Another method has been proposed, facing the problem of the assessment of the vulnerability of 

the Web Application components to the Cross Site Scripting attacks. This method allows verifying 

if the components of the Web Application are intrinsically vulnerable to this kind of attacks.  

Finally, a maintainability model for Web Applications has been defined. The model includes 

metrics that can be evaluated from the information extracted by the proposed Reverse Engineering 

approach. A tool has been developed that automatically calculates these metrics. These measures 

can represent a useful factor for decision-making processes. 

 

14.1 Future Works 

Future works are needed to better integrate the tools that have been realized and to better 

integrate the produced results. Some of the future works have already been discussed in the 

previous chapters. So, the focus of this subsection is limited to the future applications of the 

proposed techniques to face other Web Engineering problems. 

In this Thesis, the automatic extraction of information from the source code of Web 

Applications is based on static analysis techniques. As a future work, the problem of the automatic 

extraction of information from the analysis of the execution of a Web Application will be 

addressed. Tools have to be developed to provide the needed automatic instrumentation of the 

source code of Web pages (the information extracted with the static analysis can be a useful support 

to this task) and to recover information from the execution of the instrumented Web Applications.  

Future works will be addressed to the definition of methods and techniques to support the 

migration or the integration of Web Applications to Web Services. Also in this case high-level 

abstractions, recovered with the methods proposed in this Thesis, are a good starting point to define 

transformation and migration processes.  

Other future works will be devoted to the testing of Web Applications. The Reverse 

Engineering approaches and tools presented in this Thesis have already been used to support the 

testing of Web Applications [Dil02b]. Tool WARE supports the identification of the components to 

be tested, while the other methods support the identification of the functionalities to test. Nowadays, 

some testing tools are under developing, supporting the automatic testing of Web Application.  

As regards the quality assessment, the methods and the tools presented in this Thesis will be 

extended to assess the aging of a Web Application and to assess the efficacy of reengineering 

maintenance intervention, as regards improving the maintainability of the applications. 
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Finally, the problem of assessing the accessibility of a Web Application will be addressed too, 

by defining methods and techniques based on the extracted information recovered by the proposed 

Reverse Engineering approaches.  
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